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Cerebral malaria (CM) caused by Plasmodium falciparum is a fatal neurological

complication of malaria, resulting in coma and death, and even survivors may

suffer long-term neurological sequelae. In sub-Saharan Africa, CM occurs

mainly in children under five years of age. Although intravenous artesunate is

considered the preferred treatment for CM, the clinical efficacy is still far from

satisfactory. The neurological damage induced by CM is irreversible and lethal,

and it is therefore of great significance to unravel the exact etiology of CM,

which may be beneficial for the effective management of this severe disease.

Here, we review the clinical characteristics, pathogenesis, diagnosis, and

clinical therapy of CM, with the aim of providing insights into the

development of novel tools for improved CM treatments.
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Introduction

Malaria, a mosquito-transmitted infectious disease caused by Plasmodium species,

remains a significant public health concern globally (XP D, L S, 2021). In 2020, 241

million malaria cases were estimated, and 627,000 deaths occurred, with 77% found

among children under five years of age (Jiang et al., 2021). Currently, five Plasmodium

spp. are reported to infect humans, including P. falciparum, P. ovale, P. vivax, P.

malariae, and P. knowlesi. As we know, P. falciparum is considered the most severe

species and the primary cause of mortality, notably in young children (Su andWu, 2021).
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Cerebral malaria (CM) is a fatal neurological complication of P.

falciparummalaria (Luzolo and Ngoyi, 2019), and children aged

under 3 years and pregnant women are most susceptible (World

Health Organization, 2021). The mortality of CM is estimated to

be 20% in children and 30% in adults (Solomon et al., 2014).

Furthermore, 15-20% of survivors suffer long-term neurological

sequelae, such as hemiplegia, ataxia, speech disorders, and

epilepsy, resulting in lifelong neurological deficits and even

death (Birbeck et al., 2010). Hereby, we review the clinical

manifestations, pathogenesis, diagnosis, and treatment of CM

so as to provide insights into the management of CM.
Clinical manifestations of CM

CM is clinically characterized as a diffuse encephalopathy

with a history of fever for 2 to 3 days, subsequent seizures, and

loss of consciousness (coma). Previous studies have

demonstrated substantial differences in the clinical

manifestations of CM between children and adults (Table 1).

Although this may be attributed to immune status and age, there

are still many questions that remain to be answered (Olliaro,

2008; Sahu et al., 2021). Pediatric CM usually manifests with

coma, seizures, and severe anemia, while renal failure and

respiratory distress rarely occur in African children (Waller

et al., 1995; Newton et al., 2000). Nevertheless, adult CM is

frequently associated with multiple organ complications,
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including central nervous system (CNS) and liver dysfunction,

respiratory failure, and acute kidney failure (Mishra et al., 2007;

Wassmer et al., 2015).
Neurological system

Seizure

Compared with adults, children have a higher incidence rate

of seizures (Postels and Birbeck, 2013). In children, focal motor

and generalized tonic–clonic convulsions are the most common

clinically detected seizures; however, subtle or subclinical

seizures detected with electroencephalography (EEG) are also

common (Newton et al., 2000; Postels and Birbeck, 2013). Subtle

seizures manifest as nystagmoid eye movements, irregular

breathing, excessive salivation, and conjugate eye deviation

(Crawley et al., 1996). Most seizures in adult CM patients are

generalized seizures; however, focal motor seizures may also

occur. Occasionally, the sign of seizure activity is subtle, such as

repetitive eye or hand movements, and may be easily overlooked.

Subtle seizure activity seems to be more common in children

than in adults (Newton et al., 2000). The level of consciousness

after a seizure is usually lower than that preceding it. Status

epilepticus is unusual in adults, although more than one seizure

is frequent (Vespa et al., 1999). Previous studies reported an

association between status epilepticus and neurological sequelae
TABLE 1 Clinical manifestations of pediatric and adult cerebral malaria.

Clinical features Children Adults

Preceding symptoms Fever, failure to eat or drink, vomiting and cough, and convulsions
(Molyneux et al., 1989).

General malaise, head, back, and limb pain, dizziness, anorexia,
nausea, vomiting, and mild diarrhea (NIH (2014)).

Neurological
system

Coma It develops rapidly, often after a seizure, and lasts for 1 to 2 days,
reversible (Genton et al., 1997; Newton et al., 2000).

Develops gradually following delirium, Disorientation, and
agitation over 2 to 3 days or follows a generalized seizure, lasts
longer (2 days) (Idro et al., 2005).

Nerve reflex More common (Waller et al., 1995). Rare.

Neurological
impairments

Ataxia (43%), hemiplegia (39%), speech disorders (39%) and
blindness (30%). Other sequelae include behavioral disturbances,
hypotonia, generalized spasticity, and a variety of tremors (van
Hensbroek et al., 1997).

Psychosis, psychosis, ataxia, transitory cranial nerve palsies,
mononeuritis multiplex, polyneuropathy, extrapyramidal and
extrapyramidal tremors, and other cerebellar signs (van Hensbroek
et al., 1997).

Motor
system

Seizures High incidence, frequently mostly partial motor (Crawley et al.,
1996).

Low incidence, generalized seizures frequently, less focal (Idro
et al., 2005).

Status
epilepticus

Usual (Crawley et al., 1996). Rare (Vespa et al., 1999).

Abnormal
behavior

Hyperactivity, impulsiveness, and inattentiveness or conduct
disorders (Birbeck et al., 2010; Idro et al., 2010).

Ataxia of gait, intention tremor, dysmetria, dysdiadochokinesis,
nystagmus, and cerebellar dysarthria (Senanayake, 1987).

