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The brain structural and functional basis of lateralization in handedness is largely

unclear. This study aimed to explore this issue by using voxel-mirrored homotopic

connectivity (VMHC) measured by resting-state functional MRI (R-fMRI) and gray matter

asymmetry index (AI) by high-resolution anatomical images. A total of 50 healthy subjects

were included, among them were 13 left-handers, 24 right-handers, and 13 mixed-

handers. Structural and R-fMRI data of all subjects were collected. There were significant

differences in VMHC among the three groups in lateral temporal-occipital, orbitofrontal,

and primary hand motor regions. Meanwhile, there were significant differences in AI that

existed in medial prefrontal, superior frontal, and superior temporal regions. Besides,

the correlation analysis showed that the closer the handedness score to the extreme

of the left-handedness (LH), the stronger the interhemispheric functional connectivity,

as well as more leftward gray matter. In general, left/mixed-handedness (MH) showed

stronger functional homotopy in the transmodal association regions that depend on the

integrity of the corpus callosum, but more variable in primary sensorimotor cortices.

Furthermore, the group differences in VMHC largely align with that in AI. We located

the specific regions for LH/MH from the perspective of structural specification and

functional integration, suggesting the plasticity of hand movement and different patterns

of emotional processing.

Keywords: handedness, voxel-mirrored homotopic connectivity, asymmetry index, magnetic resonance imaging,

lateralization

INTRODUCTION

Human brain behaviors exhibit significant lateralization (Ocklenburg et al., 2014), including
language (Ocklenburg et al., 2013; Yazbek et al., 2020), visuospatial (Vogel et al., 2003; Tokgoz
et al., 2020), memory (Babiloni et al., 2006; Zhou et al., 2020), attention (Duecker et al., 2013),
and emotional processing (Lindell, 2013). Anatomically, the brain basis of these lateralized
behaviors is supposed to be associated with prominent structural asymmetries, including the lateral
fissure (Rubens et al., 1976; Toga and Thompson, 2003; Essen, 2005) and the supratemporal
sulcus (Shapleske et al., 1999; Hirayasu et al., 2000); however, the structure and the function of
lateralization behavior, such as the handedness, is still an open question.
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Handedness is an important feature of lateralization in
humans. More than 90% of the population is right-handed. The
motor asymmetry of the hand appears in prenatal development
and has been linked to genetic origin (Corballis, 1997) and
brain size and social network expansion (Halpern et al., 2005).
Furthermore, previous research (Willems et al., 2014) suggests
that left-handers tend to weaken brain lateralization, as compared
to right-handers. The evidence in these documents suggests that
left-handers may have distinct interhemispheric interaction
patterns and macroscale organization, both structurally
and functionally.

Functionally, interhemispheric interaction is critical to
efficient communication and cooperation for human behaviors
and cognition (Li et al., 2017; Qiu et al., 2017a,b; Gao et al.,
2019; Ye et al., 2020). Structurally, brain lateralization is an
important basis for functional specification and interhemispheric
interaction (Postema et al., 2019; Dutta et al., 2020; Güntürkün
et al., 2020; Jber et al., 2021). Resting-state functional magnetic
resonance imaging (R-fMRI) is a powerful tool for non-
invasively studying such neuroscience questions. Among the R-
fMRI analysis methods, voxel-mirrored homotopic connectivity
(VMHC) (Zuo et al., 2010), which reflects the homotopic
functional connectivity between the two hemispheres by
calculating the correlation coefficients of voxels in symmetrical
positions, has been widely used in nervous system diseases in
recent years (Hoptman et al., 2012; Hua-Jun et al., 2014; Wei
et al., 2014; Xu et al., 2014; Chen et al., 2015; Hu et al., 2015;
Jiabao et al., 2019; Yun et al., 2019; Zhao et al., 2020; Wu et al.,
2021). Furthermore, voxel-based morphometry (VBM) using
high-dimensional registration can also perform hemispheric
asymmetry analysis and generate gray matter asymmetry index
(AI) at the voxel level (Florian et al., 2015). Both the VMHC
and the gray matter AI show good test–retest reliability in
discovering plasticity and disease-related changes (Zuo et al.,
2019). In this study, we explored how and to what extent
the handedness is coupled with interhemispheric functional
integration and hemispheric gray matter lateralization across
the full range of handedness scores (i.e., from the left extreme
−100 to the right extreme 100). Considering the prominent hand
movement coordination and higher mental illness incidence
(Goez and Zelnik, 2008; Postema et al., 2019; Dutta et al., 2020;
Jber et al., 2021), we, therefore, hypothesized that the extent of
left-handedness tightly aligns with homotopic connectivity and
gray matter lateralization in brain regions involving in hand
sensorimotor, visual motion, and emotional processing.

