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Abstract

Epigenetic clocks allow us to accurately predict the age and future health of individuals

based on the methylation status of specific CpG sites in the genome and are a powerful tool

to measure the effectiveness of longevity interventions. There is a growing need for meth-

ods to efficiently construct epigenetic clocks. The most common approach is to create

clocks using elastic net regression modelling of all measured CpG sites, without first identi-

fying specific features or CpGs of interest. The addition of feature selection approaches pro-

vides the opportunity to optimise the identification of predictive CpG sites. Here, we apply

novel feature selection methods and combinatorial approaches including newly adapted

neural networks, genetic algorithms, and ‘chained’ combinations. Human whole blood meth-

ylation data of ~470,000 CpGs was used to develop clocks that predict age with R2 correla-

tion scores of greater than 0.73, the most predictive of which uses 35 CpG sites for a R2

correlation score of 0.87. The five most frequent sites across all clocks were modelled to

build a clock with a R2 correlation score of 0.83. These two clocks are validated on two

external datasets where they maintain excellent predictive accuracy. When compared with

three published epigenetic clocks (Hannum, Horvath, Weidner) also applied to these valida-

tion datasets, our clocks outperformed all three models. We identified gene regulatory

regions associated with selected CpGs as possible targets for future aging studies. Thus,

our feature selection algorithms build accurate, generalizable clocks with a low number of

CpG sites, providing important tools for the field.

Author summary

Epigenetic clocks accurately predict a person’s age by measuring the levels of a chemical

mark (methylation) at specific sites of the DNA. More of these clocks are being built all

the time, and there is a need for tools to best construct these clocks, and particularly to

pick the specific DNA sites to include. We propose several novel machine-learning tools

for the optimised selection of these DNA sites, known as feature selection approaches. We

applied our approaches to a large human blood dataset to develop several clocks that accu-

rately predict age using 35 or less DNA sites with more accuracy than previously
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published clocks when applied to other datasets for validation. Some of the DNA sites

identified may be associated with interesting genes to explore further for their role in

aging. These approaches should enable the building of more accurate, generalizable age

prediction clocks from a low number of DNA sites.

Introduction

Epigenetic clocks allow for the prediction and observation of biological aging [1]. By profiling

the methylation levels at specific sites in DNA, it is possible to accurately predict the age of

organisms and tissues [2]. This is often referred to as epigenetic or DNA methylation (DNAm)

age. CpG sites are areas of repetitive DNA bases where a guanine follows a cytosine, which can

be modified via DNA methylation and demethylation to alter the structure of chromatin and

gene expression in a cell [3]. Epigenetic clocks can now predict age across multiple species and

tissue types [4], and even predict mortality [5]. With the increased use of DNA methylation

clocks to determine biological age and screen for interventions that slow or reverse aging, the

demand for more robust, accurate clocks is growing.

The first epigenetic clocks were created by Bocklandt and colleagues [1] quickly followed by

the Hannum and Horvath labs in 2013 [2,6]. The Hannum clock, based on methylation analy-

sis of DNA from human peripheral blood mononuclear cells, was developed using elastic net

regression modelling. Seventy-one markers were selected from over 470,000 CpG sites to

derive an age prediction accuracy of four years [6]. Horvath’s clock encompasses multiple tis-

sue types and includes 353 CpG sites that strongly predict age [2]. Recently, the field has

focused on creating clocks with fewer CpG sites to enable epigenetic age profiling without the

use of costly microarrays or expensive reduced-representation bisulfite sequencing [7,8,9,10].

Alghanim et al.’s clock, built on blood methylation data, only uses CpG sites from three gene

regions to explain 84–85% of age variance [11], and Weidner’s clock based on only 3 CpG

sites, is able to predict age with an error of less than five years [12].

Few epigenetic clock studies employ a discrete step to find optimal features for building

clocks. In machine learning, feature selection is commonly used in situations where the num-

ber of features far outnumber the number of samples [13]. Given the vast number of CpG sites

in the genome and the relatively low number of samples in most studies, feature selection

methods will improve the efficiency of clock building. Currently, the most common approach

for clock building is to use a ‘correlation-with-age’ method, where CpGs that have a non-zero

coefficient in ElasticNet Regression analyses are given more predictive power in the model [2,

6]. The GrimAge clock selects GpGs using a Pearson correlation coefficient higher than 0.35

for further model building [5]. Some clocks utilise more advanced feature selection methods

such as Boruta [14], recursive feature selection [12,15,16,17] or neural networks [9] to accu-

rately predict age, often with few CpG sites.

