
Mol Genet Genomic Med. 2019;7:e851.	﻿	     |   1 of 15
https://doi.org/10.1002/mgg3.851

wileyonlinelibrary.com/journal/mgg3

Received: 24 March 2019  |  Revised: 20 June 2019  |  Accepted: 24 June 2019

DOI: 10.1002/mgg3.851  

O R I G I N A L  A R T I C L E

Identification of key candidate targets and pathways for the 
targeted treatment of leukemia stem cells of chronic myelogenous 
leukemia using bioinformatics analysis

Huayao Li1  |   Lijuan Liu2,3  |   Jing Zhuang3,4  |   Cun Liu2  |   Chao Zhou3,4  |   
Jing Yang3,4  |   Chundi Gao2  |   Gongxi Liu3,4  |   Changgang Sun3,4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2019 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

1College of Basic medical, Shandong 
University of Traditional Chinese Medicine, 
Jinan, Shandong, PR China
2College of First Clinical 
Medicine, Shandong University of 
Traditional Chinese Medicine, Jinan, 
Shandong, PR China
3Department of Oncology, Affilited 
Hospital of Weifang Medical University, 
Weifang, Shandong, PR China
4Department of Oncology, Weifang 
Traditional Chinese Hospital, Weifang, 
Shandong, PR China

Correspondence
Changgang Sun, Department of Oncology, 
Affilited Hospital of Weifang Medical 
University, Weifang 261031, Shandong, PR 
China.
Email: scgdoctor@126.com

Funding information
National Natural Science Foundation of 
China (grant/award number: ‘81673799’, 
‘81703915’).

Abstract
Background: Chronic myelogenous leukemia (CML) is a myeloproliferative neo-
plasm that arises from the acquisition of constitutively active BCR‐ABL tyrosine 
kinase in hematopoietic stem cells. The persistence of bone marrow leukemia stem 
cells (LSCs) is the main cause of TKI resistance and CML relapse. Therefore, find-
ing a key target or pathway to selectively target LSCs is of great significance for the 
thorough treatment of CML.
Methods: In this study, we aimed to identify key microRNAs, microRNA targets 
and pathways for the treatment of CML LSCs by integrating analyses of three mi-
croarray data profiles. We identified 51 differentially expressed microRNAs through 
integrated analysis of GSE90773 and performed functional gene predictions for mi-
croRNAs. Then, GSE11889 and GSE11675 were integrated to obtain differentially 
expressed genes (DEGs), and the overlapping DEGs were used as models to identify 
predictive functional genes. Finally, we identified 116 predictive functional genes. 
Clustering and significant enrichment analysis of 116 genes was based on func-
tion and signaling pathways. Subsequently, a protein interaction network was con-
structed, and module analysis and topology analysis were performed on the network.
Results: A total of 11 key candidate targets and 33 corresponding microRNAs were 
identified. The key pathways were mainly concentrated on the PI3K/AKT, Ras, JAK/
STAT, FoxO and Notch signaling pathways. We also found that LSCs negatively 
regulated endogenous and exogenous apoptotic pathways to escape from apoptosis.
Conclusion: We identified key candidate targets and pathways for CML LSCs 
through bioinformatics methods, which improves our understanding of the molecular 
mechanisms of CML LSCs. These candidate genes and pathways may be therapeutic 
targets for CML LSCs.
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1  |   INTRODUCTION

Chronic myelogenous leukemia (CML) is a stem cell can-
cer that develops as a result of the t(9;22) translocation in 
hematopoietic stem cells (HSCs) (Nowell & Hungerford, 
1961; Rowley, 1973). This translocation results in con-
stitutive expression of the fusion tyrosine kinase BCR‐
ABL1(Heisterkamp et al., 1983) and transformation of 
HSCs into leukemic stem cells (LSCs). The develop-
ment of effective tyrosine kinase inhibitors (TKIs), such 
as imatinib, was a milestone in targeted therapy for CML 
(O'Brien et al., 2003). However, recent evidence suggests 
that in approximately 50%–60% of lifelong TKI patients, 
LSCs persist (minimal residual disease is maintained by a 
subpopulation of LSC in the bone marrow); this is a pri-
mary cause of TKI resistance (Chomel et al., 2011; Chu 
et al., 2011; Holyoake, Jiang, Eaves, & Eaves, 1999), and 
if TKI treatment is discontinued, it can serve as a reser-
voir for disease recurrence (Chen & Kang, 2015; Copland 
et al., 2006; Jorgensen, Allan, Jordanides, Mountford, & 
Holyoake, 2007). Therefore, to improve the cure rate of 
CML, there is a significant need to develop new therapeutic 
methods that target LSCs.