MATERIALS AND METHODS

Subjects
Fifty volunteers aged between 18 and 32 years participated in
the study through campus advertisement, including 13 left-
handedness (LH), 24 right-handedness (RH), and 13 mixed-
handedness (MH). All subjects underwent Mini-Mental State
Exam (MMSE) (Tombaugh andMcIntyre, 1992) and handedness
assessment. The handedness was assessed using a modified
Chinese version of the Handedness questionnaire, and hand
preference was assessed for 10 different activities (Li, 1983).

The inclusion criteria were the following: (1) the MMSE score
> 24; (2) no history of psychiatric or neurological illness; (3)
satisfied the conditions of MRI examination and signed informed
consent. The details of the three groups are presented in Table 1.
The exclusion criteria were the following: (1) the MMSE score
≤ 24; (2) history of psychiatric or neurological illness; (3)
any contraindications for MR scan; (4) low education level (<
6 years).

This study was approved by the local Medical Ethics
Committee in Zhongnan Hospital of Wuhan University and
informed written consent was signed by all participants.

Handedness Questionnaire
Referring to the Annett hand preference questionnaire (Annett,
1970) and the Oldfield Edinburgh handedness inventory
(Oldfield, 1971), a Chinese scholar (Li, 1983) has developed a
handedness questionnaire for Chinese people, which contains a
series of daily hand tasks. There are a total of ten items, each with
two points. If you usually use the left (right) hand, the left (right)
hand will get two points. If the two hands are used frequently,
then the left and right hands will each get one point, and finally
count the total score of the left and right hands. The total score
of the right hand minus the total score of the left hand is the
difference score. The difference score is then divided by the total
score (the sum of the left and right score) and multiplied by 100
to generate the final handedness score. Subjects scoring < −40
are LH, from−40 to 40 are MH, and higher than 40 are RH.

MRI Data Acquisition
MRI data were collected using a 3T MRI scanner (MAGNETOM
Trio, Siemens Healthcare, Erlangen, Germany), equipped with
a 32-channel head coil. All subjects were asked to lie down
in the supine position, with eyes opened and relaxed. The R-
fMRI data were acquired using an echo-planar imaging (EPI)
sequence consisting of 240 volumes in 8min, 32 axial slices
with a thickness of 3.5mm, no slice gap, repetition time (TR)
= 2000ms, echo time (TE) = 30ms, flip angle (FA) = 90◦,
field of view (FOV) = 196 × 196 mm2, and matrix size = 64
× 64. Meanwhile, three-dimensional (3D) high-resolution T1-
weighted images were acquired using magnetization-prepared
rapid acquisition gradient echo (MPRAGE) sequence for spatial
normalization and AI calculation, with TR = 2250ms, TE =

2.26ms, FA = 9◦, FOV = 256 × 256 × 176 mm3, and matrix
size= 256× 256× 176.

Resting-State-Functional MRI Data
Preprocessing
The acquired data were preprocessed using Data Processing
Assistant for R-fMRI (DPARSF, version 3.2; http://restfmri.net/
forum/DPARSF) (Yan and Zang, 2010) and Statistical Parametric
Mapping (SPM version8; http://www.fil.ion.ucl.ac.uk/spm) on
MATLAB (MathWorks Inc., Natick, MA, USA) platform, which
consisted the following: (1) NIFTI format conversion; (2)
the removal of first 10 volumes; (3) slice timing; (4) head-
motion correction with a 24-parameter linear and non-linear
transformations (none of subjects with the data of each side
moving to the head > 1mm and rotation > 1◦ was excluded
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TABLE 1 | Summary of the demographic and questionnaire score.