There are several advantages to using feature-selection methods to build accurate clocks

with fewer CpG sites. These approaches allow for the optimised identification of sites that are

the most predictive of age, health and mortality from the many CpG sites that can be measured

with modern technologies. As platforms become more sophisticated and the number of CpGs

that are measured increases into the millions, it will become increasingly harder to select CpG

sites and genomic regions of importance without sophisticated machine learning and feature

selection methods. The benefits of reducing the number of features down to single digit or low

double digit sites also improves accuracy. Macdonald-Dunlop and colleagues showed that for

-omics based aging clocks, those with lower model complexity (built from fewer principal
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components) had greater accuracy [18]. While fewer CpG sites may leave the lone few features

more vulnerable to confounding effects, the clocks of several hundred CpGs suffer from too

much noise rather than signal for age predictions. This can be seen in the single cell context,

where it was shown that including more CpGs (beyond the best top 0.5%) reduced the correla-

tion between CpG methylation states and single cell ages [19]. Additionally, the identification

of a small targeted set of CpG sites and their associated genes, allows for the focused study of

these sites as biologically relevant in the study of mechanisms of aging, or possible therapeutic

targets. Finally, using feature selection approaches to build low CpG clocks, will also reduce

the cost of measuring epigenetic age with these clocks. The methylation status at a small num-

ber of CpG sites can be measured with less expensive targeted sequencing technologies such as

TIME-seq [20] and bisulfite pyrosequencing [12], instead of relatively more costly Illumina

microarrays (eg. Illumina MethylationEPIC and 450k) [21] and reduced representation bisul-

fite sequencing (RRBS).

Although the number of epigenetic clocks being built using feature selection is increasing,

there is room to optimise feature selection methods. Here, we develop novel feature selection

approaches to construct accurate epigenetic clocks with low numbers of CpG sites on the pub-

licly available Hannum dataset (GSE40279) and evaluate their accuracy and generalizability on

other datasets: GSE52588 [22], GSE137688 [23], GSE85311 [24]. We use newly adapted neural

network and genetic algorithm approaches that have not previously been applied to feature

selection for clocks, novel ‘chained’ combinations of standard methods, and we develop a novel

upgraded selection method to optimise the construction of epigenetic clocks to predict age.

Results

The feature selection methods selected for testing in our study include an upgraded recursive

feature selection (RFE) approach, genetic algorithm, neural network feature selection via

benchmark comparison, Boruta, KBest and SFM methods that are chained together for maxi-

mal performance. These present a comprehensive overview of both cutting-edge and com-

monly used feature selection methods. The new form of RFE, %-RFE, was created to reduce

the computational power, and increase the accuracy of basic RFE on large featurespaces com-

mon in biological datasets. The advantages and disadvantages of these methods are outlined in

the Methods and S1 and S2 Tables, including the details of each method and specific parame-

ters used.

To test if accurate low CpG clocks could be built using these methods, we applied each of

our feature selection approaches to the Hannum methylation dataset (GSE40279). Table 1 and

Fig 1 summarise the results of the feature selection approaches, including the number of CpG

sites identified with each approach, and the correlation (R2) with chronological age on a test

set. The best model for age prediction for this dataset is SelectKBest for 2000 features followed
by Boruta. This approach selects 35 CpG sites, with an R2 of 0.873 and a median absolute error

of 3.08 years (Table 1).

ElasticNet de novo (Table 1 and Fig 1) represents a model without any feature selection

methods for comparison to the other models. This model uses all ~450,000 features to train a

model without any pre-selection or iterative algorithms. The resulting clock from this

approach is based on 276 CpGs, which is an order of magnitude more CpGs than clocks devel-

oped with the feature selection methods (Table 1), and with a lower R2 score than five of the

feature selection models (Table 1).

All of our novel updated %-RFE methods worked well with scores of 0.81 or higher

(Table 1). Several of our combinatorial ‘chained’ approaches also performed well, in particular

KBest 2000 de novo then Boruta which was the highest scoring clock (R2 = 0.87) and %-RFE de
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novo to 1500 then Boruta, which had an R2 of 0.835. Boruta de novo and KBest 25 de novo
score remarkably well with no prior method being applied (0.861 and 0.862 respectively).

These are the best performing solo feature selection methods.

Our other feature selection methods, including most of the SelectFromModel (SFM) meth-

ods and the genetic algorithms, achieve an accuracy of between 0.77 to 0.81 (Table 1). Despite

Table 1. Feature selection methodology (in descending order of correlation scores). Number of features selected by each method parenthesized in the first column.

Average R2 Score (from

10CV)

STD (Years) Mean Absolute Error

(Years)

Median Absolute Error

(Years)

KBest 2000 de novo then Boruta (35) 0.873 0.05 3.82 3.08

Intersection of all methods per CV fold then Boruta

(102)