Systemic complications Hyponatremia, anemia, hypoglycemia, jaundice, metabolic acidosis,
respiratory distress, hepatosplenomegaly, and intracranial pressure
(English et al., 1996; English et al., 1997; English et al., 1998; Idro
et al., 2005).

Anemia, hypoglycemia,
hemoglobinuria, jaundice, shock, renal failure, severe lactic
acidosis, abnormal bleeding, pulmonary edema, and adult
respiratory distress syndrome, Kussmaul’s breathing (Garg et al.,
1999; Hora et al., 2016).

Retinopathy Retinal whitening, orange or white discoloration of the retinal
vessels, retinal hemorrhages, and infrequent papilledema
(MacCormick et al., 2014).

Less prominent. Characterized by retinal hemorrhages and retinal
whitening, no change in retinal vessel discoloration (NIH (2014)).
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among CM patients, which occur in 5-15% of survivors

(Brewster et al., 1990), and it has been shown that prolonged

seizure activity may damage the brain, causing deficits in both

motor and cognitive functions (Stafstrom et al., 1993).
Coma

Coma usually develops rapidly after seizures among children

living in malaria-endemic areas, and consciousness recovers to

normal rapidly (within 24-48 h) (Genton et al., 1997). Different

disease processes may affect awareness in children with malaria,

including convulsions, hypoglycemia, hyperpyrexia, acidosis,

severe anemia, and sedative drugs. Although the cause of

impaired consciousness or coma remains unclear, it is likely to

result from several interacting mechanisms (Newton et al.,

2000). Adhesion of malaria parasite-infected red blood cells

(iRBCs) reduces microvascular blood flow (Kaul et al., 1998),

which may be the cause of organ tissue dysfunction, such as

coma. High concentrations of tumor necrosis factor-a (TNF-a)
are associated with coma (Kwiatkowski et al., 1990; Kaul et al.,

1998). Compared to children, coma gradually develops in adults

following drowsiness, disorientation, delirium, and agitation

within 2 to 3 days (Kochar et al., 2002). Convulsion leads to

the development of a coma and occurs in approximately 15% of

adults and 80% of children (Plewes et al., 2018).
Neurologic features

Abnormal corneal and oculocephalic reflexes (doll’s eye) are

likely to occur in children with deep coma. Abnormal plantar

reflexes are also detected, and abdominal reflexes are almost

invariably absent. In adults with profound coma, corneal and

eyelash reflexes are usually intact unless in a state of deep coma,

and the pupils are normal. Forcible jaw closure and teeth

grinding (bruxism) are commonly seen in CM. Pout reflex

usually indicates a “frontal release”; however, the grasp reflex

is frequently absent. In addition, increased muscle tone and

tendon reflexes are found. CM may elicit ankle and patellar

clonus, and extensor plantar responses. Nevertheless, abdominal

and cremasteric reflexes are invariably absent ().
Neurological impairments

CM affects the CNS, and although most survivors have a full

recovery, 3-31% of patients still develop neurological deficits and

cognitive sequelae (Oluwayemi et al., 2013). The prevalence of

neurological deficits is higher in children than in adults, ranging

from 6% to 29% at the time of discharge (Idro et al., 2004;

Hawkes et al., 2013). Children with CM frequently present long-

term neurologic deficits, and episodes of CM imply the
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development of long-term sequelae in children. In children,

the most common sequelae include ataxia, paralysis, paresis,

cortical blindness, epilepsy, deafness, behavioral disorders,

language disorders, and cognitive impairment (Brewster et al.,

1990). Sequelae are less common in adults. During the acute

phase of CM, neurologic abnormalities include psychosis, ataxia,

transitory cranial nerve palsies or tremor (Peixoto and

Kalei, 2013).
Retinopathy

The characteristic features of retinopathy due to CM include

retinal whitening (macula whitening sparing central fovea and

peripheral whitening of the fundus), retinal vessel discoloration

to pink–orange or white, retinal hemorrhages, and papilledema

(Hora et al., 2016). The first two abnormalities are considered

specific symptoms of CM. Commonalities between pediatric and

adult patients include retinal hemorrhage, a common

manifestation but a less distinctive feature. Retinal hemorrhage

correlates with disease severity and cerebral hemorrhage in the

microvascular dissection of the brain (White et al., 2001).

Papilledema is rare in children and adults. Although it is a

nonspecific symptom of CM, it reflects increased intracranial

pressure and portends a poor prognosis in children (Beare et al.,

2004). A prominent difference between children and adults is

vessel discoloration. Orange or white discoloration of the retinal

vessels has been attributed to the hemoglobinization of

stationary erythrocytes infected with mature parasites (Beare

et al., 2011). The degree of retinal microvascular damage is

comparable to cerebral damage (Beare et al., 2004; Lewallen

et al., 2008).
Non-CNS abnormalities in CM

Systemic complications include anemia (20% to 50%

incidence), hypoglycemia (30% incidence), hyponatremia

(>50% incidence), jaundice (8% incidence), metabolic acidosis

characterized by respiratory distress, and hepatosplenomegaly in

children living with CM (White et al., 1987; English et al., 1996;

Idro et al., 2005; Maitland and Newton, 2005). Renal failure and

pulmonary edema are unusual in children (Newton et al., 1991).

CM predominantly manifests as CNS dysfunction in children;

however, it is mainly present in multisystem and organ

(circulatory, hepatic, coagulation, renal, and pulmonary)

dysfunctions in adults (Day et al., 2000; Krishnan and

Karnad, 2003).

