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Abstract

Transcription factor binding site (TFBS) identification plays an important role in deciphering gene regulatory codes. With
comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades,
various computational approaches have been proposed to predict TFBSs in the genome. The TFBS dataset of a TF generated
by each algorithm is a ranked list of predicted TFBSs of that TF, where top ranked TFBSs are statistically significant ones.
However, whether these statistically significant TFBSs are functional (i.e. biologically relevant) is still unknown. Here we
develop a post-processor, called the functional propensity calculator (FPC), to assign a functional propensity to each TFBS in
the existing computationally predicted TFBS datasets. It is known that functional TFBSs reveal strong positional preference
towards the transcriptional start site (TSS). This motivates us to take TFBS position relative to the TSS as the key idea in
building our FPC. Based on our calculated functional propensities, the TFBSs of a TF in the original TFBS dataset could be
reordered, where top ranked TFBSs are now the ones with high functional propensities. To validate the biological
significance of our results, we perform three published statistical tests to assess the enrichment of Gene Ontology (GO)
terms, the enrichment of physical protein-protein interactions, and the tendency of being co-expressed. The top ranked
TFBSs in our reordered TFBS dataset outperform the top ranked TFBSs in the original TFBS dataset, justifying the
effectiveness of our post-processor in extracting functional TFBSs from the original TFBS dataset. More importantly,
assigning functional propensities to putative TFBSs enables biologists to easily identify which TFBSs in the promoter of
interest are likely to be biologically relevant and are good candidates to do further detailed experimental investigation. The
FPC is implemented as a web tool at http://santiago.ee.ncku.edu.tw/FPC/.
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Introduction

Cells respond to internal or external stimuli by changing their

gene expression [1,2], a process that a gene is transcribed by the

RNA polymerase into an mRNA to convey information for

ribosomes to synthesize proteins. A transcription factor (TF) is a

protein that binds to a specific DNA sequence, called TF binding

site (TFBS), in the promoter of a gene to regulate (activating/

repressing) its transcription rate. With comprehensive knowledge

of TFBSs, one can understand the transcriptional regulation of

gene expression. Accordingly, researchers committed to develop-

ing experimental or computational approaches to identify TFBSs.

Some examples of the experimental approaches were the works

carried out by experimental biologists [3–5]. These approaches

were considerably expensive [6]. On the other hand, based on the

partial conservation property of TFBS nucleotide sequences,

computational approaches were applied to the identification of

TFBSs. The most well-known classical method used position

weight matrices (PWMs), carrying the frequencies and the

variability of four nucleotides at each position for a DNA sequence

in a quantitative manner. This approach searched for consensus

sequences in the PWM and assumed that each nucleotide interacts

with the TF independently [6,7]. Although various degrees of

success were made in this computational approach, the use of

PWM for TFBS identification was reported to have a high false

positive rate [8,9]. Beside the classical approach, alternatives were

developed mainly based on the discovery of the weak correlation

when taking into account di-nucleotide or tri-nucleotide in the

analysis of the interaction between a TF and the regulatory

sequences [10,11]. There were also approaches of TFBS

identification using statistical algorithms such as Gibbs sampling

[12] and artificial intelligence algorithms such as neural networks

[13]. The identification quality is rather comparable with that by

using the PWM [6]. However, because TFBSs are typically short

and degenerate, both classical and alternative approaches of TFBS

identification are subject to over-prediction. For improvement, a

number of techniques or factors are considered in the literature: (i)

extracting maximal sequence from experimentally identified

binding sites to improve motif models [14], (ii) supplementing

motif models with more genomic attributes such as evolutionary

conservation [14], and (iii) considering the similarity of the gene
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expression profiles of a TF and its target genes as extra

information [15].