0.865 0.06 3.9 3

KBest 25 de novo (36) 0.862 0.06 3.96 3.14

Boruta de novo (53) 0.861 0.06 3.95 3.08

%-RFE de novo to 1500 then Boruta (52) 0.835 0.07 4.35 3.57

ElasticNet de novo/No Feature Selection (276) 0.827 0.06 4.64 3.91

%-RFE de novo to 100 (161) 0.825 0.07 4.69 3.83

Top 10 Most Frequent (10) 0.825 0.08 4.59 3.7

Top 5 Most Frequent (5) 0.82 0.08 4.6 3.79

%-RFE de novo to 10000 then Genetic Algorithm (54) 0.818 0.08 4.61 3.76

SFM ElasticNet de novo then Boruta (7) 0.813 0.07 4.7 3.71

Genetic Algorithm de novo (85) 0.812 0.08 4.72 3.68

SFM ElasticNet de novo (16) 0.81 0.07 4.74 3.84

%-RFE de novo to 1500 then SFM (16) 0.81 0.07 4.74 3.84

SFM ExtraTrees de novo (5) 0.77 0.08 5.36 4.27

SFM ExtraTrees de novo then Boruta (5) 0.77 0.08 5.36 4.271

Neural Network feature selection (65) 0.76 0.08 5.65 4.79

Post Feature Selection Intersection of all methods (1) 0.73 0.09 5.75 4.38

Variance Threshold de novo (2) 0.02 0.02 11.9 10.61

https://doi.org/10.1371/journal.pcbi.1009938.t001

Fig 1. Comparative methods and the number of features used in each model on the x-axis and their average R2 scores on the y-axis. R2 scores are

relatively similar across the board despite the number of features needed for prediction varying widely.

https://doi.org/10.1371/journal.pcbi.1009938.g001
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being fundamentally different in their approach, these methods accomplish similar results and

plateau in the same range of scores (Fig 1). Further optimization of each of these methods is

needed to warrant their usage over other more successful methods.

Using the five most frequently selected CpGs among all the methods to build a clock

resulted in a correlation score of 0.83 and median absolute error of 3.79 years (Table 1).

Table 2 shows the corresponding GeneIDs for these CpGs. The most frequent CpG site is

cg16867657 (ELOVL2) and training a clock on this single feature results in a correlation score

of 0.73 (Table 1). Overall, these results demonstrate that using feature selection methods accu-

rate epigenetic clocks can be constructed with only a few CpGs. We also provide a table of all

CpGs included in all of our clock models (S3 Table). These sites, and their associated genes

may be novel markers or targets for future age-related research.

We also tested a neural network approach for feature selection. An ElasticNet Regression

model trained on the top 65 features selected by the neural network, has a moderate R2 value

of 0.76. Interestingly, only four of the 65 identified neural network CpGs overlap with the

CpGs selected by other methods described here.

We selected two models developed above for further validation of their accuracy in inde-

pendent datasets. SelectKBest for 2000 features followed by Boruta & the top 5 most frequent fea-
tures are the best performing feature selection method and the clock with the lowest number

of CpGs sites, respectively. We applied these two clock models to two published blood methyl-

ation datasets. GSE85311 contains methylation profiling of blood taken from young and old

human subjects of varying exercise level [24]. GSE52588 contains methylation profiling of

blood taken from people with and without down syndrome [22]. Each of the clocks predicted

age very well in these external data sets with R2 values greater than 0.93 (Table 3 and Fig 2).

We also compared the performance of our top two clocks against previously published

clocks by Horvath (one of the gold standard benchmark models in the epigenetic clock field,

353 CpGs) [2], Weidner (one of the lowest published CpG clocks, 3 CpGs) [12] and Hannum

(created from the same dataset as our clocks, 71 CpGs) [6]. These 3 clocks were applied to the

same datasets as above (GSE85311 andGSE52588) to predict age. As is shown in Fig 3, our

Table 2. The five CpG sites that are chosen as most frequent predictors for aging and their associated gene

symbols.

Most Frequent 5 CpG Sites Associated GeneID

cg16867657 ELOVL2

cg10501210 C1orf132

cg22454769 FHL2

cg04875128 OTUD7A

cg19283806 CCDC102B

https://doi.org/10.1371/journal.pcbi.1009938.t002

Table 3. Table showing the results of the two final models trained on the Hannum dataset (GSE40279) [6]) validated on external datasets: Horvath down syndrome

blood dataset (GSE52588)[22], Martens exercise blood dataset (GSE85311)[24], and buccal dataset (GSE137688)[23]. Number of CpG sites/features in parentheses.

Feature Selection Methods Data set R2 Score Mean Absolute Error (Years) Median Absolute Error (Years)

KBest 2000 de novo then Boruta (35) GSE85311 0.931 4.66 4.18

GSE52588 0.946 3.35 2.68

GSE137688 0.710 2.0 1.6

Top 5 Most Frequent (5) GSE85311 0.964 5.71 5.60

GSE52588 0.932 4.56 3.98

GSE137688 0.470 2.72 2.29

https://doi.org/10.1371/journal.pcbi.1009938.t003
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models had higher age correlation coefficients than all three of these previously published

clocks in the prediction of age in both of these datasets.