MicroRNAs are small noncoding RNAs that participate 
in the posttranscriptional regulation of gene expression. 
MicroRNAs function as negative regulators by binding 
to the 3′‐untranslated region of candidate mRNAs and re-
press gene expression by inhibiting protein translation or 
degrading mRNAs (Chen & Kang, 2015). Gene chip tech-
nology is a rapidly developing technology and combines 
molecular biology, genetics, nucleic acid chemistry, com-
puter software and micromechanical automation technol-
ogy, making the discipline a highly integrated product of 
many fields (Venkataraman, Vasudevan, & Gupta, 2014). 
The use of gene chip technology to study CML involves a 
variety of genetic variants, and gene chip technology can 
compare expression changes of HSC microRNAs in normal 
HSCs and chronic myeloid leukemia patients, allowing the 
identification of key microRNAs in the development and 
progression of CML. New biomarkers for CML and candi-
date therapeutic targets provide new ideas for the clinical 
treatment of CML (Ushijima et al., 2013). With the wide-
spread use of gene chips, most of the slice data on CML 
have been stored on public data platforms. For example, 
researchers collected genetic microarray data of CML at 
various times and concluded that MLLT4, WDR35, EPHB4, 
integrin‐mediated cell adhesion, focal adhesion and the 
regulation of the actin cytoskeleton are principal genes 
and pathways during CML progression (Zhang, Liu, Lin, 
Pan, & Xu, 2014). However, in independent studies, the 
results were limited or inconsistent due to the heterogene-
ity of the tissues or samples. Nevertheless, combining bio-
informatics methods with expression profiling techniques 

can innovatively address these shortcomings. For example, 
researchers integrated four cohort profile datasets to elu-
cidate the potential key candidate genes and pathways in 
colorectal cancer (Guo, Bao, Ma, & Yang, 2017). Another 
integrated cohort profile dataset identified potential cru-
cial genes and pathways associated with the carcinogenesis 
of renal cell carcinoma and further analyzed the molecular 
mechanisms implicated in its tumorigenesis (Song et al., 
2018).

To further elucidate the molecular mechanisms of LSC 
carcinogenesis in CML and to screen CML biomarkers and 
key candidate targets, we screened differentially expressed 
microRNAs using microarray data and predicted the tar-
get of microRNAs through the miRTarBase database and 
TargetScanHuman database (http://www.targe​tscan.org/
vert_71/). Subsequently, to increase the accuracy of the 
prediction target, gene expression on two gene chips was 
compared based on the gene microarray data, common dif-
ferentially expressed genes (DEGs) were screened, DEGs 
and predicted targets were intersected, and the microRNA 
targets were screened for the next study. The three gene chips 
were from National Center of Biotechnology Information 
(NCBI) gene expression omnibus (GEO) database (https​://
www.ncbi.nlm.nih.gov/geo). The three original microarray 
datasets included the expression profiles GSE90773 (Salati 
et al., 2017), GSE11889 (Bruns et al., 2009), GSE11675 
(Lemoli et al., 2009), with 20 cases of CML patients. On a 
total of 36 matched CML patients with bone marrow LSCs 
and normal bone marrow HSCs, analysis was carried out 
using GEO2R, an online analysis tool for the GEO database 
that is based on R language. Through analysis and integra-
tion identification, we obtained predict targets of differen-
tially expressed microRNA for further study. Subsequently, 
we used gene ontology and pathway enrichment analyses to 
screen DEGs using Cluego, a plug‐in of Cytoscape software, 
as well as websites such as QuickGo (https​://www.ebi.ac.uk/
Quick​GO/), Gene Ontology (http://www.geneo​ntolo​gy.org/), 
Kegg Pathway (http://www.genome.jp/kegg), WikiPathways 
(https​://www.wikip​athwa​ys.org/), Reactome ( https​://react​
ome.org/); these analyses were employed to assist with Go 
analysis and KEGG analysis. Strings (https​://string-db.org) 
were used to construct the DEG protein interaction network. 
CytoNCA, an analysis plug‐in for Cytoscape 3.5.1, was used 
to topologically analyze the DEGs; MCODE, an analysis 
tool for Cytoscape 3.5.1, was employed to perform module 
analysis of the protein network. Via protein network con-
struction, topology analysis and module analysis integration 
were employed to identify hub genes in CML. It is expected 
that in this study, the biomarkers and pathways identified 
in CML may reveal the potential molecular mechanisms of 
LSC canceration in CML. The identified new key candidate 
targets provide new ideas and methods for the treatment of 
CML.

http://www.targetscan.org/vert_71/
http://www.targetscan.org/vert_71/
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/QuickGO/
https://www.ebi.ac.uk/QuickGO/
http://www.geneontology.org/
http://www.genome.jp/kegg
https://www.wikipathways.org/
https://reactome.org/
https://reactome.org/
https://string-db.org
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2  |   MATERIALS AND METHODS