Left (n = 13) Mixed (n = 13) Right (n = 24) Group Comparisons Post hoc

Mean ± SD Mean ± SD Mean ± SD Statistic p

Gender (male/female) 8/5 4/9 11/13 χ
2 = 2.48 0.290 _

Age (years) 24.46 ± 2.70 22.69 ± 3.34 24.83 ± 3.30 F = 2.24 0.117 _

Handedness score −71.23 ± 15.83 −7.96 ± 23.75 99.58 ± 2.04 F = 636.90 <0.001 Right>Mixed>Left

MMSE score 30 30 30 F = 0 >0.99 _

during theMRI scan); (5) T1 structural images were coregistrated
to functional images and segmented into white matter, gray
matter, and cerebrospinal fluid; (6) nuisance covariates regression
(including the 24-parameter head motion model, white matter,
cerebrospinal fluid); (7) spatial normalization to Montreal
Neurology Institute (MNI) space and resampling to 3 × 3 × 3
mm3; (8) smooth with the Gaussian kernel of 6mm; (9) filtering
(0.01–0.08 Hz).

T1 Data Preprocessing
After visual inspection of the quality of high-resolution T1-
weighted anatomical images of all subjects, the images were
manually reorientated and aligned with the anterior commissure-
posterior commissure (AC-PC) line. Then, we used the method
provided by Kurth et al. (Florian et al., 2015) using VBM
(VBM version8; http://dbm.neuro.uni-jena.de/vbm.html) and
SPM8 software, including the following steps: (1) NIFTI format
transformation; (2) segment for gray matter and white matter;
(3) left-right flip of gray matter and white matter; (4) creation
of a symmetric Diffeomorphic Anatomic Registration Through
Exponentiated Lie algebra algorithm (DARTEL) template
(Ashburner, 2007) by using the flipped images and the original
images; (5) registration of the original and flipped images into
the symmetric DARTEL template; (6) calculation of the total
intracranial volume (TIV).

VHMC Calculation
The images were normalized to a symmetric template before
VMHC analysis. First, all the normalized images were averaged
to obtain an average T1 template, then, the T1 template was used
to average the left and right hemispheres to obtain a symmetric
template. Finally, all the preprocessed functional images were
registered to the obtained symmetric template (Zuo et al., 2010).
The time series of each voxel in the hemisphere was extracted
and the correlation coefficient of the voxels in the symmetric
position on the left and right sides was calculated, then converted
into zVMHC maps by Fisher Z transformation for further
statistical analysis.

AI Calculation
The gray matter AI images were calculated within the right
hemispheric mask, with the following formula:

AI= (right-left)/0.5× (right+ left) ,
where AI > 0 indicates that the gray matter volume of the right
hemisphere is larger than that of the left hemisphere, and the gray
matter is right-lateralized. Similarly, AI < 0 indicates that the

images are left-lateralized. The abovementioned AI images were
smoothed with a full width at half maximum (FWHM) of 8mm
Gaussian kernel for subsequent statistical analysis.

Statistical Analysis
Statistical Package for the social Sciences (SPSS) (https://www.
ibm.com/products/spss-statistics) was used for statistical analysis
of demographic statistics and handedness scores. To determine
any possible differences in VMHC between the three groups,
we first performed a one-way analysis of covariance (ANCOVA)
with SPM8, gender and age as covariates, limiting them to
the right hemisphere. Then, to determine the directions of
between-group differences, we extracted the VMHC values of
the significant clusters and performed post-hoc analyses. For AI
images, ANCOVA was conducted with SPM8. Gender, age, and
TIV were controlled and confined to the right hemisphere. After
that, to determine the directivity of these differences between
groups, we extracted the AI values of the above significant
clusters and performed post-hoc analysis to determine the
differences between any two groups. We finally examined the
whole-brain structural and functional correlates of handedness
scores. With the handedness score as a function of imaging
measures, we included the handedness scores of all subjects (from
−100 to +100 as a spectrum distribution of handedness) and
calculated whole-brain voxel-level Pearson’s correlations between
handedness scores and VMHC or AI. Statistical analysis was
performed with a voxel threshold of p < 0.005, and multiple
comparisons were corrected based on a family-wise error (FWE)
with a cluster threshold of p < 0.050.