To test whether clocks developed with our feature selection approaches can be applied to

datasets taken from other tissue types, we applied our two selected best models to a human

buccal cell dataset (GSE137688) [23]. Using the methods on this dataset, we achieved a top R2

score of 0.71 with the SelectKBest for 2000 features followed by Boruta method and R2 of 0.47

Fig 2. Figure showing the Predicted Ages vs Chronological Ages from our two final models on the two external validation datasets GSE85311 and

GSE52588. (A-B) KBest 2000 de novo then Boruta (C-D) Top 5 Most Frequent.

https://doi.org/10.1371/journal.pcbi.1009938.g002
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with the Top 5 Most Frequent method (Table 3). The scores were expectedly lower than the

results of the previous two validation sets because the clocks were trained on blood data, and

applied to buccal swab data, which have inherent sampling and variance differences. While the

R2 scores were not as high, the models did have very low mean and median absolute errors;

the lowest of all results in this paper. Given the abundance and ease of accessing buccal sam-

ples, this represents promising rudimentary groundwork for the application of feature selec-

tion methods on sample types beyond blood.

We next wanted to test whether the features selected with our methods could be used to

make accurate clocks in other datasets. We took the CpGs selected from the Hannum dataset

using our top two models (SelectKBest for 2000 followed by Boruta & the Top 5 Most Frequent
CpG features), and selected those same CpGs in the Horvath down syndrome dataset

(GSE52588) [22]. Using only those CpGs, we created a clock from that remaining dataset

using the same cross-validation scheme (see Methods) used for our original Hannum experi-

ment above. Remarkably, the clocks developed in this dataset based on 35 features (SelectKBest
for 2000 features followed by Boruta) and 5 features (top 5 most frequent) achieved R2 scores of

0.928 and 0.911 respectively (Table 4), indicating that these CpGs can be selected across data-

sets to create accurate clocks and are possibly universal CpGs for predicting age.

Discussion

Overall, we demonstrate that feature selection methods can select CpG sites that are highly

predictive of age, allowing for less features needed to build highly accurate epigenetic clocks.

Our two best clocks were validated on external datasets, and in fact out-performed previously

published epigenetic clocks. However, many different types of feature selection methods,

including novel optimised and combinatorial methods, are able to attain a reasonably high

correlation score of around 0.75–0.85 whilst using a low number of CpG features. Developing

these accurate low CpG clocks allows for the focused investigation of these sites and cheaper

measuring of epigenetic age. Our rudimentary base code that outlines most of the feature

selection ideas in this paper is publicly available and we hope that feature selection becomes a

standard discrete step in future epigenetic clock studies.

When our two best clocks were applied to validation datasets both performed well, espe-

cially in comparison to clocks by Horvath, Hannum and Weidner [2,6,12]. The benefit of our

methods over both Hannum and Horvath’s clocks are higher predictive accuracy and fewer

CpGs meaning less costly future epigenetic age profiling. Weidner’s clock has two fewer CpGs

than our smallest clock, but it does not predict age as accurately on the two validation sets.

Fig 3. Figure showing the Predicted Ages vs Chronological Ages from Horvath’s, Weidner’s and Hannum’s publicly available

models/equations on the two external validation datasets GSE85311 and GSE52588. (A-B) Horvath’s model (C-D) Weidner’s

model (E-F) Hannum’s model.

https://doi.org/10.1371/journal.pcbi.1009938.g003

Table 4. Results of the two models created from the Horvath down syndrome blood dataset (GSE52588) [22]

using the same CpGs selected from the two feature selection methods from the initial Hannum experiment. These

models were validated using the same 10CV scheme from the initial Hannum experiment. Number of CpG sites/fea-

tures in parentheses.

Feature Selection Method

CpGs used

Average R2 Score (from

10CV)

Mean Absolute Error

(Years)

Median Absolute Error

(Years)

KBest 2000 de novo then

Boruta (35)

0.928 3.39 2.92

Top 5 Most Frequent (5) 0.911 4.02 3.72

https://doi.org/10.1371/journal.pcbi.1009938.t004
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Interestingly, Weidner and colleagues used a standard RFE feature selection approach in the

development of their clock.

For further validation of our approaches, we also applied the two best models to a dataset of

a different sample type; buccal epithelial cells. Although the R2 scores were only moderate for

this dataset, the mean and median absolute errors were the lowest we observed. This suggests

an interesting future potential for buccal/saliva methylation samples, as they are much more

accessible and less expensive to obtain. The moderate performance of our blood-based clock

on buccal cell samples, also highlights the importance of having appropriately trained clocks

for the outcomes and samples you wish to measure. As shown by Liu and colleagues, DNA

methylation is global, but it is not uniform [25]. They compared the CpGs of 11 well known

epigenetic clocks and found little overlap in their genomic locations [25]. As DNA methylation

is heterogeneous across sources and contexts, it is important to have readily available tools,

such as those presented here, that can select for the optimal sets which predict best the target

variable.

The feature selection methods presented here represent novel steps forward in the field.