2.1  |  Gene chip microarray data 
and differentially expressed microRNA 
identification
The Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo/) is an international public repository for 
high‐throughput microarray and next‐generation sequence 
functional genomic data sets submitted by the research com-
munity. GEO2R is an R‐based web application which can 
analyze GEO data (Barrett et al., 2013). We downloaded 
CML bone marrow LSCs and normal bone marrow HSC 
gene expression profiles of GSE90773 from the GEO data-
base. GSE90773 data are based on the GPL19066 (Exiqon 
microRNA Ready‐to‐Use PCR, Human panel I+II, V3.R) 
platform, which contains 10 CML patient marrow LSCs and 
eight normal bone marrow HSCs (Submission date 1 Dec 
2016).

We used the GEO2R online analysis tool of the GEO 
database to identify statistically significant differentially ex-
pressed microRNAs between CML patient marrow LSCs and 
normal bone marrow HSCs. Statistically significantly differ-
entially expressed microRNAs were defined using p  <  .05 
and [logFC]  >  2 as the cut‐off criteria. Employing HemI 
1.0.3.7‐Heatmap Illustrator, we developed a heat map of dif-
ferentially expressed microRNAs.

2.2  |  Gene chip microarray data and DEGs 
identification
We downloaded CML bone marrow LSCs and normal 
bone marrow HSCs gene expression profiles of GSE11889 
and GSE11675 from the GEO database. GSE11889 data is 
based on the GPL571 ([HG‐U133A_2] Affymetrix Human 
Genome U133A 2.0 Array) platform, including seven CML 
patient marrow LSCs and five normal bone marrow HSCs 
(Submission date Jun 26, 2008). GSE11675 data is based on 
the GPL8300 ([HG_U95Av2] Affymetrix Human Genome 
U95 Version 2 Array) platform, including three CML pa-
tient marrow LSCs and three normal bone marrow HSCs 
(Submission date 4 Jun 2008). We selected these two mi-
croarray datasets for comprehensive analysis; both groups 
were based on gene expression profiles of HSC in the bone 
marrow. We used the GEO2R online analysis tool identify 
statistically significant DEGs between CML patient marrow 
LSCs and normal bone marrow HSCs. Statistically signifi-
cant DEGs were defined as p < .05 and [logFC] > 1 as the 
cut‐off criteria.

Venny 2.0.2 (http://bioin​fogp.cnb.csic.es/tools/​venny/​in-
dex2.0.2.html) is a free online website. To enhance the accu-
racy of the research results, we screened out common DEGs of 
two high‐throughput microarray databases using Venny 2.0.2.

2.3  |  Identification the predict target 
genes of differential expression microRNAs

We employed two databases, miRTarBase (http://mirta​
rbase.mbc.nctu.edu.tw/index.html) (Chou et al., 2016), and 
TargetScanHuman database (http://www.targe​tscan.org/
vert_71/) (Qin et al., 2017), to predict targets for differen-
tially expressed microRNAs. We identified overlapped target 
genes to further increase the reliability of the bioinformat-
ics analysis. Using Venny 2.0.2, we intersected the predicted 
target and identified DEGs, thus increasing the confidence of 
the predicted target genes. We used Cytoscape software to 
build a microRNA‐target visual network.

2.4  |  Gene ontology and pathway 
enrichment analysis of targets of differential 
expression microRNAs
To further understand the related functions of the target genes 
of differentially expressed microRNAs to illustrate the patho-
genesis of CML, we performed gene ontology and pathway 
enrichment analyses of the target genes. ClueGO, a plug‐in 
of Cytoscape software, is updatable with the newest files 
from Gene Ontology, KEGG, WikiPathways and Reactome. 
We performed Go analysis and KEGG analysis of the tar-
gets based on the Cluego plug‐in. When we ran the ClueGO 
plug‐in and selected the cut‐off threshold of the display path 
as p < .05.