RESULTS

Demographic Statistics
Table 1 shows the demographic and handedness behavioral data.

Between-Group Differences in VHMC
Between-group differences in VMHC are shown in Figure 1

and Table 2. There were significant differences in VMHC
among the three groups in lateral temporal-occipital cortices,
orbitofrontal cortex, and primary hand motor region (including
precentral gyrus, middle frontal gyrus, and superior frontal
gyrus). Specifically, both LH and MH showed greater
homotopic connectivity in lateral temporal-occipital cortices
and orbitofrontal cortex than that of the RH, and the LH showed
greater homotopic connectivity in the primary hand motor
region than that of the MH/RH.
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FIGURE 1 | Brain areas with significant differences in voxel-mirrored homotopic connectivity (VMHC) values among the three groups. There were significant

differences in VMHC among the three groups in lateral temporal-occipital cortices (LTOC), primary hand motor region (PHM), and orbitofrontal cortex (OFC)

(family-wise error, FWE cluster corrected, p < 0.050). We extracted the VMHC values of the above significant clusters and performed post-hoc analysis to determine

the between-group differences. Specifically, both left-handedness (LH) and mixed-handedness (MH) showed enhanced interhemispheric functional connectivity in

LTOC and OFC compared with right-handedness, and the interhemispheric functional connectivity of LH in the PHM region was enhanced than that of

mixed/right-handedness. (*: p < 0.050, **: p < 0.010, ***: p < 0.001).

TABLE 2 | Voxel-mirrored homotopic connectivity (VHMC) statistics for the groups.

Regions MNI coordinates Cluster size F-value Left (n = 13) Mixed (n = 13) Right (n = 24)

X Y Z Mean ± SD Mean ± SD Mean ± SD

LTOC 42 −72 −3 37 9.37 1.17 ± 0.07 1.00 ± 0.07 0.76 ± 0.05

OFC 12 48 −9 23 8.06 0.94 ± 0.06 0.67 ± 0.06 0.66 ± 0.05

PHM 33 −6 60 41 9.80 0.71 ± 0.05 0.85 ± 0.05 0.57 ± 0.04

The coordinates were shown as stereotaxic coordinates referring to the space of the Montreal Neurological Institute (MNI).

LTOC: lateral temporal-occipital cortices; OFC: orbitofrontal cortex; PHM: primary hand motor.

Between-Group Differences in Gray Matter
Asymmetry Index
The one-way ANCOVA results of the gray matter AI are shown
in Figure 2 and Table 3. The ANCOVA analyses identified
significant clusters with altered gray matter AI in the medial
prefrontal, superior frontal, and superior temporal regions. Both
the LH and RH showed rightward shift of gray matter in the
medial prefrontal cortex compared with MH, and LH showed
leftward shift in the superior frontal gyrus (SFG) and superior
temporal gyrus (STG) compared with MH/RH.

Whole-Brain Voxel-Wise Correlation
Analyses
We found significantly negative correlations between handedness
score and VMHC in themiddle temporal, the posterior cingulate,
the fusiform, the orbitofrontal, and the primary hand motor
regions (Figure 3). Meanwhile, we found significantly positive
correlations between handedness score andAI, widely distributed
in the lateral temporal, the hand motor, the cingulate, and the
angular regions. The whole-brain voxel-wise regression was voxel
p < 0.005 and corrected at FWE cluster p < 0.050.
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FIGURE 2 | Brain areas with significant differences in AI values among the three groups. There were significant differences in gray matter lateralization in the medial

prefrontal cortex (MPFC), superior frontal gyrus (SFG), and superior temporal gyrus (STG) among the three groups. (FWE cluster corrected, p < 0.050). We extracted

the AI values of the above significant clusters and performed post-hoc analysis to determine the differences between the two groups. We found that LH and RH

showed a rightward shift of gray matter compared with MH in MPFC, and LH showed a leftward shift in SFG and STG compared with mixed/RH. (*: p < 0.050, **: p <

0.010, ***: p < 0.001).

TABLE 3 | Asymmetry index (AI) statistics for the groups.