In adults, anemia is an inevitable consequence of CM and

develops exceptionally rapidly. CM has been reported in patients

together with pulmonary edema, adult respiratory distress

syndrome and hemoglobinuria, and Kussmaul’s breathing

occurs with acute renal failure and severe lactic acidosis
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(Newton and Warrell, 1998). Hypoglycemia occurs in 8% of

patients aged 26 to 28 years (White et al., 1983). Other

complications included jaundice, shock, abnormal bleeding,

and coagulopathy.
Pathogenesis of CM

Although the pathophysiology of CM has been extensively

investigated, the exact pathogenesis remains unclear. Currently,

CM is widely accepted as a multifactorial process related to the

adhesion and sequestration of iRBCs, immunological responses,

endothelial cell (EC) activation, and loss of BBB integrity (Idro

et al., 2005). Nevertheless, any of these mechanisms alone fail to

explain the pathogenesis of human CM, and they jointly

participate in this potentially fatal infection. A mouse model of
Frontiers in Cellular and Infection Microbiology 04
experimental cerebral malaria (ECM) has been used to simulate

and explain the pathogenesis of human CM (Figure 1).
Adhesion and sequestration

Cerebral iRBCs adherence is an indicative marker of CM in

adults and children, and it is considered a starting point during

the development of CM. Sequestration is thought to be a specific

interaction between iRBCs and vascular ECs, which is not

limited to brain tissues but also occurs on ECs in different

organs, including the lung, kidney, liver, and intestine.
The adhesion of iRBCs to the vascular endothelium is

mediated by P. falciparum erythrocyte membrane protein 1

(PfEMP1) (Jensen et al., 2020), a specific cell-surface ligand

expressed by iRBCs. PfEMP1 belongs to the antigen-variant

protein family, and the var genes encoding the protein are a large

multigene family (Kim, 2012). To date, 60 different var genes
FIGURE 1

Schematic of experimental cerebral malaria (ECM) pathogenesis. The ECM is initiated by dendritic cells (DCs) processing and presenting infected red
blood cell (iRBC) antigens to CD4+ and CD8+ T cells in the spleen (1). NK cells and macrophages are activated by iRBCs to secrete inflammatory
cytokines (2). The iRBCs adhere to endothelial cells (ECs) of the brain microvasculature through the interaction between P. falciparum erythrocyte
membrane protein-1 (PfEMP-1) of iRBCs and cell adhesion molecules of ECs (3). The adhesion of iRBCs to the cerebral microvascular endothelium
is also further accompanied by agglutination to other iRBCs, platelets, white blood cells (WBCs), and the rosetting effect formed by the adhesion of
iRBCs and RBCs. ECs are activated by interactions with iRBCs and responses to inflammatory cytokines. Activated ECs promote the upregulation of
cell adhesion molecules (CAMs) on brain ECs and release cytokines and chemokines simultaneously (4). Activated CD8+ T cells express CXCR3 and
CCR5 chemokine receptors, which bind to chemokines such as CXCL9, CXCL10, and CXCL4, inducing T-cell migration to the brain (5). Meanwhile,
LFA-1 on CD8+ T cells promotes their adhesion to endothelial ICAM-1 (6). Parasitic antigens can be transferred from the vascular lumen to brain
ECs. Brain ECs can cross-present parasitic antigens on MHC-1 molecular antigens and bind with antigen receptors (TCRs) on CD8+ T cells (7). The
interaction induces apoptosis of ECs, leading to the destruction of the BBB (8). Meanwhile, the iRBCs directly activate platelets and stimulate the
release of CXCL4. CXCL4 induces the production of TNF by T cells and macrophages, which causes more platelets to adhere to ECs (9). As
leukocytes and platelets are recruited and activated, a local proinflammatory cycle ensues, with a positive feedback loop of EC activation, leukocyte/
platelet sequestration, and parasite accumulation (10).
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have been characterized, and var gene-encoded proteins have

shown dual functions in regulating antigen variation and cell

adhesion (Tembo et al., 2014). PfEMP1 contains a host molecule

binding domain and binds to several cell adhesion molecules

(CAMs) on ECs, such as CD36 (Berendt et al., 1989; Ockenhouse

et al., 1989), intercellular adhesion molecule 1 (ICAM-1)

(Berendt et al., 1989), vascular adhesion molecule 1 (VCAM-

1) (Ockenhouse et al., 1989; Ockenhouse et al., 1992),

endothelial protein C receptor (EPCR) (Mohan Rao et al.,

2014), thrombospondin, E-selectin (Turner et al., 1994) and

chondroitin sulphate A (Rogerson et al., 1995; Fried and Duffy,

1996). Adhesion of iRBCs to the cerebral microvascular

endothelium is further accompanied by agglutination to other

iRBCs, platelets, white blood cells (WBCs), and rosetting

produced by adhesion of iRBCs and uninfected erythrocytes

(Fried and Duffy, 1996). Sequestration of iRBCs in microvessels

may protect iRBCs from clearance by the spleen. In addition, it

weakens the capability of iRBCs and RBCs to denature, leading

to blood vessel blockage. Previous studies reported a significant

correlation between sequestration of iRBCs in cerebral vessels

and coma in CM patients (Silamut et al., 1999; Ponsford et al.,

2012; Storm et al., 2019). Taken together, sequestration of iRBCs

leads to increased vasoconstriction and vascular obstruction, as

well as decreased cerebral blood flow and hypoxia.
Inflammatory responses

Excessive immune responses and the release of a large

number of inflammatory factors play important roles in the

pathogenesis of CM (Shikani et al., 2012). The humoral response

to malaria parasites includes immune activation of macrophages

and lymphocytes (CD8+, CD4+, natural killer (NK) cells) and

activation of monocytes, resulting in accumulation of immune

cells in the microvasculature and a systemic inflammatory

response secreted by proinflammatory cytokines, including

tumor necrosis factor (TNF)-a, interferon (IFN)-g, and

interleukin-1b (IL-1b), which are elevated in an episode of

acute CM.