2.5  |  Construction of protein interaction 
networks and identification of key 
candidate targets
To further elucidate the interactions between the microRNA 
target  genes, we constructed a protein interaction network. 
Subsequently, the network was topologically analyzed to 
identify key candidate target genes, and pathway enrichment 
analysis was performed on key candidate target genes to elu-
cidate key pathways that were activated during the pathogen-
esis of CML. We used the String database (https​://string-db.
org/cgi/input.pl) and Cytoscape software to build target pro-
tein networks and analyze the network (Su, Morris, Demchak, 
& Bader, 2014). We employed CytoNCA and the MCODE 
plug‐in to perform topological analysis and module analyses 
of the target network, respectively. The two analyses were 
used in combination to identify major nodes. The CytoNCA 
plug‐in performs topology analysis based on “between-
ness (BC)”, “closeness(CC)”, “eigenvector(EC)”, “local 
average connectivity‐based method(LC)”, “network(NC)”, 
“subgraph(SC)”, “information(IC)” (ElHady, Abdel‐Halim, 
Abadi, & Engel, 2017). The plug‐in MCODE was used with 
the default parameters (degree cut‐off ≥ 2, node score cut‐
off  ≥  0.2, K‐core  ≥  2, and max depth  =  100) (Ashburner 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://bioinfogp.cnb.csic.es/tools/venny/index2.0.2.html
http://bioinfogp.cnb.csic.es/tools/venny/index2.0.2.html
http://mirtarbase.mbc.nctu.edu.tw/index.html
http://mirtarbase.mbc.nctu.edu.tw/index.html
http://www.targetscan.org/vert_71/
http://www.targetscan.org/vert_71/
https://string-db.org/cgi/input.pl
https://string-db.org/cgi/input.pl
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F I G U R E  1   Heatmap of differentially 
expressed microRNAs of GSE90773 profile 
datasets
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et al., 2000). We then found the corresponding microRNAs 
based on identified major targets to build a visualization 
network.

3  |   RESULTS

3.1  |  Identification of differentially 
expressed microRNAs in CML
The GSE90773 data expression profile was downloaded 
from the NCBI‐GEO database, including bone marrow 
LSCs from 10 CML patients and bone marrow HSCs from 
eight normal patients. Microarray data were analyzed based 
on GEO‐GEO2R, and differentially expressed microRNAs 
were identified according to p < .05 and absolute logFC > 2 
as cut‐off standards. A total of 51 differentially expressed 
microRNAs were identified, including 26 up‐regulated and 
25 down‐regulated differentially expressed microRNAs. 
Subsequently, using Morpheus software, we developed 26 
up‐regulated and 25 down‐regulated DEG heat maps (Figure 
1).

3.2  |  Identification of DEGs in CML
GSE11889 and GSE11675 expression profiles were down-
loaded from the GEO database, including 10 CML patient 
marrow LSCs and eight normal bone marrow HSCs. We 
used the GEO2R online analysis tool identify statistically 
significant DEGs between CML patient marrow LSCs and 
normal bone marrow HSCs. Statistically significant DEGs 
were defined as p < .05 and [logFC] > 1 as the cut‐off crite-
ria. Finally, 1,229 DEGs (containing 912 up‐regulated DEGs 
and 317 down‐regulated DEGs) were analyzed by analyz-
ing the GSE11889 microarray data expression profile (Table 
S1); and 1,019 DEGs (containing 673 up‐regulated DEGs 
and 346 down‐regulatedDEGs) were obtained by analyzing 
the GSE11675 microarray data expression profile (Table S2). 
We screened out the common DEGs of the two high‐through-
put microarray databases using Venny 2.0.2. We obtained a 
total of 132 DEGs that were common for gene the expression 
profiles GSE11889 and GSE11675 (Figure 2). A total of 132 
DEGs were used as the identification criteria for the differen-
tially expressed microRNA prediction targets.

3.3  |  Identification the predict target 
genes of differential expression micrornas
We used miRarBase and the TargetScanHuman database 
to predict the target genes of differentially expressed mi-
croRNAs. Because of the complexity of the microRNA 
action, each microRNA can regulate many different types 
of genes. Therefore, we increased the confidence of the 
predict target  genes by intersecting the predicted target 

with the identified DEG using Venny 2.0.2. Finally, we 
identified 116 microRNA target  genes for further study. 
We defined the regulatory criteria for 116 target  genes 
using the regulatory criteria of the GSE11889 microarray 
gene expression profile. There were 79 up‐regulated DEGs 
and 37 down‐regulated DEGs in the 116 targets. We used 
Cytoscape software to build a microRNA‐Target visual 
network (Figure 3). The microRNA‐Target network con-
tained 168 nodes and 1,010 edges.

3.4  |  Gene ontology and pathway 
enrichment analysis of 116 target genes
To understand the features and functions of the 116 target 
genes, we employed the Cytoscape plug‐in ClueGo to per-
form Go analysis and pathway enrichment analysis of the 
target genes.

Go analysis (including Molecular Function, Biological 
Process and Cellular Component) was performed on 
116 target genes, with p  <  .05 as the cut‐off criterion 
(Ashburner et al., 2000; Su et al., 2014). After analysis, 
we performed Go analysis of 116 target genes (Figure 4), 
including BP, MF, and CC. A total of 57 Go analysis results 
were obtained. The analysis results were primarily focused 
on a single cellular biological process that was of molecu-
lar function. The enrichment results mainly focused on cell 
transcription, receptor binding activity and the activities of 
various enzymes, such as tyrosine kinase and phosphoki-
nase. The biological processes involved the regulation of 
the amino acid and protein as well as regulation of cell pro-
liferation. For a series of processes that regulate apopto-
sis, interestingly, there was dual regulation of endogenous 
apoptosis and extrinsic apoptosis. Surprisingly, in exoge-
nous apoptosis, the signaling pathways were negatively 

F I G U R E  2   Overlapping 132 DEGs were identified from two 
microarray data profiles (GSE11889, GSE11675). Different color areas 
represented different microarray data profiles. The cross areas meant 
the commonly changed DEGs. DEGs, differentially expressed genes
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regulated to achieve apoptosis escape, as those that may be 
associated with CML LSCs.