Regions MNI coordinates Cluster size F-value Left (n = 13) Mixed (n = 13) Right (n = 24)

X Y Z Mean ± SD Mean ± SD Mean ± SD

MPFC 2 50 −26 15 6.20 0.19 ± 0.13 0.04 ± 0.12 0.13 ± 0.08

SFG 17 57 20 31 7.51 −0.34 ± 0.61 0.02 ± 0.19 0.04 ± 0.17

STG 59 −41 12 165 8.93 0.02 ± 0.26 0.18 ± 0.17 0.17 ± 0.13

The coordinates were shown as stereotaxic coordinates referring to the space of the Montreal Neurological Institute (MNI).

MPFC: medial prefrontal cortex; SFG: superior frontal gyrus; STG: superior temporal gyrus.

DISCUSSIONS

Using voxel-wise homotopic functional connectivity and
gray matter volume asymmetry (lateralization), we examined
the interhemispheric functional and structural correlates
of handedness. We found a structure-function coupling
into the hand motor, visual motion, and limbic regions
toward LH and MH. These findings correlate the handedness
gradient between interhemispheric functional integration

and hemispheric structural specification, suggesting distinct
brain organizational principles in LH and MH, especially
in the regions subserving hand motor, higher visual, and
emotional processing. The current findings are in line
with this hypothesis and previous reports (Foundas et al.,
1998; Hervé et al., 2006; Amunts, 2010). The involved
areas were generally considered to support motor of
hands, language, visual-auditory-tactile integration, and
emotional processing.
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FIGURE 3 | Voxel-wise whole-brain linear regression analysis between VMHC/AI and handedness scores. The statistical significance was voxel p < 0.005 and

corrected at FWE cluster p < 0.050. The left panel indicates unthresholded voxel-wise correlation coefficients, and the right panel indicates thresholded (r = 0.35)

voxel-wise correlation coefficients.

In terms of interhemispheric functional connectivity, one
main result was altered VMHC in a cluster comprising the hand
motor area, and this brain cluster extended to the SFG and
the posterior part of the middle frontal gyrus. This result is of
great significance because this remarkable cluster is not only an
important anatomical focus of hand movement but also contains
the “graphic motor image center” in the middle frontal gyrus first
described by Exner in 1881 (Franck-Emmanuel et al., 2010). The
primary hand motor area is related to writing and handedness.
Increased interhemispheric functional connectivity with LH in
this area might be related to its daily left-handed behavior,
which suggests that LH has stronger interhemispheric functional
integration and neural signal coordination. This is consistent
with the results of correlation analysis. In the correlation analysis,
there were significant negative correlations in the primary hand
motor region between handedness score and VMHC, suggesting
that the closer the handedness score to the extreme of the
LH, the stronger the connection between the left and the right
hemispheres in the primary hand motor region.

We also found altered functional homotopy in lateral
temporal-occipital junction. The lateral temporal-occipital
junction, also termed as the MT area, is responsible for advanced
visual processing including pattern, face, and visual motion
(Sarah and Proffitt, 2001; Draganski et al., 2004). An illustrative
example is that short-term (3 months) juggling training recruits
selective structural change in the same region and has been
associated with the processing and storage of complex visual
motion (Draganski et al., 2004). The structural differences of
handedness in the MT area have also been found in previous
studies (Hervé et al., 2006; Steinmetz et al., 2010). In the
behavioral study of visual information processing, similar
difference between RH and LH/MH (Le Bigot and Grosjean,

2012; Frässle et al., 2016; Smigasiewicz et al., 2017) was also
reported. This suggests that the homotopic alterations, as
reported in this study, maybe a result of behavioral plasticity.

The orbitofrontal cortex is an important brain area involved
in the cognitive process of decision-making, and it is also a
brain area with significant individual differences, which received
projections from the dorsal nucleus of the medial thalamus,
and was considered to represent emotional value and was
rewarded in making decisions. Strikingly, the VMHC in the
orbitofrontal cortex is significantly different among the three
groups. One possibility is that people who are not right-handers
have certain personality traits that differ in emotional (Perry et al.,
2001; Tranel et al., 2002; Sato and Aoki, 2006) and cognitive
processing (Natale et al., 1982), which is consistent with previous
hypotheses. Another possibility is that the BOLD signal and
the signal-to-noise ratio in the orbitofrontal cortex are poor,
so they might not be accurate. We found a significant negative
correlation in the orbitofrontal cortex between handedness score
and VMHC, suggesting that the closer the handedness score
to the extreme of the LH, the stronger the interhemispheric
homotopy in the orbitofrontal cortex.