Although the quality of TFBS identification is improved with

the approaches mentioned above, whether or not the computa-

tionally predicted TFBSs are functional (i.e. biologically relevant)

is still unknown. Therefore, for each TF, we develop a post-

processor to evaluate the functionality of each TFBS of that TF in

the existing computationally predicted TFBS datasets of that TF in

the public domain. Our post-processor, called the functional

propensity calculator (FPC), takes a TFBS as an input and outputs

a functional propensity associated with the input TFBS. It is

known that functional TFBSs reveal strong positional preference

towards the transcriptional start site (TSS) [16–20]. This motivates

us to take the TFBS position relative to the TSS as the key idea in

building our FPC. A distinct FPC is constructed for the TFBSs of

each TF. Namely, different FPCs are constructed for different

TFs. Here we use the TF Abf1 as an example to illustrate how the

FPC of Abf1’s TFBSs works. First, high-confidence Abf1’s TFBSs

are extracted from the existing computationally predicted Abf1’s

TFBS dataset in the public domain. An Abf1’s TFBS is called

high-confidence if it is located in the promoter of a gene that is

known to be regulated by Abf1 using the documented TF-gene

regulation evidence in YEASTRACT database [21]. Second, an

observed distribution of Abf1’s TFBS position relative to the TSS

is constructed using Abf1’s high-confidence TFBSs. Third, a

random distribution of Abf1’s TFBS position relative to the TSS is

constructed by assuming that the positions of Abf1’s high-

confidence TFBSs are uniformly distributed in the promoters.

Finally, a functional propensity (FP) is given to each Abf1’s TFBS

based on the log likelihood ratio (LLR) of the observed and the

random distributions at the position of that TFBS. Figure 1

exhibits the idea of our FPC using the TF Abf1 as an example (see

Materials and Methods for details).

Results

We reported the results (see Material S1 for details) of

calculating functional propensities of the TFBSs in the existing

computationally predicted TFBS datasets of 30 yeast TFs retrieved

from MacIsaac et al.’s study [22], which used two well-known

binding motif discovery algorithms, PhyloCon and Converge, to

predict TFBSs. These 30 TFs were chosen because they all have at

least 250 high-confidence TFBSs to construct the observed

distribution of the TFBS position relative to the TSS. Our results

are robust against different numbers of the required high-

confidence TFBSs (see Discussion for details).

Note that the retrieved TFBS dataset of a TF is a ranked list of

predicted TFBSs of that TF (sorted by the scores generated by the

TFBS prediction algorithms in MacIsaac et al.’s study), where top

ranked TFBSs are statistically significant ones. Here based on our

calculated functional propensities, the TFBSs of a TF in the

original TFBS dataset could be reordered, where top ranked

TFBSs are now the ones with high functional propensities. To

prove that our post-processor is effective in extracting functional

TFBSs from the original TFBS dataset, we must show that the top

ranked TFBSs in our reordered TFBS dataset are more likely to be

functional (i.e. biologically relevant) than the top ranked TFBSs in

the original TFBS dataset are. For this purpose, three published

statistical tests (the functional enrichment test, the protein-protein

interaction enrichment test and the expression coherence test)

were performed.

Before introducing these three tests, let us define two terms. Let

Re(A,k) and Or(A,k) be the set of genes whose promoters contain

the ‘‘functional’’ TFBSs of TF A, where functional TFBSs of TF A

Figure 1. A conceptual diagram of the proposed functional propensity calculator (FPC) of Abf1’s TFBSs. Po(x) and Pr(x) represent the
observed and random distributions of Abf1’s TFBS position relative to the TSS, respectively. Assume that an Abf1’s TFBS is located from m bp to n bp
relative to the TSS, then its functional propensity (FP) can be calculated as the formula shown in the figure.
doi:10.1371/journal.pone.0083791.g001
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are defined as the top k% of TF A’s TFBSs in our reordered and

the original TFBS datasets, respectively. Note that Re(A,k) (or

Or(A,k)) can be regarded as a set of genes that are co-regulated by

TF A since their promoters all contain functional TFBSs of TF A.

Functional enrichment test
Since genes whose promoters contain functional TFBSs of the

same TF are likely to be co-regulated by that TF, they should

perform similar molecular functions or be involved in similar

biological processes [23–26]. Therefore, if the top ranked TFBSs

in our reordered TFBS dataset are more functional (i.e.

biologically relevant) than the top ranked TFBSs in the original

TFBS dataset are, we expect that Re(A,k) is more enriched in the

same Gene Ontology (GO) terms than Or(A,k) is. The functional

enrichment test (proposed by Reimand et al. [25]) was used to

check if our expectation is sustained. The procedure of this test

was as follows. First, the GO Term Finder webserver [27] was

used to find enriched GO terms in Re(A,k) and Or(A,k),

respectively. The GO terms were searched in all GO domains

(biological process, molecular function and cellular component)

and 0.05 was used as the false discovery rate (FDR) cut-off. Then a

functional enrichment score (FES) was used to measure the

enrichment of functional annotations in Re(A,k) and Or(A,k) by

summing the absolute logarithms of the p-values of the enriched

GO terms found in Re(A,k) and Or(A,k), respectively.