KEGG pathway enrichment analysis of the 116 target 
genes was also performed in the ClueGo plug‐in, for which 
the cut‐off criterion was p < .05. We constructed an enrich-
ment pathway network (Figure 5), obtaining a total of 26 
enriched pathways. Pathway enrichment was mainly con-
centrated in signaling pathways that regulate the pluripo-
tency of stem cells, hematopoietic cell lineages, chronic 
myeloid leukemia and acute myeloid leukemia. These path-
ways were closely related to the occurrence and develop-
ment of leukemia. They also included some cancer‐related 
pathways, such as those for small cell lung cancer, breast 
cancer, and others. Also enriched were the FoxO signal-
ing pathway, Jak‐STAT signaling pathway and apoptosis 
signaling pathway. The discovery of these pathways helps 
to further understand the mechanism of LSCs in the patho-
genesis of CML.

3.5  |  Protein interaction networks and key 
candidate targets
The construction of a protein interaction network is a way 
to quickly analyze the interactions between genes. We em-
ploy String online website (http://string-db.org) to build an 
interactive network of 116 targets. The restrictive condi-
tion is “human species”, the network is constructed and the 
“TSV” format file of the gene interaction relationship is 
downloaded, and then the file is imported into Cytoscape 

software for module analysis and topology analysis. We 
have obtained a protein network with 340 nodes and 1,839 
edges (Figure 6a).

Using the Cytoscape plug‐in MCODE to analyze the net-
work diagram module, the module selection criteria were 
as follows: degree cut‐off ≥ 2, node score cut‐off ≥ 0.2, K‐
core ≥ 2, and max depth = 100. We chose one of the most 
significant modules for further analysis. This module had 31 
nodes and 215 edges (Figure 6b). By conducting pathway en-
richment analysis of the nodes, we found that these nodes 
were primarily enriched in pathways such as CML, acute 
myeloid leukemia and hematopoietic cell lineages. In addi-
tion, these nodes involved multiple cancer pathways specific 
to various signaling pathways, including the ErbB signaling 
pathway, Jak‐STAT signaling pathway, chemokine signaling 
pathway and T cell and B cell receptor signaling pathways. 
Interestingly, we found that eight genes in this module were 
derived from the 116 targets, including DNTT, KIT, FOS, 
HIST1H2BK, HIST2H2BE, CD44, BCL6 and BCL2L1. These 
genes had higher “Degree” values in the module, which indi-
cated that the gene had meaning (ElHady et al., 2017).

We used the Cytoscape's plug‐in CytoNCA to analyze 
the protein interaction network based on “betweenness 
(BC)”, “closeness(CC)”, “eigenvector(EC)”, “local av-
erage connectivity‐based method(LC)”, “network(NC)”, 
“subgraph (SC)”, and “information (IC)”. Standards were 
topologically analyzed and subsequently identified as 30 
nodes, which were defined as major nodes. Among the 30 
nodes (Table S3), 11 major nodes belonged to 116 targets, 

F I G U R E  3   The microRNA‐Targets visualization network includes 51 differentially expressed microRNAs and 116 identified targets. The 
network contains a total of 167 nodes and 1,010 edges

http://string-db.org
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F I G U R E  4   Gene ontology analyses of 116 identified targets in CML. We employed the Cytoscape plug‐in ClueGO for Gene ontology 
analysis with a truncation criterion of p < .05. (a) Gene ontology network; (b) Column annotation map of the Gene ontology network
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including CREB1, KIT, MCL1, FOS, BRCA1, FLT3, CD44, 
AKT2, CHEK1, BCL6, and BCL2L1 (Table 1). Enrichment 
analysis of the 11 major genes was performed using the 
DAVID 6.8 database (https​://david.ncifc​rf.gov/). The en-
richment analysis results revealed that the 11 targets were 
enriched in the hematopoietic cell lineage, pathways in 
cancer, and microRNAs in cancer pathways. In addition, 

they were significantly enriched in the PI3K‐Akt signaling 
pathway, TNF signaling pathway, Ras signaling pathway 
and cAMP signaling pathway. These pathways are closely 
related to cell growth, metabolism, differentiation, prolif-
eration, canceration, and apoptosis (Kauke et al., 2018; S. 
M. Kim et al., 2016; Li et al., 2018; Xiao & Kan, 2017). 
Interestingly, HTLV‐I infection was enriched, an infection 