Firstly, we present two algorithms (the neural network and genetic algorithm) that were

designed and written without modification of existing packages. To the best of our knowledge,

this is the first application of these methods to feature selection for aging biomarkers, and their

application in general biology is nascent at best. Although the neural network was not as accu-

rate as the other feature selection methods, it did select many CpG features that were missed

by our other approaches. We conclude that this is a promising predictive tool to uncover more

obscure CpGs that most conventional methods miss. Furthermore, unlike the other methods

such as RFE and Boruta, the neural network selection method has substantially more parame-

ters one can optimise for in different contexts, including number of nodes, cost function, acti-

vation function and number of hidden layers, but also setting the target CpG site’s methylation

(see Methods) to a range of values, instead of just 0 and 1, and ranking the importance of fea-

tures based on the fluctuation of the score given a threshold of methylation. As methylation

datasets become larger in sample size and more sophisticated neural network models are

developed, their performance can only improve. Genetic algorithms were initially created for

model or parameter selection but in recent years have become one of the most advanced fea-

ture selection methods in computer science [26]. Our genetic algorithm performed moderately

well in the selection of features to predict age, and is designed to offer the user several options

for parameter tuning at different stages such as choosing how many models or ‘creatures’ to

populate with, mutation rates, mating habits etc. (see Methods for more details). The avenues

for parameter optimization in genetic algorithms is truly vast and we have only showcased

genetic algorithms ability to keep up with older established feature selection methods in pre-

dicting age. However, combined with its heavy potential for hyper-specific parameter tuning,

it gives promise to possibly surpass them in the future.

In addition to the neural network and genetic algorithm, we also present novel adaptations

of standard feature selection libraries. These include an upgrade to the conventional RFE that

enables the sklearn libraries to both run more efficiently and produce better results, as well as

‘chaining’ different feature selection methods together, in order to cover each other’s weak-

nesses to produce a more well-rounded feature selection pipeline. The latter produced our best

performing model (SelectKBest method down to 2000 features followed by Boruta), demonstrat-

ing that chaining these methods can result in novel and superior feature selection approaches.

Our modification to the RFE approach, although small, is significant and perhaps necessary

when it comes to feature selection in large datasets. Whilst the stock RFE package is only capa-

ble of removing a user set number of features regardless of its relation to the current feature

space size, our novel %-RFE removes a target number of features that scales dynamically with
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every iteration of the algorithm. This enables the algorithm to be computationally less inten-

sive, but also possibly produce better results (Table 1). Boruta also suffers from a similar

computational issue as it essentially doubles the dataset (see Methods) to create its shadow fea-

tures for feature selection. Decision trees and random forests are also its main model architec-

tures, models which take much longer to train compared to regression models. In order to

fully complete a stock Boruta feature selection run, a reduced number of trees must be used to

reduce runtime (S1 Table), but this low number of trees can affect the training capacity. Here,

we use %-RFE or other feature selection methods in tandem with Boruta to first reduce the

dimensionality and drastically improve its performance. RFE and Boruta has been used prior

to this study in the creation of epigenetic clocks [12, 14, 15, 16, 17], however the novel combi-

nation of these methods together allow users to use these models to their full potential in the

context of methylation data where the number of features vastly outnumber samples. This

study validates the concept of using several feature selection methods in tandem with each

other to overcome computational issues and still achieve competitive results.

In this study, we identified five CpGs and their corresponding genes that were of particular

interest, as they were most commonly identified across all feature selection methods in our

study (Table 3). Four of these CpG sites, and particularly ELOVL2, have been previously iden-

tified as strong predictors of age. ELOVL2, C1orf132, FHL2 and CCDC102B are included in

an online seven CpG site epigenetic clock from the University of Santiago de Compostela [27].

Zbieć-Piekarska et al constructed a linear regression model using only ELOVL2’s CpG site

(cg16867657) to predict age [28] and obtained a high degree of accuracy in blood samples

from humans. By manipulating the expression of ELOVL2 and observing age-related changes

in the eyes of mice, [29] suggest that the gene is a molecular regulator of aging in the retina.

Spólnicka and colleagues used ELOVL2 to accurately detect age differences from 3 disease

groups [9], and also highlight C1orf132 and FHL2 as key genes from which CpG sites are used

for their epigenetic clock. CCDC102B is also linked to aging and age-related degenerative dis-

eases [30,31]. Ito and colleagues developed a clock using only the CpG sites associated with

CCDC102B and ELOVL2 [7] and can predict age with an R2 of 0.75. Additionally, Fleckhaus

et al.’s study develops a clock using 8 target regions, four of which are ELOVL2, FHL2,

CCDC102B and C1orf132 [32]. These papers show that our feature selection methods are able

to select the most age predictive CpG sites, consistently with other studies. OTUD7A is the

fifth gene of interest that we identified with our methods and the least documented. One study

identified highly methylation CpG sites associated with OTUD7A correlating with age [33],

and Yin et al. identified it as a potential regulator for neurodevelopmental disorders [34]. The

role of OTUD7A in aging, if any, is not well-known and should be explored further. In addi-

tion, 61 of the CpG sites identified by our neural network analysis had no overlap with other

clock sites selected by us or Hannum’s model in the original Hannum dataset and may provide

novel biologically important targets. We hope that the application of these feature selection

methods in other studies and across more datasets by our group and others, will allow the

future identification of more novel age-related genes.