The functional enrichment test was applied to both Re(A,k) and

Or(A,k) for each of the 30 TFs under study. Taking the TF Abf1 as

an example, the functional enrichment test was applied to both

Re(Abf1,k) and Or(Abf1,k), where k = 25, 33 or 50. The same

procedure was performed another 29 times for the other 29 TFs

under study. As seen in Figure 2a, in most of the 30 TFs, Re(A,k)

has a higher functional enrichment score than Or(A,k) does and

this result is robust against different top k% (k = 25, 33 or 50) of the

TFBSs used for defining functional TFBSs (see Material S2 for

details). More precisely, Re(A,k) has a higher functional enrichment

score than Or(A,k) does in 26 (25 or 28) out of the 30 TFs when

k = 25 (33 or 50). In summary, the top ranked TFBSs in our

reordered TFBS dataset display greater functional enrichment

than the top ranked TFBSs in the original TFBS dataset do,

justifying the effectiveness of our post-processor in extracting

functional TFBSs from the original TFBS dataset.

Protein-protein interaction enrichment test
It has been reported that co-regulated genes tend to physically

interact with each other [28]. Since genes whose promoters

contain functional TFBSs of the same TF are likely to be co-

regulated by that TF, they should be enriched in physical protein-

protein interactions (PPIs). Therefore, if the top ranked TFBSs in

our reordered TFBS dataset are more functional (i.e. biologically

relevant) than the top ranked TFBSs in the original TFBS dataset

are, we expect that Re(A,k) is more enriched in physical PPIs than

Or(A,k) is. The PPI enrichment test (proposed by Reimand et al.

[25]) was used to check if our expectation is sustained. The

procedure of this test was as follows. First, a PPI module associated

with Re(A,k) was constructed. The physical PPI data were

downloaded from the BioGRID database [29]. The genes that

are in Re(A,k) and have physical PPIs with at least one gene in

Re(A,k) are called core genes. The genes that are not in Re(A,k) but

have physical PPIs with at least one core gene are called

neighborhood genes. The core and neighborhood genes together

formed the PPI module associated with Re(A,k). Second, the

statistical significance for the genes in Re(A,k) to be in the same PPI

module was calculated using the hypergeometric distribution,

which tests whether the ratio of genes in Re(A,k) to be in the same

PPI module is significantly higher than random expectation.

The PPI enrichment test was applied to both Re(A,k) and Or(A,k)

for each of the 30 TFs under study. The p-values calculated by the

hypergeometric distribution were corrected to ensure FDR,0.05.

As seen in Figure 2b, in most of the 30 TFs, Re(A,k) has a smaller

p-value, i.e. a larger –log(p-value), than Or(A,k) does and this result

is robust against different top k% (k = 25, 33 or 50) of the TFBSs

used for defining functional TFBSs (see Material S2 for details).

More precisely, Re(A,k) has a smaller p-value than Or(A,k) does in

24 (25 or 26) out of the 30 TFs when k = 25 (33 or 50). In

summary, the top ranked TFBSs in our reordered TFBS dataset

display higher tendency of having physical PPIs than the top

ranked TFBSs in the original TFBS dataset do, justifying the

effectiveness of our post-processor in extracting functional TFBSs

from the original TFBS datasets.