F I G U R E  5   KEGG pathway analyses of 116 identified targets in CML. We employed the Cytoscape plug‐in ClueGO for gene ontology 
analysis with a truncation criterion of p < .05. (a) KEGG pathway network; (b) columnar annotation map of KEGG pathway network. CML, 
chronic myelogenous leukemia

(b)

(a)

https://david.ncifcrf.gov/
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F I G U R E  6   Protein interaction network construction and module analysis of identified genes, (a) The protein interaction network of 116 
identified genes, the color depth of the gene deepens with the “degree” of the node, and the size of the node increases with the “degree”. (b) The 
most significant module in the network, including 31 nodes and 215 edges, the module function is closely related to the chronic myeloid leukemia 
and hematopoietic cell lineage
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that can cause T‐lymphocytic leukemia (Malik & Taylor, 
2019).

We employed Cytoscape to construct microRNA‐Target net-
work based on the relationship between differentially expressed 
microRNAs and 11 major nodes (Figure 7). The network display 
contains 44 nodes and 102 edges. There are 33 microRNAs that 
can predict 11 targets, including miR‐1207‐5p, miR‐362‐5p, 
miR‐708‐5p, miR‐204‐5p, miR‐501‐5p, miR‐500a‐5p, 
miR‐605‐3p, miR‐33b‐3p, miR‐22‐3p, miR‐188‐3p, miR‐935, 
miR‐625‐3p, miR‐562, miR‐520h, miR‐92a‐2‐5p, miR‐122‐5p, 

miR‐485‐3p, miR‐432‐3p, miR‐2113, miR‐26a‐1‐3p, 
miR‐95‐5p, miR‐193b‐5p, miR‐193b‐3p, miR‐490‐5p, 
miR‐494‐3p, miR‐224‐3p, miR‐135a‐5p, miR‐639, 
miR‐585‐5p, miR‐609, miR‐486‐3p, miR‐187‐3p, miR‐9‐5p.

4  |   DISCUSSION

Chronic myelogenous leukemia is a HSC‐driven hematologi-
cal malignancy that is characterized by HSC translocation, 

T A B L E  1   The major targets in identified targets of CML

ID Gene Subgragh Eigenvector Information LAC Betweenness Closeness Network

1 CREB1 2.55E+10 0.17698124 4.909849 12.11111 6047.7256 0.07061029 30.96654

2 FOS 2.54E+10 0.17668515 4.9251823 11.82143 5054.272 0.070361145 31.631813

3 KIT 2.14E+10 0.16219562 4.8032837 13.02326 3252.798 0.070404984 23.766201

4 BRCA1 1.87E+10 0.15158133 4.953085 12.43333 8358.199 0.070683904 37.659225

5 BCL2L1 1.86E+10 0.15115035 4.672883 14.58824 1093.766 0.06998348 20.309414

6 BCL6 1.37E+10 0.12977953 4.690172 10.28571 3923.2334 0.070070274 15.842359

7 CD44 1.21E+10 0.12183415 4.635592 10.25 3322.6553 0.06994017 15.123996

8 AKT2 9.70E+09 0.10923044 4.54799 10.07143 821.05743 0.06960986 15.814177

9 FLT3 9.20E+09 0.10639389 4.5717506 7.931035 1382.9755 0.06953846 12.190142

10 CHEK1 7.38E+09 0.09524421 4.77858 10.82927 2227.7275 0.069695726 25.106184

11 MCL1 7.05E+09 0.0931001 4.4049177 8.347826 1535.9803 0.069481455 11.391414

Abbreviation: CML, chronic myelogenous leukemia

F I G U R E  7   The microRNA‐Target 
network between 33 differentially expressed 
microRNAs and 11 major nodes. The 
network contains 44 nodes and 102 edges
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leading to the expression of the active tyrosine kinase BCR/
ABL. TKIs are very effective at inducing remission, but they 
fail to achieve therapeutic effects in the targeted treatment 
of LSCs. Leukemia stem cells maintain minimal residual tu-
mors and can cause CML recurrence after discontinuing TKI 
treatment (Cheloni et al., 2017). Therefore, finding candidate 
targets for LSCs is of primary importance for the eradica-
tion of CML. With the rapid development of bioinformat-
ics technologies, such as microarrays, research on disease 
mechanisms has reached the microRNA level. Therefore, in 
the present study, gene microarray expression profile data 
were used to identify key candidate microRNAs and DEGs in 
LSCs as new therapeutic targets and biomarkers to decipher 
the key signaling pathways that they are involved in.