In the future, these methods can be applied to a range of studies developing epigenetic

clocks including across new tissue types (such as buccal/saliva samples), or by examining a

limited subset of CpGs in mutual overlap between bulk methylation and single cell datasets

[19]. Parallelized, highly cost-reduced methods targeting specific CpG regions, such as TIME-

seq [20] will dramatically lower the cost barrier of entry into epigenetic clock analysis. As Illu-

mina arrays cost several hundred dollars a sample, the combination of our feature selection

methods that find low amounts of important CpGs and cheaper sequencing approaches will

prove to be a powerful combination. Lastly, these methods are not limited to the identification

of CpG sites as features, and this pipeline could be used to identify features for biomarkers or
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clocks developed from a range of datasets (eg. metabolomics, microbiome, transcriptomics,

proteomics, clinical data), and to predict a variety of age and health outcomes. Given the vast

feature space of -omics datasets, creating an accurate model through penalised regression is

often not difficult, however finding the right features for further study to infer biological

understanding is harder. In recent years, feature selection has become a popular method for

novel biomarker discovery [35, 36, 37, 38, 39, 40] and the application of the novel feature selec-

tion methods in this paper could accelerate the discovery of biomarkers in many fields.

Methods

Data

The datasets for this study are from the Gene Expression Omnibus database under the acces-

sion codes GSE40279, GSE85311, GSE52588 and GSE137688 [6,22,23,24]. These datasets were

pre-processed from raw methylation data and provided by their respective authors and studies.

To ensure our models and publicly available models were compared fairly during validation

we removed the CpG sites with missing methylation data across all clocks and datasets. The

main dataset GSE40279 we test the feature selection methods on contains 656 samples

(instances) of whole blood human methylation levels at 473,035 CpG Sites (features), matched

to chronological ages. All analysis was done in Python 3. All related code outlining our meth-

ods is available on github (https://github.com/adamyli/CLK-MKR).

Cross-validation and overall approach

The main workflow methodology is outlined in Fig 4. The original dataset was split into 10

folds for cross-validation (CV). For each set of training folds, every different feature selection

method was performed to select the optimal features within that training data. For every CV

iteration, the intersection of each feature selection method was also recorded and we per-

formed Boruta on the intersected features. For each of the feature selection methods, unique

features from each of the 10 iterations were collected into an aggregated list and entered into a

final results dataframe. This dataframe contains every unique feature selected by each selection

method at each of the 10 iterations.

Post-feature selection processes were then performed. These include the intersection

between the results of all selection methods and ranking the top 5 and 10 most common fea-

tures out of all the results. The results from these two post-feature selection processes were also

added to the Results Dataframe. The original dataset was split into 10 folds again and for each

column of the Results DataFrame, which represents the unique selected features for every

method, we reduced the dataset down to the selected features. We trained the ElasticNet

regression model for chronological age using training data (80%) and evaluated the model on

the test data (20%) using the r2 scoring metric. For each column the mean of the 10 r2 scores

was the performance estimate of that feature selection method.

The best performing model was the clock from the SelectKBest method down to 2000 fea-
tures followed by Boruta resulting in 35 selected features. The second model of interest uses the

top 5 most frequently selected CpGs. These 2 models were validated using two external blood

methylation datasets; (GSE52588) and (GSE85311) and their performance was compared to

Hannum’s model’s predictions on these two datasets. The features from these two models

were also used to build models from the GSE52588 dataset and predict age using the same

10-fold CV as the Hannum dataset to investigate if these selected features are effective across

datasets.

These two models are also applied to a methylation dataset taken from buccal cells

(GSE137688) to see if performance could be replicated in conventionally cheaper samples [23].
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Feature selection methods

SelectFromModel (SFM). SFM is a function within skLearn [41] that wraps around and

trains a model on a dataset and allows the user to specify a threshold of feature importance.

Depending on whether the model is a standard regression or random forest model, the feature

importance is calculated from the coefficients or mean importance respectively. Features

(CpG sites) with less feature importance than this threshold are discarded, leaving only the fea-

tures with the highest coefficient or importance. This method is fast but simple. Thresholds of

0.01, 0.05, 0.1, 0.5 are tested as thresholds beyond this point yielded 0 features for every input

dataset and finer intervals between each threshold had minimal changes in number of features

selected. For this study, the models that the SFM wraps around are ElasticNet Regression and

ExtraTrees forest.