Expression coherence test
It has been reported that co-regulated genes tend to be co-

expressed [23,24]. Since genes whose promoters contain function-

al TFBSs of the same TF are likely to be co-regulated by that TF,

they should have high tendency of being co-expressed. Therefore,

if the top ranked TFBSs in our reordered TFBS dataset are more

functional (i.e. biologically relevant) than the top ranked TFBSs in

the original TFBS dataset are, we expect that Re(A,k) is more co-

expressed than Or(A,k) is. The expression coherence test (proposed

by Yang and Wu [26]) was used to check if our expectation is

sustained. The expression data were downloaded from SPELL

(Serial Pattern of Expression Levels Locator), which is a query-

driven search engine for large gene expression microarray

compendia [30]. The procedure of this test was as follows. First,

two distributions were formed by computing the absolute value of

the Pearson correlation coefficient between the expression data of

any two genes in the Re(A,k) and Or(A,k), respectively. Then one

dataset is said to have higher expression coherence (i.e. more co-

expressed) than the other if the mean of its distribution is

stochastically greater than that of the other. The statistical

significance was computed using Student’s t-test.

The expression coherence test was applied to compare Re(A,k)

and Or(A,k) for each of the 30 TFs under study. The p-values

calculated by the Student’s t-test were corrected to ensure

FDR,0.05. As seen in Figure 2c, in most of the 30 TFs, Re(A,k)

is more co-expressed (with corrected p-value ,0.05) than Or(A,k) is

and this result is robust against different top k% (k = 25, 33 or 50)

of the TFBSs used for defining functional TFBSs (see Material S2

for details). More precisely, Re(A,k) is more co-expressed than

Or(A,k) is in 21 (20 or 21) out of the 30 TFs when k = 25 (33 or 50).

In summary, the top ranked TFBSs in our reordered TFBS dataset

display higher tendency of being co-expressed than the top ranked

TFBSs in the original TFBS dataset do, justifying the effectiveness

of our post-processor in extracting functional TFBSs from the

original TFBS dataset.

Discussion

Our result is better than random results
In the Results section, we have shown that the top ranked

TFBSs selected by our functional propensity are more likely to be

functional than are the top ranked TFBSs selected by the original

TFBS prediction algorithm in MacIsaac et al.’s study. It would be

more convincing if we can also show that the top ranked TFBSs

selected by our functional propensity are more likely to be

functional than are the top ranked TFBSs selected by random. Let

Re(A,k) and Ran(A,k) be the set of genes whose promoters contain

Identifying Functional TFBSs in Yeast
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the ‘‘functional’’ TFBSs of TF A, where functional TFBSs of TF A

are defined as the largest k% of TF A’s TFBSs selected by our

functional propensity and by random. We generated 10 different

Ran(A,k)s and performed the three tests (the functional enrichment

test, the PPI enrichment test and the expression coherence test) on

Re(A,k) and these 10 different Ran(A,k)s. As shown in Material S3,

in almost all of the 30 TFs, Re(A,k) outperforms these 10 different

Ran(A,k)s, suggesting that our result is of statistical significance.

Our result is robust against different numbers of the
required high-confidence TFBSs

In the Results section, the analyses of the TFBSs of 30 yeast TFs

were reported. These 30 TFs were chosen because they all have at

least 250 high-confidence TFBSs to construct the observed

distribution of the TFBS location relative to the TSS. Changing

the minimal number of high-confidence TFBSs that are required

to construct the observed distribution would change the number of

TFs that could be studied. For example, 22 (25, 27, 30, 44, 52 or

65) TFs can be studied if 400 (350, 300, 250, 200, 150 or 100)

high-confidence TFBSs are required. Material S4 shows that our

result is robust against different numbers of the required high-

confidence TFBSs.

Our result is robust against different existing
computationally predicted TFBS datasets

In the Results section, the computationally predicted TFBS

datasets were downloaded from MacIsaac et al.’s study. Here we

wanted to check if our post-processor could work well for other

TFBS datasets in the public domain. Therefore, we applied our

post-processor to the computationally predicted TFBS datasets

downloaded from SwissRegulon database [31]. SwissRegulon

database deposited high-quality TFBS datasets predicted using

Bayesian probabilistic analysis of a combination of input

information including multiple alignments of orthologous inter-

genic regions from related genomes and ChIP-chip binding data.