At the early stage of malaria infection, CD4+ and CD8+ T

cells are activated by antigen-presenting cells (APCs) to initiate

antimalarial protective cellular immune responses. The

chemotaxis of T cells to peripheral cerebral vessels is one of

the prominent features of CM. Recruitment of CD8+ T cells is

the most predominant characteristic (Riggle et al., 2020), and

priming of CD4+ and CD8+ T cells initiates CM in the spleen by

dendritic cells (DCs) presenting iRBCs antigens. NK cells and

macrophages are activated by iRBCs to release inflammatory

cytokines, such as TNF-a, IFN-g, IL-1b, IL-12 and chemokines

(Dunst et al., 2017). Adhesion of iRBCs and the release of

inflammatory cytokines can activate brain ECs, triggering ECs

to produce chemokines and inflammatory cytokines and

upregulate CAM expression. Activation of CD8+ T cells results
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in the expression of chemokine receptors, including CXCR3 and

CCR5. Subsequently, chemokine receptors bind to chemokine

ligands expressed by ECs to induce CD8+ T-cell migration and

infiltration into brain ECs. CD11a (LFA-1) on CD8+ T cells

promotes adhesion to endothelial ICAM-1 (Howland et al.,

2015; Dunst et al., 2017), and upregulated expression of CAMs

induces increased recruitment of iRBCs, WBCs, and platelets in

brain capillaries, which enhances cerebral microvascular

sequestration (McEver, 2001; Shikani et al., 2012). The rupture

of iRBCs releases merozoites, which are endocytosed by ECs and

then cross-presented on major histocompatibility complex class

1 (MHC-1) molecules. MHC-1 binds to antigen receptors

(TCRs) on effector CD8+ T cells to activate CD8+ T cells

(Howland et al., 2013). Activated CD8+ T cells release

perforin, granzyme-B, and chemokines, triggering NK cells

and macrophages to migrate toward the brain. Immune cell

accumulation and perforin release induce apoptotic signaling in

ECs and alter the tight junctions of ECs, resulting in EC

dysfunction and increased cerebral vascular permeability

(Yañez et al., 1996; Belnoue et al., 2002; Haque et al., 2011).

Disruption of BBB integrity frequently results in perivascular

space enlargement, edema formation, and increased intracranial

pressure, eventually resulting in death.
Activation of vascular ECs

Activation of microvascular ECs is a central component of

brain microvascular pathology, resulting from the sequestration

of iRBCs on the surface of vascular ECs and systematic release of

inflammatory cytokines (Siddiqui et al., 2020). Activated ECs are

well characterized by aggravation of brain microvascular

sequestration, breakdown of tight junctions, and initiation of

coagulation cascading reactions.

EPCR, a host receptor involved in anticoagulation and

endothelial protection, has been identified as a receptor of

PfEMP1 (Turner et al., 2013). It is speculated that EPCR

mediates iRBCs sequestration and participates in thrombin-

induced disruption of the BBB. EPCR plays a crucial role in

stabilizing ECs by activating activated protein C, an inhibitor of

thrombin production that prevents EC activation (Mohan Rao

et al., 2014). In CM, some variants of the Plasmodium adhesins

PfEMP-1 (called DC8 and DC13) preferentially bind to EPCR.

Upon binding to EPCR, iRBCs reduce the level of available

EPCR binding sites and block the activation of activated protein

C by EPCR (Shabani et al., 2017). Induction of the coagulation

pathway by reducing the synthesis of EPCR and activated

protein C leads to increased thrombin production and EC

activation, as well as decreased protective effects of ECs.

Platelets are considered effector cells of the hemostasis

system and contribute to CM. It is actively involved in

sequestration, inflammation, and coagulation dysfunction and

is identified as their joint point (Cox and McConkey, 2010).
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Platelets bind to iRBCs (agglutination) and ECs via adhesion

receptors (CD36, ICAM-1, P-selectin). In addition, platelets

promote immune activation by binding Toll-like receptors to

parasite-derived molecules, expressing chemokine receptors,

and re l ea s ing cy tok ine s , chemok ines , and o the r

immunomodulatory molecules. All these activated cells (ECs,

platelets, monocytes) release microparticles (TNF-a, IFN-g)
(Combes et al., 2004). Taken together, microparticles alter EC

functions and are regarded as proinflammatory factors and

cellular activation markers.
BBB disruption

The BBB is a semipermeable membrane that separates the

peripheral blood from the cerebral parenchyma and maintains

balance by protecting the brain from potentially harmful blood

pathogens and chemicals. The BBB consists of the microvascular

endothelium, pericytes, microglia, astrocyte end-feet, neurons,

and basement membrane. Microvascular ECs have tight

junctions that impede the passive paracellular diffusion of

small and large molecules (Abbott et al., 2010; Moura

et al., 2017).