Using bioinformatics analysis, we obtained 51 differen-
tially expressed microRNAs from GSE90773 data expression 
profiles, including 26 up‐regulated and 25 down‐regulated 
differentially expressed microRNAs. The targets for differen-
tially expressed microRNAs were predicted, and GSE11889 
and GSE11675 were used. DEGs from the expression pro-
filing analysis identified the predicted targets. Finally, after 
identification, a total of 116 targets were obtained, including 
79 up‐regulated and 37 down‐regulated targets (GSE90773, 
GSE11889, and GSE11675 are all bone marrow LSCs de-
rived from CML).

Chronic myelogenous leukemia is driven by BCR‐ABL1 
expression and the subversion of normal signaling pathways 
(Koschmieder & Vetrie, 2018). We performed GO analysis 
and KEGG pathway enrichment analysis on the 116 genes to 
identify the key pathways for LSCs in CML. Recently, stud-
ies have found that BCR/ABL was involved in many signal-
ing pathways, including the PI3K/AKT, Ras and JAK/STAT 
signaling pathways, which are activated by BCR/ABL, re-
sulting in malignant proliferation of CML cells. These path-
ways are also involved in the resistance to apoptosis in CML 
cells and are associated with imatinib resistance in CML 
patients (Danisz & Blasiak, 2013). Pathway enrichment in-
volves cytokine‐cytokine receptor pathways, including tyro-
sine kinase receptor activity and phosphokinase receptor and 
androgen receptor pathway activation; TKIs are currently the 
primary treatment for CML patients (Arrigoni et al., 2018). 
Notch signaling is critical for HSC self‐renewal and survival. 
A study found that inhibition of Notch led to hyperactiva-
tion of BCR‐ABL. The combined inhibition of Notch and 
BCR‐ABL may occur through the targeting of resting leu-
kemia stem cells and differentiating leukemia cells (Aljedai, 
Buckle, Hiwarkar, & Syed, 2015). In addition, we also en-
riched the autophagic signaling pathway in HSCs from CML. 
Studies have shown that autophagy is involved in the regula-
tion of LSC differentiation and is also closely related to the 
chemosensitivity of CML (Repsold, Pool, Karodia, Tintinger, 
& Joubert, 2017). Investigators also studied Realgar. The ef-
fect of transforming solution (RTS) on CML (K562) shows 

that RTS can induce autophagy with CML cells at a lower 
arsenic level by up‐regulating LC3, p62/SQSTM1 and mTOR 
inhibition, suggesting that autophagy can be a novel measure 
for CML therapy (Wang et al., 2018). We also enriched these 
pathways in the present study, demonstrating the accuracy of 
our research. Interestingly, we found that LSCs negatively 
regulated the extrinsic apoptotic signaling pathway via death 
domain receptors, which may be closely related to the apop-
totic resistance of LSCs and can be used as a key candidate 
for reversing HSC resistance.

In our study, we obtained a total of 33 meaningful dif-
ferentially expressed microRNAs of CML. Among these mi-
croRNAs, some have been confirmed to play a role in the 
pathogenesis of CML. MiR‐362‐5p is up‐regulated in fresh 
blood samples of CML cell lines and CML patients and is 
associated with growth arrest and DNA damage induced 
(GADD)‐45α down‐regulation and therefore can be used as 
a downregulator of GADD45α oncomiR, activating JNK1/2 
and P38 signal transduction (Yang et al., 2015). Down‐regu-
lation of miR‐494‐3p reduced TKI‐induced apoptosis, which 
indicated that miR‐494‐3p down‐regulation might contrib-
ute to the intrinsic TKI resistance of LSCs, and the result 
supports the development of novel therapies that target the 
regulation of miR‐494‐3p or its target to effectively eradicate 
LSCs (Salati et al., 2017). Overexpression and knockdown 
experiments of miR‐486‐3p demonstrated that miR‐486‐3p 
supported erythropoiesis while inhibiting megakaryocyto-
poiesis. miR‐486‐3p also favored granulocyte differentiation 
while inhibiting macrophage differentiation, thereby affecting 
the HPC genealogy(Bianchi et al., 2015). Researchers found 
that miRNA‐708 was highly expressed in TEL‐AML1, BCR‐
ABL, E2A‐PBX1 and hyperdiploid (Yeh, Moles, & Nicot, 
2016). In addition, we found that other microRNAs were in-
volved in the regulation of tumor growth, proliferation, and 
apoptosis. For example, miR‐204‐5p inhibited the prolifera-
tion of hepatocellular carcinoma by directly regulating SIX1 
and its downstream factors (Chu et al., 2018). MiR‐500a‐5p 
was identified as an oxidative stress miRNA whose activity 
may define breast cancer progression and survival (Degli 
Esposti et al., 2017). MiR‐33b‐3p regulated cisplatin sensi-
tivity in cancer cells, possibly by impairing the DNA damage 
response (Xu et al., 2016). MiR‐122‐5p inhibited the migra-
tion and invasion of gastric cancer cells by inhibiting DUSP4 
(Xu et al., 2018). However, the mechanism of action of these 
microRNAs in CML requires further exploration and exper-
imental validation.