The VMHC reflects interhemispheric information exchange,
and its structural basis is mainly based on the corpus callosum,
but not limited to. As a bridge connecting the left and right
hemispheres of the brain, the corpus callosum is directly
involved in the hemispheric transmission of cognitive and
sensory information (Hanajima et al., 2010); however, the
interhemispheric structural connection is not limited to the
corpus callosum, but also extra-callosal pathways, which play
an important role in regulating the functional homotopy
between the primary sensorimotor and the visual areas
(Roland et al., 2017). Clinical studies on agenesis (J Michael
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et al., 2011), deletion (split-brain) (Johnston et al., 2008) and
resection (incision of corpus callosum) (Pizoli et al., 2011)
of corpus callosum indicate that this remarkable homotopy
depended largely on the integrity of corpus callosum in
combination (higher-order) cortex. In addition, multiple extra-
callosal pathways might be more likely to be seen in the
primary cortex. In brain areas with different VMHC of this
study, the orbitofrontal cortex, and the lateral temporal-occipital
junction region, as advanced association cortexes, showed more
connections in LH/MH than RH.Widespread reports have found
that the corpus callosum volume of the LH/MH was larger
than that of the RH in the measurement of the difference
of the corpus callosum (Witelson, 1985; Habib et al., 1991;
Tuncer et al., 2005; Josse et al., 2008). This is consistent with
this result that the interhemispheric functional connectivity of
LH/MH was stronger than that of RH in these two regions. In
electrophysiological studies of rodents and primates, increased
neuroelectric activity in the same area was also found (Nardone
et al., 2013). As the motor area was connected by the extra-
callosal pathways to complete the interaction between the left
and right hemispheres, it could present multiple possibilities. As
we have seen, the information connectivity of LH in the primary
hand motor region was enhanced than that of MH/RH. This was
consistent with the result of correlation analysis that the closer to
the extreme of the LH, the stronger the connection between the
left and right hemispheres.

The gray matter of LH and RH was more rightward shift
than that of MH in the medical prefrontal cortex, LH was
more leftward shift in STG and SFG compared with MH/RH.
The left STG is an important language network node, involving
the Wernicke’s area and the primary auditory cortex. Although
the language network itself has distinct lateralization, there
is still little research on the relationship between handedness
and the lateralization of the language network. Some previous
reports indicated that LH is associated with language ability and
language-related diseases, such as stuttering (Chang et al., 2008),
epilepsy (Bolin, 1953), and autism (Whitehouse and Bishop,
2008). Some researchers pointed out that in the language of
hemispheric dominance, the RH had a typical left hemisphere
preference, while the LH had an atypical (right advantage or
mixed) language advantage (Knecht et al., 2000; Szaflarski et al.,
2002), when forcing to convert a left-hander into a right-
hander, the signal transmission was affected, which is prone
to stuttering (Kushner, 2012), learning disorder, and deficit
disorder with hyperactivity (Goez and Zelnik, 2008). We also
found that the LH showed a decrease in rightward on the STG
compared with RH, which also suggested that LH could be
related to the enhancement of language lateralization in the
right superior temporal gyrus. The medial prefrontal cortex and
anterior cingulate participate in the expression and evaluation of
negative emotions (Amit et al., 2011), and also store long-term
regressive memory (Milad and Quirk, 2002). The SFG is involved
in self-awareness and motor coordination of the sensory system
(Goldberg et al., 2006). Furthermore, when treating epilepsy
clinically with electrical stimulation, the patients would laugh
when stimulated at the upper frontal gyrus (Fried et al., 1998).We
found the differences of AI in the medial prefrontal cortex and
the SFG, which indicated that different handedness had different

or the same but different degrees of hemispheric dominance in
emotional expression and self-awareness.