The ExtraTrees Regression estimator is composed of a number of decision trees. A decision

tree can be thought of as an intuitive flowchart where an answer to one decision between 2 or

more choices leads to another. Decision trees decide how to split by prioritizing the split that

creates the least uniform distribution of labels or values. This branching of nodes continues

until it reaches a node that cannot decide which split to use because they result in equally uni-

form distribu-tions—meaning any more branches will not help the tree make any better deci-

sions. In this sense ExtraTrees is similar to the more popular random forest with a few distinct

differences. Random Forest samples the training data with replacement to train their decision

Fig 4. The workflow for feature selection and model evaluation. Feature selection was performed on training data for each iteration of 10-fold cross

validation. The selected features of each iteration are aggregated into a list for each feature selection method type. The unique selected features for each method

are collected into a dataframe where post-selection processes such as intersections are performed. We add the results to a dataframe. Each column of selected

features in the results dataframe (each representing a different feature selection method) is tested using another training-testing split on the original data. This

is done 10 times for 10-CV with the average of all scores being the performance estimate for that feature selection method.

https://doi.org/10.1371/journal.pcbi.1009938.g004
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trees whileExtraTrees uses the entire original dataset. However ExtraTrees randomly chooses

the split instead of optimally finding a locally one which is what Random Forest does. Extra-

Trees are therefore less exhaustive in their optimization and are faster than Random Forests.

This is ideal for us as a Random Forest with 5–8 trees in it can take several hours to train on a

dataset as large as ours. A random forest takes an advantage known as bagging by taking ran-

dom instances of the dataset and training its model from solely those samples. For a regression

problem like ours the average value of all trees are taken as the final prediction.

Recursive Feature Elimination (RFE) and the introduction of %-RFE. RFE is a function

that trains a model on a dataset and removes the weakest feature based on the lowest feature

importance from the dataset [41]. This new dataset of N-1 features is trained again with a model

and the process is repeated until only the user specified number of features is left. By removing

1 feature each time, RFE is a brute force algorithm that leaves only the best performing features

at each iteration. However it does not take into account all features at the same time, and is

unable to be aware of relationships between CpGs when it comes to predicting age e.g. some

CpGs may become a strong predictor of ageing in the presence or absence of another.

Applying the stock RFE algorithm to our dataset of 473,035 features is computationally lim-

iting due to the size of the dataset (S1 Table). Instead, we wrote a novel algorithm that removes

a percentage-based number of features at each iteration allowing us to aggressively remove the

majority of unnecessary features at the start but be more meticulous with our selection near

the end. The percentage chosen is 1%, i.e. removing 4730 features at 473,035 and 1 feature at

100. Depending on our use case we used %-RFE down to 100, 1500 and 10,000 features. This

variation allowed us to feed different amounts of features into more computationally intensive

but higher quality feature selection methods.

Boruta. RFE is a ‘minimal optimal’ feature selection method, meaning it attempts to select

the smallest set of features with the minimum error for an estimator and aims to optimize this

ratio. Boruta differs as an ‘all-relevant’ feature selection method compatible with only tree-

based regression methods, such as random forests[42]. Instead of trying to find the most com-

pact set of features to predict with, it considers all features that could possibly contribute

towards prediction overcoming the weakness of RFE’s greedy nature. Boruta creates duplicates

of the existing features with randomized values called ‘shadow features’. The dataset compris-

ing the original and the shadows, is trained on the tree estimator and the shadow features com-

pete with their original forms. Features that consistently beat their shadow counterparts are

selected as reputable predictors. In order to deal with the computational power needed to train

a random forest with over 470,000 features, we used only 7–8 trees and 100 iterations when

using Boruta de novo on all ~470,000 features. When using Boruta with other feature selec-

tions later on (after a faster method was applied) the default number of trees and iterations was

able to be used.

SelectKBest. SelectKBest is a feature selection method in sklearn similar to SFM that fits a

dataset and selects features based on a scoring metric [41]. For each feature it calculates the

correlation value between the feature and target label and ranks them. This method is fast due

to its shallow nature of only training once so is not useful when used alone. However, it is help-

ful to reduce the total number of features for usage of more greedy algorithms such as Boruta.

In our methodology we select the top 25 features and the top 2000 features using SelectKBest.

We perform Boruta on the top 2000 features.

Variance threshold. Variance threshold is a simple and exploratory method that removes

all features whose column of values do not reach the threshold of variance [41]. Since some

datasets naturally may not have a high degree of variance in their recorded data, this method is

not consistent. However since its execution is the fastest out of all the methods (S1 Table) it is

included as an added method.
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Neural Network (NN) feature selection. The rudimentary neural network is built using

PyTorch to feature select CpG sites, as neural networks have been known to capture nonlinear

relationships between data points. We were interested in seeing what would be good predictors

of aging that might have been missed by the other linear regression models and lay the ground-

work for future feature selection using NNs. As a proof-of-concept we used %-RFE to reduce

the number of features from 473,035 down to 100. The NN first uses all 100 original features

and trains the model once, its score being recorded as a benchmark. Following this, for each of

the 100 features, the NN is then trained twice; once where all methylation levels of that feature

equals 1 and once where they all equal 0 to simulate the CpG being fully methylated and also

absent. Both are done to account for the cases where the original methylation value is close to

0 or 1. The mean of the two resulting scores are compared to the benchmark with the differ-

ence being recorded for each CpG site. The CpG sites are ranked in difference to establish an

idea of feature importance with the postulation that a larger difference between the presence

and absence of the CpG will insinuate that the CpG has a greater impact on age prediction.