Binding of PfEMP1 to receptors on ECs, including ICAM-1,

VCAM-1, and EPCR, may trigger multiple signaling pathways in

ECs, leading to reorganization of the tight junction complex and

ultimately resulting in BBB leakage. ICAM-1 induces endothelial

cytoskeletal remodeling via Rho-dependent phosphorylation of

cytoskeleton-associated proteins, including FAK, paxillin,

p130Cas, and cortactin, thereby promoting BBB opening

(Wittchen, 2009). In addition, VCAM-1 cross-linking results

in the activation of Rac1 signaling, which induces the

attenuation of tight junctions through Rho-dependent

induction of stress fibers. Binding of PfEMP1 to EPCR fosters

activation of tissue factors Va and VIIIa, thereby disrupting the

anticoagulant pathway. Activation of these tissue factors results

in thrombin generation, leading to fibrin deposition. In addition,

PfEMP1 binding to EPCR activates the Rho A and NF-kB
pathways through thrombin-mediated cleavage of PAR1,

which induces a proinflammatory response, leading to BBB

disruption (Bernabeu and Smith, 2017; Kessler et al., 2017).

Microglia also disrupt the BBB by producing TNF and IL-1b.
Adhesion of iRBCs, leukocytes, and platelets to ECs also causes

EC damage and irreversible changes (Nishanth and Schlüter,

2019). iRBCs stimulate leukocytes (monocytes, NK cells) to

release inflammatory cytokines (TNF-a, IL-1a, IL-1b) by

releasing parasitic toxins (Medana and Turner, 2006; Nishanth

and Schlüter, 2019). TNF-a upregulates miR-155 expression in

ECs, leading to dysfunction of BBB integrity by altering tight

junctions (Barker et al., 2017). IL-1a and IL-1b activate ECs to

release the chemokines CCL2, CCL4, CXCL8, and CXCL10,

which promote leukocyte accumulation (Dunst et al., 2017), and

infiltrated leukocytes induce EC apoptosis through granzyme-B
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and perforin-mediated cytotoxicity (Rénia et al., 2012). CD8+ T

cells directly induce neuronal cell death through their cytotoxic

function and activation of neurons. Due to increased BBB

permeability, cytokines, chemokines, immune cells, and

plasma factors enter the brain parenchyma and activate

neurons and astrocytes, resulting in nerve injury and

neurological sequelae (Schiess et al., 2020). Kynurenic acid

produced by macrophages and ECs during tryptophan

metabolism is further converted into cytotoxic quinoline

(Bosco et al., 2003; Medana et al., 2003; Guillemin, 2012). All

othese molecules induce disruption of the BBB (Figure 2).

Recently, multiomics platforms, including genomics,

transcriptomics, proteomics and metabolomics, have been

widely used to unravel the underlying pathogenesis of cancer

and design therapeutic strategies (Nam et al., 2021). To date,

there has been no combined use of multiomics approaches for

CM studies, which has inspired the joint analysis of individual

omics data. Analysis of DNA markers, RNA transcripts,

proteins, and metabolites generated during the progression of

CM contributes to understanding CM pathogenesis, which

facilitates the precise diagnosis of CM and the discovery of

novel therapeutic targets.
Diagnosis of CM

Diagnosis is central to malaria control, and early diagnosis is

one of the crucial factors affecting the prognosis of CM.

Unfortunately, there is no gold standard for the diagnosis of

CM because of its complex and nonspecific clinical

manifestations. Currently, the primary clinical symptoms that

are available for CM diagnosis include (1) nonarousal coma (no

local responses to pain) that persists for more than six hours after

experiencing a generalized convulsion; (2) presence of asexual

forms of P. falciparum on both thick and thin blood smears; and

(3) exclusion of other causes of encephalopathy. To improve the

accuracy of CM diagnosis, state-of-the-art cerebral imaging tools

are available to assist the diagnosis of CM (Table 2).
Malarial retinopathy

The presence of malarial retinopathy facilitates the

improvement in the specificity for the clinical diagnosis of CM

and offers strong evidence for CM diagnosis in both adults and

children (MacCormick et al., 2014). In pediatric patients, the

degree of retinal microcirculation is comparable to that of the

brain, making it an easily observable surrogate marker to assess

the severity of cerebral pathology during CM (Bearden, 2012). It

has been shown that malarial retinopathy presents 100%

specificity and 95% sensitivity for the detection of CM, with

autopsy as the diagnostic gold standard (Beare et al., 2006).
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Fundoscopy

Fundoscopy is a relatively low-cost and simple technique for

the detection of retinopathy, which allows accurate

differentiation between malarial and nonmalarial comas. The

diagnosis of malarial retinopathy depends on the presence of

peripheral retinal whitening, orange and white discoloration of

retinal vessels, white-centered hemorrhages, and mild

papilledema. The unique retinopathy of patchy retinal

whitening and focal changes in vascular color are highly

specific for CM diagnosis (Beare et al., 2006; MacCormick

et al., 2014). In addition, retinal hemorrhage is a common but

less distinctive feature, while papilledema is not specific to CM

and is unavailable for CM diagnosis alone.
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Optical coherence tomography

OCT is an in vivo imaging tool that detects retinal changes

and is feasible for qualitatively and quantitatively evaluating high-

resolution cross-sectional retinal images, papilla of the optic nerve,

and even retinal nerve fiber layer thickness (Spaide et al., 2018).