Through identification, we screened 11 CML HSC‐
treated biomarkers and candidate targets, including KIT, 
MCL1, FOS, BRCA1, FLT3, CD44, AKT2, CHEK1, BCL6, 
and BCL2L1, and CREB1. KIT is a type III receptor ty-
rosine kinase that promotes cell survival and cells by ac-
tivating downstream signaling pathways, proliferation and 
inhibition of apoptosis. KIT is a target for the treatment 
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of CML (Kaitsiotou et al., 2017). MCL1 is an antiapop-
totic protein, and decreasing MCL1 expression enhances 
IM‐induced apoptosis in CML cells (Shao et al., 2014). In 
this study, MCL1 was significantly enriched in antiapop-
tosis pathways, especially in the resistance to exogenous 
withering upon the death signal, indicating that MCL1 may 
be closely related to CML HSC resistance and apoptotic 
escape and may be used as a candidate target for the treat-
ment of CML resistance. Genetic deletion of FOS inhibited 
tumor growth in a BCR‐ABL fusion protein kinase‐in-
duced CML mouse model, and therefore, inhibition of high 
FOS expression reduced the intrinsic resistance of CML to 
TKI therapy (Kesarwani et al., 2017). The BRCA1 is down‐
regulated in CML patients, promoting abnormal mitosis 
and aneuploidy as well as altered DNA damage responses; 
studies have shown that BCR‐ABL strongly downregulates 
the BRCA1 protein levels (Wolanin et al., 2010). Induction 
of FLT3 in CML cells attenuates imatinib‐induced apop-
tosis, and FLT3 is associated with disease progression and 
prognosis (Kim et al., 2010). Proliferation of K562 cells 
depends, to a large extent, on CD44, and down‐regulation 
of CD44 lead to K562 cell G0/G1 arrest, whereby prolifer-
ation of the cell cycle is reduced. Therefore, CD44 block-
ade may be beneficial for the treatment of CML (Chang et 
al., 2013). AKT2 is a functional target of miR‐2278. Up‐
regulation of miR‐2278 expression leads to inhibition of 
the proliferation of resistant leukemia cells and induction 
of apoptosis. AKT2 inhibits leukemia cell proliferation and 
induces apoptosis upon experimental verification (Kaymaz 
et al., 2015). The BCL6 proto‐oncogene is a key effector 
of FoxO in self‐renewing signaling in CML‐initiating cells 
and inhibits Arf and p53 in CML cells. The BCL6 proto‐on-
cogene is required for colony formation and leukemic ini-
tiation. Studies suggest that pharmacological inhibition of 
BCL6 may be possible, representing a new strategy to erad-
icate leukemia initiation cells in CML (Hurtz et al., 2011). 
BCL2L1 is the gene for the primary antiapoptotic survivin 
protein. The study of BCL2L1 expression by molecular 
changes strongly supports its involvement in ABT‐263/
PP242‐induced CML‐BC progenitor cells. Apoptosis may 
also be a novel therapeutic target in CML (Lucas et al., 
2016). CML can be treated using a combination of these 
11 genes. For example, studies have shown that the combi-
nation of TKIs with BCL6 and MCL1 inhibitors may lead 
to the complete eradication of CML stem cells (Madapura 
et al., 2017).

There are some limitations in our research. 
Bioinformatics analysis based on chip samples only stays 
at the level of prebasic data analysis and prediction. The 
results are often determined by the original samples, the 
complexity of the original samples and the amount of sam-
ples can play an important role in interfering the results. 
Nonetheless, our research is based on real‐world sample 

data, and the results provide initial hypothesis for in vivo 
and in vivo target validation studies, which can effectively 
reduce the shortcomings of previous studies with low inno-
vation and high clinical loss.

5  |   CONCLUSION

In this study, we used multiple microarray datasets and 
performed bioinformatics analysis. During the analysis, 
a total of 51 microRNAs and 116 target genes for differ-
entially expressed microRNAs were identified. Through 
the construction of protein‐protein interaction networks, 
module analysis and topology analysis of networks were 
performed. Finally, we obtained a total of 33 differentially 
expressed microRNAs and 11 key targets. The key targets 
were mainly enriched in the PI3K/AKT, Ras, JAK/STAT, 
FoxO and Notch signaling pathways and were resistant to 
endogenous and exogenous apoptosis. These findings can 
significantly improve our understanding of the molecu-
lar pathogenesis of LSCs. These key candidate genes and 
pathways may encompass the thorough treatment of CML 
strategies.
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