Note that the retrieved TFBS dataset of a TF is a ranked list of

predicted TFBSs of that TF (sorted by the scores generated by the

TFBS prediction algorithm in SwissRegulon database), where top

ranked TFBSs are statistically significant ones. Here based on our

calculated functional propensities, the TFBSs of a TF in the

original TFBS dataset could be reordered, where top ranked

TFBSs are now the ones with high functional propensities. To

prove that our post-processor is effective in extracting functional

TFBSs from the original TFBS dataset, we must show that the top

ranked TFBSs in our reordered TFBS dataset are more likely to be

functional (i.e. biologically relevant) than the top ranked TFBSs in

the original TFBS dataset are. For this purpose, three published

statistical tests (the functional enrichment test, the PPI enrichment

test and the expression coherence test) were performed. By

requiring that a TF must have at least 400 high-confidence TFBSs

to construct the observed distribution of the TFBS position relative

to the TSS, the TFBS datasets of 20 yeast TFs in SwissRegulon

database could be studied. As shown in Material S5, in most of the

20 TFs, the top ranked TFBSs in our reordered TFBS dataset

outperform the top ranked TFBSs in the original TFBS dataset

across all three tests, indicating that our result is robust against

different computationally predicted TFBS datasets.

Our result outperforms the original result in the ROC
analysis

In order to check whether our reordered TFBS dataset (after

applying our FPC) outperforms the original TFBS dataset in terms

of the true positive rate and the false positive rate, the ROC

(receiver operating characteristic) analysis was conducted. Before

doing the ROC analysis, the benchmark set (i.e. the set of known

functional TFBSs) has to be prepared. Since there is no such

Figure 2. The outcomes of the three tests for the 30 TFs under study. Re(A,k) and Or(A,k) are the sets of genes whose promoters contain the
‘‘functional’’ TFBSs of TF A, where functional TFBSs of TF A are defined as the top k% of TF A’s TFBSs in our reordered and the original TFBS datasets,
respectively. For each of the 30 TFs under study, the three tests were performed on Re(A,k) and Or(A,k), where k = 25, 33 or 50. The performance
comparison results of (a) the functional enrichment test, (b) the PPI enrichment test, and (c) the expression coherence test are summarized. Note that
TF A is called a winning TF if Re(A,k) outperforms Or(A,k) in the test and the fraction of the winning TFs is defined as the number of winning TFs
divided by the total number of TFs under study. It can be seen that the fraction of the winning TFs is always greater than (a) 0.83 for the functional
enrichment test, (b) 0.8 for the PPI enrichment test, and (c) 0.67 for the expression coherence test in all different scenarios, justifying the effectiveness
of our post-processor in extracting functional TFBSs from the original TFBS dataset.
doi:10.1371/journal.pone.0083791.g002
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benchmark set available in the public domain, we instead

prepared the benchmark set as follows. The prepared benchmark

set consists of a TF’s TFBSs which are located in the promoters of

the genes that are known to be regulated by that TF using the

literature evidence in YEASTRACT database [21]. The ROC

analysis was applied to MacIsaac et al.’s TFBS datasets of 30 TFs

(predicted by PhyloCon and Converge algorithms [22]) and the

SwissRegulon’s TFBS datasets of 20 TFs (predicted by MotEvo

algorithm [31]). In almost all of the TFs under study, our

reordered dataset has a larger AUC (area under curve) than the

original dataset does and this result is robust against different

TFBS prediction algorithms used (see Material S6 for details),

justifying the effectiveness of our post-processor in extracting

functional TFBSs from the original TFBS dataset.

Our post-processor is useful for gene regulation study
By analyzing MacIsaac et al.’s computationally predicted TFBS

datasets, we found that 92.1% (6053/6576) of genes in the yeast

genome have more than 7 predicted TFBSs in their promoters.

These TFBSs could be recognized either by different TFs or by the

same TF but located in different region of the promoter (see

Figure 3 for an example). When dealing with a huge number of

putative TFBSs in a promoter, biologists have troubles in

determining which TFBSs should be chosen for further detailed

experimental investigation. Our post-processor solved this prob-

lem by assigning functional propensities to TFBSs. The TFBSs

with high functional propensities are likely to be biologically

meaningful and are good candidates for further investigation. For

example, in the promoter of FZF1, there are 7 computationally

predicted TFBSs belonging to 5 different TFs (Swi4, Ste12, Cst6,

Pho2 and Swi6) according to MacIsaac et al.’s TFBS datasets (see

Figure 3). Among these 7 TFBSs, our post-processor identified two

TFBSs with high functional propensities to be worthy of further

study. One is Swi4’s TFBS, located from 2158 bp to 2152 bp

relative to the TSS, whose functional propensity is within the

largest 10% of the functional propensities of all computationally

predicted Swi4’s TFBSs, and the other one is Ste12’s TFBS,

located from 2128 bp to 2122 bp relative to the TSS, whose

functional propensity is within the largest 14% of the functional

propensities of all computationally predicted Ste12’s TFBSs.