OCT is a noninvasive, high-resolution measure; however, this

technique fails to diagnose malarial retinopathy.
Teleophthalmology

The introduction of fundoscopy improves the accuracy of CM

diagnosis; however, it requires well-trained ophthalmologists and
FIGURE 2

Molecular mechanisms of blood–brain barrier dysfunction. The binding of P. falciparum erythrocyte membrane protein-1 (PfEMP-1) to the receptors
on the ECs, including ICAM-1, VCAM-1, and EPCR, may trigger multiple signaling pathways in ECs, leading to the change to cytoskeleton-associated
proteins, ultimately resulting in the disruption of the BBB. Meanwhile, signaling pathways triggered by PfEMP1 lead to activation and injury of
astrocytes, microglia, neurons, and perivascular macrophages and initiate the process of neuropathological injury. The binding of PfEMP1 to EPCR
fosters the activation of tissue factors Va and VIIIa, thereby disrupting the anticoagulant pathway. Activation of these tissue factors results in thrombin
generation, leading to fibrin deposition. Microglia also disrupt the BBB by producing TNF and IL-1b. Astrocytes retract their end feet from ECs,
resulting in reduced vascular wrapping. Angiopoietin-2 produced by ECs also leads to reduced vascular wrapping by inducing pericyte dysfunction.
The iRBCs stimulate leukocytes to release inflammatory cytokines (TNF-a, IL-1a, IL-1b) by releasing parasitic toxins. These cytokines disrupt BBB
integrity by altering tight junctions and activating ECs to release chemokines (CCL2, CCL4, CXCL4, CXCL8, and CXCL10), which promote leukocyte
accumulation, including CD4+ T cells and CD8+ T cells. Infiltrated leukocytes induce EC apoptosis through granzyme B and perforin-mediated
cytotoxicity. Granzyme B and perforin directly induce neuronal cell death. Adhesion of iRBCs, leukocytes, and platelets to ECs also causes EC
damage and irreversible changes. Due to the increased permeability of the BBB, cytokines, chemokines, immune cells, and plasma factors flood into
the brain parenchyma and activate neurons and astrocytes, resulting in nerve injury and neurological sequelae. Kynurenic acid produced by
macrophages and ECs during tryptophan metabolism is further converted into cytotoxic quinoline, which plays a vital role in stromal cells and
microglia. These molecules induce the disruption of the BBB.
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expensive equipment, which restrains its applications in resource-

limited settings (Abu Sayeed et al., 2011). To overcome these

problems, an innovative approach, teleophthalmology, has

emerged for retinal assessment (Salongcay and Silva, 2018). This

technique uses a simple and inexpensive portable fundus camera

to capture images by well-trained professionals, and then, the

images are transferred to ophthalmologists for rapid diagnosis.

Teleophthalmology requires little additional training, minimizes

healthcare-seeking inconvenience and is feasible in various

settings (Maude et al., 2011).
Fluorescein fundus angiography

With improvements in optical technology and high-resolution

digital imaging, FFA has been extensively used by ophthalmologists

across the world. FFA measures the integrity of retinal blood

perfusion and the blood–retinal barrier by observing a map of

the intraretinal fluorescein. CM patients have nonperfusion in the

central retina and extensive nonperfusion in the peripheral retina

(Glover et al., 2010). Nevertheless, FFA requires a bulky tabletop

retinal camera, whose weight and stillness make it difficult to

capture clear images from conscious CM patients.
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EEG and micro-EEG
EEG

EEG pulses are recorded by measuring voltage fluctuations

caused by ionic currents within the neural tissues. This

noninvasive technique has made it possible to detect delayed

CM sequelae (Sahu et al., 2015), including neurological disorders

such as status epilepticus. CM patients’ EEG abnormalities

manifest as diffuse slowing, atypical sleep elements (fusiform

and parietal waves), and epileptiform activity (Postels

et al., 2018).
Micro-EEG
Although EEG is a noninvasive and relatively inexpensive

diagnostic method, a significant limitation is continuous follow-

up assessment of brain activity after discharge from the hospital.

To address this concern, micro-EEG, a miniature, wireless, and

battery-powered portable headset, was developed, and this

device achieved a comparable accuracy for the diagnosis of

status epilepticus with standard EEG systems (Grant et al.,

2014). This new tool facilitates the recording of brain activity

after discharge from the hospital and may provide an option for

CM diagnosis.
TABLE 2 Advantages and disadvantages of different approaches for the diagnosis of cerebral malaria.

Diagnostic approaches Advantages and disadvantages

Imaging
approaches

Malaria retinopathy Fundoscopy Advantage: relatively low cost and simple, accurate distinction between malarial and nonmalarial comas
(Essuman et al., 2010; MacCormick et al., 2014).
Disadvantage: requiring trained ophthalmologists and expensive equipment, subject to environmental
conditions (Abu Sayeed et al., 2011).

Optical coherence
tomography
(OCT)

Advantage: requiring qualitative and quantitative evaluation, noninvasive nature, and high-resolution output
(Spaide et al., 2018).
Disadvantage: High cost as well as practical issues (Sahu et al., 2015).

Teleophthalmology Inexpensive, portable, require little additional training, and suitable for bedside patients in a variety of
settings (Salongcay and Silva, 2018).

Fluorescein fundus
angiography (FFA)

Advantage: Reflect the integrity of retinal blood perfusion and blood–retinal barrier by intraretinal
fluorescein, and high-resolution digital imaging (Maude et al., 2011).
Disadvantage: Large size, bulky and inconvenient to use (Maude et al., 2011).

Electroencephalography
(EEG) and Micro-EEG

EEG Advantage: Useful, noninvasive, and relatively inexpensive diagnostic tests make it possible to detect delayed
cerebral malaria sequelae (Sahu et al., 2015). EEG abnormalities in cerebral malaria patients are manifested
by diffuse slowing, atypical sleep elements (fusiform and parietal waves), and epileptiform activity (Postels
et al., 2018).
Disadvantage: Require continuous postdischarge follow-up assessment.