As for differences in lateralization of handedness, we found
that different handedness could have different advantages
of brain lateralization in different functions. The atypical
lateralization of the non-RH and the typical representation
of the RH were not simply mirror-reversed (Michałowski
and Króliczak, 2015), even though the dominant direction of
hemispheres with different handedness was the same, and the
degree of dependence was different. As a study mentioned, RH
had an advantage over non-RH in the right brain in facial
expression (Bourne, 2008). Bryden et al. have proposed a causal
complementary model, for example, the greater the dominant
effect of the left hemisphere on language, the greater the
dominant effect of the right hemisphere on non-language, and
the dominance of the left hemisphere was negatively correlated
with the dominant score of the right hemisphere (Bryden
et al., 1983). Another study by Bryden (1990) showed that the
asymmetry of the frontal lobe generating words was significantly
negatively correlated with the temporal lobe asymmetry of
face processing and the parietal lobe asymmetry of visual-
spatial processing, indicating that there was a complementary
relationship between them. This model seemed to explain these
results well, for example, in the medical prefrontal cortex, which
relied on emotional expression in the left hemisphere, slanting
on the right side of gray matter in the LH was higher than that
in the MH, while LH slanting on the left hemisphere was higher
compared with MH in the SFG of self-consciousness.

We assumed that the emotional expression of LH was lower
dependent on the left hemisphere than that of MH and that LH
was more dependent on the left hemisphere in the processing of
self-consciousness with left hemisphere advantage. The results
of the previous study (Willems et al., 2014) described that LH
showed increased rates of reductions or reversals of lateralized
brain functions, compared with RH. In these results, we did
not find a significant dependence reduction in LH than RH in
the dominant hemisphere. Some researchers have proposed a
single two-allele gene model, in which one allele encoded left-
brain dominance and RH, while the other allele did not specify
asymmetry, made the direction of handedness and language
advantage change at will (Milne and Milne, 1948; Annett, 2013).
Perhaps, it was the undirected allele that made hemispheric
dominance and handedness irregular in these results. This was
generally consistent with our results of the correlation. We found
a significantly positive correlation between handedness score and
AI, widely distributed in the cerebral cortex, suggesting that the
LHwasmore dependent on the left hemisphere, while the RHwas
more dependent on the right hemisphere. This complementary
functional advantage of the cerebral hemispheres could also be
a good indication of the allocation of resources in the cerebral
hemispheres, as mentioned earlier in the corpus callosum and the
extra-callosal pathways, showing the hierarchical classification
of functional differences in cooperation between the cerebral
hemispheres, which to promote the efficient functioning of the
brain.We found brain areas with significant differences in AI, the
medical prefrontal cortex, SFG, and STG. Meanwhile, the lateral
temporal-occipital cortices, orbitofrontal cortex, and primary
hand motor region (including precentral gyrus, middle frontal
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gyrus, and SFG) were also found in VMHC analysis. The medical
prefrontal cortex, SFG, the orbitofrontal cortex, and the primary
hand motor region were the same as the subrange of the frontal
lobe. The STG and lateral temporal-occipital cortices belong to
the temporal cortex. In general, in this study, the brain areas with
significant differences in AI and VMHC were consistent, and
the differences in brain functions were reflected in the structure.
Meanwhile, they were generally consistent with the results of the
correlation analysis.

This study has the following limitations: we have a limited
sample size, so the robust results need to be further verified in
the analysis of large samples. VMHC and AI analyses are based
on the assumption of bilateral hemispheric mirror symmetry, so
this treatment may mask the original structure.

In this study, white matter and cerebrospinal fluid signals
were removed during preprocessing. In recent years, increasing
evidence suggests that white matter signals may also contain
useful neural information and support large-scale functional
architecture, which may contribute to the large-scale organized
architecture of gray matter activity. However, it is still unclear
how and to what extent the signals in the white matter reflect
behavioral domains including handedness. This important issue
may require further research in the future.

CONCLUSION

LH/MH showed stronger functional homotopy in the transmodal
association regions that depend on the integrity of the
corpus callosum, but more variable in primary sensorimotor
cortices. We located the specific regions for LH/MH from the
perspective of structural and functional specification, suggesting
the plasticity of hand movement and different patterns of
emotional processing. Besides, the correlation analysis showed
that the closer the handedness score to the extreme of the LH,
the stronger the interhemispheric functional connectivity, as well
as more leftward gray matter. Furthermore, the group differences
in VMHC largely align with that in AI.
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