Indeed, both TFs Swi4 and Ste12 are shown in literature to bind

FZF1 in vivo [32,33]. On the contrary, our post-processor

predicted that the TFBSs of Cst6, Pho2 and Swi6 in the promoter

of FZF1 may not be functional. Two kinds of evidence support our

predictions. First, we cannot find any literature showing that Cst6,

Pho2 and Swi6 can bind FZF1 in vivo. Second, Harbison et al.’s

ChIP-chip data [34] show that Cst6, Pho2 and Swi6 indeed do not

bind FZF1 in vivo for yeast cells cultured in the YPD medium.

The p-values for Cst6-FZF1 binding, Pho2-FZF1 binding, and

Swi6-FZF1 binding are all larger than 0.1, indicating that Cst6,

Pho2 and Swi6 are very unlikely to bind FZF1 in vivo.

Not every computationally predicted TFBS can be
assigned a functional propensity by our method

Our method uses the relative distance of a TFBS to the TSS

when computing its functional propensity. If a TFBS is located in

the promoter of a gene whose TSS position is unknown, then our

method cannot assign a functional propensity to the TFBS.

Unfortunately, only the genomic coordinates of the TSSs of 4560

yeast genes are available from Nagalakshmi et al.’s work [35],

which generated a high-resolution transcriptome of the yeast

genome using a high-throughput RNA-seq method. Therefore,

not every computationally predicted TFBS in the existing TFBS

datasets can be assigned a functional propensity by our method.

This problem can be solved in two ways. First, if we change our

method to use the relative distance of a TFBS to the start codon

when computing its functional propensity, then the problem is

solved. The genomic coordinates of the start codons of all yeast

genes are available from Saccharomyces Genome Database (SGD)

[36]. However, we do not like this solution. We think that using

the start codon as the reference is not biologically meaningful

because the transcription process starts from the TSS but not from

the start codon. The second way to solve this problem is waiting

for the TSS information of the whole yeast genome released. With

the rapid development of the high-throughput experimental

technology, the genomic coordinates of the TSSs of all yeast

genes should be available in the near future.

Materials and Methods

Data sources
Three data sources were used in this study. First, the genomic

coordinates of the start codons, stop codons and the TSSs of 4560

genes were retrieved from Nagalakshmi et al.’s work [35], which

generated a high-resolution transcriptome of the yeast genome

using a high-throughput RNA-seq method. Second, the genomic

coordinates of 409,513 TFBSs of 122 yeast TFs were retrieved

from MacIsaac et al.’s work [22], which used two well-known

binding motif discovery algorithms, PhyloCon and Converge, to

predict TFBSs and generate the position weight matrices (PWMs).

Note that the retrieved TFBS dataset of a TF is a ranked list

(sorted by the PWM values) of the predicted TFBSs of that TF,

where top ranked TFBSs are statistically significant ones. Third,

the documented regulation evidence of 48,082 TF-gene pairs in

yeast was downloaded from the YEASTRACT database [21]. The

documented regulation evidence of a TF-gene pair comes from the

literature showing at least one of the following two types of

experimental evidence: (i) in vivo binding of the TF to the

promoter of the gene and (ii) change in the expression of the gene

due to the deletion (or mutation) of the TF-encoding gene.

Construction of a distinct FPC for the TFBSs of each TF
under study

A distinct FPC is constructed for the TFBSs of each TF.

Namely, different FPCs are constructed for different TFs. Here we

used the TF Abf1 as an example to illustrate how to construct the

functional propensity calculator (FPC) for Abf1’s TFBSs. First,

from 760 computationally predicted Abf1’s TFBSs in MacIsaac

et al.’s study, 397 high-confidence Abf1’s TFBSs were extracted.