Micro-EEG Miniature, portable, easier continuous recording after patient discharge (Grant et al., 2014),

Other Magnetic resonance imaging (MRI) (Mohanty et al., 2017), computed tomography (CT) (Mohanty et al.,
2011), intravital microscopy (IVM) (Volz, 2013), and in vivo bioluminescent imaging devices (Franke-
Fayard et al., 2006).

Biomarkers High levels of soluble ICAM-1 (Ramos et al., 2013), decreased Ang-1 and increased Ang-2 and Ang-2/Ang-1
(Conroy et al., 2012; Eisenhut, 2012), the elevation of specific smooth muscle proteins in plasma, including
carbonic anhydrase III (CA3), creatine kinase (CK), creatine kinase muscle (CKM), and myoglobin (MB)
(Bachmann et al., 2014), enhanced plasma levels of CXCL10 and CXCL4 (Wilson et al., 2011).
Hsa-miR-3158-3p represents a promising biomarker candidate for CM prognosis (Gupta et al., 2021) and
the relative expression levels of miR-19a-3p, miR-19b-3p, miR-146a, miR-193b, miR-467a, miR-27a, and
miR-146a may be associated with CM (Martin-Alonso et al., 2018; Wah et al., 2019; Assis et al., 2020).
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In addition, other imaging tools, including magnetic

resonance imaging (MRI) (Grant et al., 2014; Sahu et al.,

2021), computed tomography (CT) (Mohanty et al., 2011;

Sahu et al., 2021), intravital microscopy (IVM) (Volz, 2013),

and in vivo bioluminescent imaging (Franke-Fayard et al., 2006),

may serve as additional diagnostic approaches for CM.
Biomarkers

In addition to imaging tools, biomarkers have been

extensively used for the rapid diagnosis of CM. Soluble ICAM-

1, which is strongly associated with CM, was reported to be

upregulated in the brain microvasculature (Ramos et al., 2013).

The soluble EPCR (sEPCR) level at admission is positively

correlated with CM and malaria-related mortality, and

admission sEPCR was identified as an early biomarker of

prognosis among CM patients (Ramos et al., 2013).

Angiopoietin-1 (Ang-1) and Ang-2 have been characterized as

mediators of endothelial activation and integrity, and Ang-1

maintains vascular quiescence, while Ang-2 displaces Ang-1

upon endothelial activation and sensitizes cells to become

responsive to subthreshold concentrations of TNF. Reduced

Ang-1 and Ang-2 and increased Ang-2/Ang-1 are detected in

patients with CM (Conroy et al., 2012; Eisenhut, 2012), which is

consistent with the pathophysiological changes of activation and

dysfunction of ECs among CM patients. In addition, elevation of

specific plasma smooth muscle proteins, including carbonic

anhydrase III (CA3), creatine kinase (CK), creatine kinase

muscle (CKM), and myoglobin (MB), indicates muscular

damage and microvasculature lesions during CM (Bachmann

et al., 2014). These proteins may serve as novel biomarkers for

predicting CM severity and therapeutic targets for CM.

Previous reports have demonstrated that the expression of

circulating microRNAs (miRNAs) is highly sensitive to

physiological and pathological stimuli (Paul et al., 2018). As a

consequence, their changes in response to P. falciparum

infection raise the possibility of new diagnostic and potentially

prognostic tools for CM. Hsa-miR-3158-3p was found to be

effective for the diagnosis of severe/cerebral malaria across all

age groups, and hsa-miR-3158-3p represents a promising

biomarker candidate for predicting CM prognosis in all age

groups (Gupta et al., 2021). In addition, previous studies have

shown associations of the relative expression of miR-19a-3p,

miR-19b-3p, miR-146a, miR-193b, miR-467a, miR-27a, and

miR-146a with CM (Martin-Alonso et al., 2018; Wah et al.,

2019; Assis et al., 2020).

Spatial metabolomics is an emerging omics tool that

provides precise determination of species, contents, and

differential spatial distributions of metabolites in animal/plant

tissues (Martin-Alonso et al., 2018; Geier et al., 2020). In the

ECM, both kidney and spleen metabolism are differentially
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perturbed in CM compared with noncerebral malaria, and

lipid metabolism and the TCA cycle are altered in the kidney

and spleen (Ghosh et al., 2012). Spatial metabolomics is

beneficial for the diagnosis, biomarker discovery, and

prognosis prediction of CM.
Treatment

Antimalarial therapy

Early standard antimalarial treatment is crucial for CM. In

2011, parenteral artesunate was recommended as the first-line

treatment for CM by the World Health Organization (WHO).

Although artesunate is effective in clearing malaria parasites,

administration with potent artemisinin derivatives alone is

insufficient to protect against cell death, nerve damage, and

cognitive impairment (Brejt and Golightly, 2019), and the long-

term and widespread use of artemisinins alone may lead to the

emergence of drug-resistant strains. Artemisinin-based

combination therapies (ACTs) are therefore introduced to

improve clinical outcomes, reduce mortality, prevent long-

term neurocognitive deficits and delay the emergence of

artemisinin resistance.
Potential adjuvant therapy

Targeting a single signaling pathway may be insufficient to

reduce mortality or improve neurological conditions among CM

patients, since CM is a multiprocess disorder. Therefore,

adjuvant therapy targeting multiple physiological processes of

CM is needed to improve clinical outcomes, prolong survival,

and reduce neurological damage in survivors (John et al., 2010).