The top 50–75 are recorded as selected features.

Genetic algorithm. An algorithm based on the nature of Darwinism evolution where a

population of ‘creatures’ are assigned a desired amount of features from the original dataset at

random. These creatures are evaluated via predicting a validation set and assigned a score or

‘fitness’. The lowest scoring creatures are culled next, simulating survival of the fittest. The

remaining creatures are bred by creating a child creature that has features from their shared

‘gene pool’ and having a new number of them selected randomly. There is a chance for a cer-

tain number of these ‘genes’ to be mutated. Meaning some of the features will be randomly

swapped for a different one from the original dataset. This helps introduce variation. This pro-

cess is repeated for a specified number of generations or until a desired fitness is met.

The genetic algorithm is powerful as it allows the user many points of optimization,

depending on the creativity of the user. For instance, the number of generations, number of

features and creatures are all linked variables where a perfect balance can be found. When it

comes to the breeding process it is possible to implement a ‘polygamous’ aspect where a highly

successful creature is allowed to breed multiple times to ensure the most predictive features are

passed on and tested further in other combinations. Mutation rate, number of genes allowed

to mutate as well as number of children produced per breed (with possibility of scaling number

of children produced with the fitness of the parent). It is also common for genetic algorithms

to be run in parallel, predicting subsets of a label, e.g. an algorithm for young samples and one

for old. For our model we used 50 features per ‘creature’ model and 3000 creatures in our pop-

ulation. After each epoch we culled 50% of the population and mutate 30% of their features on

a random chance. These parameters were chosen to ensure a rapid ‘evolution’ of the popula-

tion to speed up selection time by culling half each time. The mutation rate was kept random

but when it did happen we ensured that a sizeable block of features were changed so we could

keep introducing variation.

Novel methods combining multiple feature selection methods

The introduction of %-RFE allows us to synthesize novel feature selection methods. %-RFE

allows for the removal of ‘fluff’ down to a more manageable number of features (usually a few

thousand) and allows for more powerful methods to be used such as Boruta, Neural Networks

and RFECV. These methods require more iterations and computational power so being able

to distil down to the most important thousand features to choose from is ideal. The synthe-

sized methods consist of %-RFE first selecting features to an amount appropriate for the next

method. SFM is also used as a preliminary selection method in this way. The final synthesized
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methods consist of modular code functions that allow us to alternate the order in which the

selection methods are used as well as let us combine them together and use the output of one

method as the input of another.

Clock models

The epigenetic clocks are built using ElasticNetRegression models. ElasticNet is chosen as it is

the current standard for epigenetic clocks and outperforms Random Forests and SVMs with

these data and feature selection methods.

This model is a variant of classical linear regression. This aims to solve for the coefficients

of a linear equation that equals the ‘best fit line’. The best fit line minimizes the sum of squares

by having the least distance between the data points and the line. The equation for ordinary

linear regression is as follows:

argmin ¼
P
ðya � ypÞ

2

argmin ¼
P
ðya � ðb1x1 þ . . . bnxnÞ � bÞ2

Where y_a is the actual value of the target label and prediction y_p calculated by the summa-

tion of predictors ‘x’ multiplied by a vector of coefficients β_n that is found from fitting the

model b.is the y-intercept. argmin signifies a cost function where we seek to minimize the

answer given input arguments.

Regularization is a process in which different variants of bias and penalties are introduced

to assist in finding the solution to this equation that allows for the best predictive accuracy.

These penalties are controlled by a lambda value (alpha in sklearn) that controls how heavy

(large) this penalty is. The L1 penalty is referred to as Lasso Regression, it adds a bias that is the

absolute value of the coefficients. The L2 penalty is referred to as Ridge regression, this adds a

bias that is the squared value of the coefficients. Unlike ridge regression, lasso regression can

shrink the coefficients of unneeded parameters (features) to 0 (due to the penalty term not

being squared), essentially eliminating them, leaving only useful features. Lasso can be quite

aggressive however, taking only 1 feature out of several correlated ones or selecting too few.

This is where ElasticNet comes in. The generic form of the ElasticNet equation is:

argmin ¼
X
ðya � bxnÞ

2
þ l1

X
jbj þ l2

X
b

2

Where L1 is the regularization penalty for the ‘Lasso’ part of the regression equation andL2 is

the penalty for the ‘Ridge’ portion [43]. ElasticNet combines both Lasso and Ridge regressions,

adding both terms to the equations. Each penalty gets an independent alpha / lambda that is

tuned via cross-validation or other methods. This method allows the best of both worlds

depending on the feature.

Supporting information

S1 Table. Results from initial testing of computational runtimes for the exhaustive feature

selection methods.
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