An Abf1’s TFBS is called high-confidence if it is located in the

promoter of a gene that is known to be regulated by Abf1

supported by the documented TF-gene regulation evidence in

YEASTRACT database. Following previous studies [22,32,34,37–

39], the promoter of a gene is defined as the intergenic region

between this gene and its nearest non-overlapped upstream gene.

Second, an observed distribution of Abf1’s TFBS position relative

to the TSS was constructed using the 397 Abf1’s high-confidence

TFBSs. The construction process was as follows. Let G be the set of

genes whose promoters contain at least one of the 397 high-

confidence Abf1’s TFBSs. Let x be a site relative to the TSS. For

each x in the promoter of a gene in G, whether it is covered by any

high-confidence Abf1’s TFBSs was checked. The same process was

applied to all genes in G. The total number, denoted as Do(x), of

Abf1’s high-confidence TFBSs located at site x for all genes in G

can be calculated. Then Do(x) is normalized to 1 and denoted as

Po(x). The Po(x) represents an estimation of the probability of

observing an Abf1’s TFBS at site x. Third, the random distribution

of Abf1’s TFBS location relative to the TSS, denoted as Pr(x), was
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constructed by assuming that Abf1’s high-confidence TFBSs are

uniformly distributed in the promoters. The Pr(x) represents the

probability of an Abf1’s TFBS located at site x by random

expectation. Finally, the functional propensity calculator (FPC) of

Abf1’s TFBSs was defined as the log likelihood ratio (LLR) of the

observed distribution and the random distribution. That is,

LLR(x)~log Po(x)
Pr(x)

� �
:

Calculation of the functional propensity for each
computationally predicted TFBS of a TF using the FPC

The functional propensity (FP) of a TFBS is defined as the

average of the log likelihood ratios (LLRs) of the sites covered by

the TFBS. Here we use the TF Abf1 as an example to illustrate

how to calculate functional propensity for each computationally

predicted Abf1’s TFBS. If a computationally predicted Abf1’s

TFBS is located from m bp to n bp relative to the TSS, then its

functional propensity (FP) can be calculated as

FP~

Pn
x~m

LLR(x)

m{nj jz1
~

Pn
x~m

log Po(x)
Pr(x)

� �

m{nj jz1
:

Using this formula, each of the computationally predicted

Abf1’s TFBSs in MacIsaac et al.’s TFBS dataset can be assigned a

functional propensity. Finally, based on the functional propensi-

ties, these Abf1’s TFBSs can be sorted from the highest to the

lowest propensity. TFBSs which are at the top of the ranked list

are likely to be functional ones.
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functional propensities of the TFBSs in the existing
computationally predicted TFBS datasets of 30 yeast TFs
retrieved from MacIsaac et al.’s study. The TFBSs of each

TF are ranked from the largest to the smallest functional

propensity. TFBSs which are at the top of the ranked list are

likely to be functional ones.

(XLS)

Material S2 Supplementary material 2 provides the
detailed outcomes of the three tests (the functional
enrichment test, the PPI enrichment test, and the
expression coherence test) on Re(A,k) and Or(A,k) for
the 30 TFs under study using the TFBS datasets
retrieved from MacIsaac et al.’s study.
(XLS)

Material S3 Supplementary material 3 summarizes the
outcomes of the three tests (the functional enrichment
test, the PPI enrichment test, and the expression
coherence test) on Re(A,k) and 10 different Ran(A,k)s
for the 30 TFs under study using the TFBS datasets
retrieved from MacIsaac et al.’s study.
(PDF)

Material S4 Supplementary material 4 summarizes the
outcomes of the three tests (the functional enrichment
test, the PPI enrichment test, and the expression
coherence test) on our results requiring different
numbers of the high-confidence TFBSs.
(PDF)

Material S5 Supplementary material 5 summarizes the
outcomes of the three tests (the functional enrichment
test, the PPI enrichment test, and the expression
coherence test) on Re(A,k) and Or(A,k) for the 20 TFs
under study using the TFBS datasets retrieved from
SwissRegulon database.
(PDF)

Material S6 Supplementary material 6 provides the
ROC analysis results of the TFBS datasets of 30 TFs
retrieved from MacIsaac et al.’s study and the TFBS
datasets of 20 TFs retrieved from SwissRegulon data-
base.
(PDF)
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