Adjuvant therapy aims to decrease cytoadherence and

sequestration, modulate immune responses and improve

endothelial functions, with neuroprotection given as a priority,

and previous studies have shown the effectiveness of adjuvant

therapy in reducing mortality due to CM in ECM models (Wei

et al., 2022). However, the results from clinical trials

are disappointing.

Targeting parasite adhesion to
vascular endothelium

Clinical episodes of CM are associated with the expression

of var genes encoding the specific PfEMP1 protein, while Var

genes are independently observed to bind to the brain

endothelium in vitro (Avril et al., 2012; Claessens et al.,

2012). Once the crucial var ligand and its endothelial

receptors are identified, high-throughput screening may be

used to identify small molecules that block the binding or
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activation of microvascular endothelium by iRBCs. Levamisole

was found to interrupt CD36-dependent binding by inhibiting

CD36 dephosphorylation, which is required for high-affinity

binding (Miller et al., 2013). It is therefore suggested that

blockade of malaria parasite adhesion to the vascular

endothelium may be a promising strategy for CM treatment.
Regulating immune responses
Preventive measures prior to malaria may alter the immune

system status and delay CM development; therefore, adjuvant

therapy targeting immune regulation is difficult. Previous animal

studies have identified modulators of host targets as potential

adjuvant therapies, opening up new avenues for developing

highly selective adjuvant therapies for CM. Targeting

mammalian targets of rapamycin (mTOR) with rapamycin has

been proven to be effective in suppressing immune responses

(Mejia et al., 2015), thus supporting the potential of rapamycin

as an adjuvant treatment for CM. 6-Diazo-5-oxo-L-norleucine

(DON), a glutamine analog, was found to block the glutaminase-

mediated conversion of glutamine to glutamate, thereby

inhibiting T-cell activation (Crunkhorn, 2015), and

administration of DON resulted in survival from CM and

brain recovery in ECM (Gordon et al., 2015). These data

demonstrate that regulation of immune balance may be

effective for CM treatment.
Improving endothelial functions and
maintaining endothelial barrier integrity

Several therapeutics have been found to target endothelial

dysfunction, including a platelet-activating factor receptor

antagonist (Lacerda-Queiroz et al., 2012), statins such as

atorvastatin (Souraud et al., 2012) and lovastatin (Reis et al.,

2012), activated protein C (Mohan Rao et al., 2014), and

erythropoietin (Kaiser et al., 2006). In addition, Ang protein

was reported to regulate endothelial barrier integrity and is

associated with CM-induced retinopathy and death (Conroy

et al., 2012). In response to TNF stimulation, Ang-2 causes

destruction of endothelial barrier integrity and triggers

endothelial adhesion molecule expression. Secretion of Ang-2

in endothelial Weibel-Palade bodies may lead to vascular

leakage, inflammation, and encephaledema associated with

CM. Endothelium-targeted therapy that inhibits Weibel-Palade

extracellular secretion may block the pathogenic autocrine

activity of Ang-2 (Yeo et al., 2008).
Neuroprotection
CM is a severe neurological syndrome that may cause

epilepsy, coma and death, and survivors may present with
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neurological and cognitive deficits. Protection of nerve

cells is therefore highly essential. Among the potential

neuroprotective agents, erythropoietin (EPO) is one of the

most promising. In addition to stimulating erythropoiesis,

EPO has neuroprotective functions and increases the stability

of endothelial barriers (Ghezzi and Brines, 2004; Maiese et al.,

2005). Artesunate plus recombinant human erythropoietin

(rhEPO) has been found to reduce endothelial activation and

improve BBB integrity in murine ECM models, resulting

in faster recovery, increased survival rates, and high

neuroprotective effects (Du et al., 2017). Administration of

peroxisome proliferator-activated receptor-gamma (PPARg)
has been proven to improve long-term cognitive ability and

prolong survival (Serghides et al., 2014). In addition, PPARg
has shown neuroprotective effects via various pathways and

promotes neuronal repair, making it an attractive adjuvant

therapy. Dysregulation of the limk-1/cofilin-1 pathway might

lead to alterations in neuronal morphology and is considered

the cause of cognitive defects in patients surviving CM

(Simhadri et al., 2017); therefore, the LIMK-1/cofilin-1

pathway is considered a potential therapeutic target for CM.

In addition, granzyme-B produced by CD8+ T cells directly

kills neurons through cytotoxic function and activation of

caspase-3 and calpain1 (Kaminski et al., 2019). Therefore,

targeting granzyme-B may be an option to prevent neuronal

cell death.

Unfortunately, the clinical efficacy and safety of these

adjuvant treatments have not been tested until now. Inclusion

of specific PfEMP-1 receptors on the surface of iRBCs may

allow its connection with T cells to yield the ability to kill

iRBCs, thus inhibiting the downstream pathological reactions

initiated by iRBC adhesion. Chimeric antigen receptor T

(CAR-T) immune cell therapy is a breakthrough for cancer

therapy (Herzig et al., 2019; Bertoletti and Tan, 2020). Since

iRBC adhesion is the initial step during the development of

CM, the efficacy and safety of CAR-T immune cell therapy for

CM deserve further investigation.
Conclusions and perspectives

CM is a multifactorial and multiprocess disorder.

Administration of antimalarials alone is effective in clearing

malaria parasites; however, such a treatment fails to protect

against nerve cell death, neurological damage and cognitive

impairment. This urges the development of novel treatment for

improved outcomes of CM. In addition, the rapid developments

of -omics offer an opportunity for understanding the etiology of

CM and provide insights into the clinical diagnosis and therapy of

this potentially fatal disorder.
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