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Abstract: An efficient and general method for the synthesis of 3-sulfenylindoles and 3-selenylindoles
employing visible-light irradiation with graphene oxide as a promoter at room temperature has
been achieved. The reaction features are high yields, simple operation, metal-free and iodine-free
conditions, an easy-to-handle oxidant, and gram-scalable synthesis. This simple protocol allows one
to access a wide range of 3-arylthioindoles, 3-arylselenylindoles, and even 3-thiocyanatoindoles with
good to excellent yields.
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1. Introduction

Organosulfur and organoselenium compounds, which possess broad biological and
pharmaceutical activities, have been widely employed as important scaffolds for medicinal
chemistry (Figure 1) [1–6]. Among them, 3-sulfenylindoles and 3-selenylindoles repre-
sent important classes of sulfur and selenium-containing compounds having more greater
therapeutic values in the treatment of cancer [7–12], HIV [13–15], tubulin assembly inhi-
bition [16,17], and bacterial diseases [18–22]. In this regard, numerous methods for the
straightforward construction of C-S and C-Se bonds have been developed for the synthesis
of 3-sulfenylindoles and 3-selenylindoles. Among these various approaches, the most
commonly used methods involved the direct sulfenylation and selenation of the indole
moieties with various electrophilic sulfur and selenium reagents [23–35].

However, these strategies suffer from limitations, such as the need for stoichiometric
or super stoichiometric amounts of catalysts, strong acidic or oxidizing reagents, harsh reac-
tion conditions, the complex synthetic process of activated sulfur or selenium reagents, and
limited substrate scopes [36–41]. Most importantly, these reactions employ arylsulfur or arylse-
lenium reagents such as benzenesulfonyl chlorides [42–45], N-(thiophenyl)succinimide [46,47],
S-phenyl benzenesulfonothioate [48,49], disulfides [50–52], benzene-sulfonhydrazide [53–56],
N-phenylselenophthalimide [57], N-phenylselenosuccinimide [58], and diselenides [59–63],
generation of stoichiometric byproducts still cannot be avoided under the conditions used.
Therefore, the development of green and sustainable synthetic methods is highly desirable
under mild conditions so as to avoid the use of external oxidants, transition metal catalysts, or
harsh reaction conditions.

In recent years, graphene oxide (GO) [64–67], which is a readily available and inex-
pensive material, has historically functioned primarily as a precursor to reduced graphene
oxide (rGO) or chemically modified graphene (CMG) materials [68,69], and has generated
tremendous excitement due to its potential applications in plastic electronics, solar cells, op-
tical materials, and biosensors [70,71]. In addition, photo-induced organic transformations
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have emerged as an attractive and suitable approach in recent years [72–81]. Although
GO has been reported as a photocatalyst for hydrogen production from water under UV
irradiation [82], the potential application of GO in synthetic photochemistry is still rare [83].
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Figure 1. Selected examples of biologically active 3-selanyl- and 3-sulfanylindole compounds.

More recently, Wu et al developed a procedure of GO-mediated thiolation of indoles
with thiols in water (Scheme 1) [84]. This methodology provided an atom economical and
transition-metal and iodine free procedure for the direct synthesis of 3-sulfenylindoles.
Subsequently, Kumar and Rathore reported a benign oxidant, photocatalyst and transition-
metal-free visible light induced methodology for the construction of carbon-chalcogen (S,
Se, Te) bond that enables the 3-chalcogenyl indole (Scheme 1) [29]. However, most of these
methods suffer from some drawbacks such as low atom efficiency and limited substrate
scope. Recently, we reported a new and efficient method for the C3-chalcogenylation
of indolines employing visible-light irradiation and graphene oxide as a promoter at
room temperature [85]. However, the reaction substrates are expensive and difficult to
obtain for this synthesis method. In continuation of our work on indole chemistry [86–92]
and GO-promoted C-H functionalisation of indoles [93], herein, we wish to report the
combination of GO and blue LEDs, which works in synergy to efficiently promote the
organo chalcogenylation (S and Se) of indoles in DCE under air atmosphere by using
commercially available substrates. The highlight of this work is that GO not only acts as an
oxidant, but as a photocatalyst as well.
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2. Results and Discussion

The GO material used in this investigation was prepared by Hummers oxidation
of graphite and subsequent exfoliation, as reported [94,95]. The obtained GO material
was characterized by X-ray powder diffraction (XRD), transmission electron microscopy
(TEM), visible Raman spectroscopy, and atomic force microscopy (AFM) [96] (see the
Supplementary Materials).
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To commence our investigation, the reaction of indole 4a with 4-methylbenzenethiol 5a
was performed using 40 wt % GO as a promoter under irradiation with sunlight in open air
(Table 1). The reaction proceeded and produced the desired coupling product 6a with a 28%
yield (entry 1). Different light sources, such as CWF bulb (22 W, λmax = 365 ± 10 nm), green
LED (1.0 W, λmax = 530 ± 10 nm), and blue LED (3.0 W, λmax = 425 ± 15 nm), were tested.
Blue LED was more effective than other light sources, indicating the higher activity of GO
in the presence of high-intensity blue light (entries 2–4). The reaction in the absence of a
light source either failed to take place at room temperature (entry 5), or only a trace amount
of the target product was formed (entry 17). The solvent also plays an important role in this
transformation. DCE (1,2-dichloroethane) was more effective than the other tested solvents,
such as THF, DMSO, toluene, DMF, and 1,4-dioxane (entries 6–11). Subsequent efforts were
directed toward optimizing the GO loadings (entries 12–16). Whereas 50 wt % GO afforded
87% of the target product, decreasing the loading to 20 wt % GO was found to be sufficient
to drive the cross-coupling reaction to quantitative conversion. No product was detected
without GO. On the basis of our screening experiments, the best reaction condition is using
50 wt % GO in DCE and irradiation with blue LED in open air at 25 ◦C for 12 h, which
afforded the desired product 6a in high yield (87%, entry 14).

Table 1. Optimization of the reaction conditions a.
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1 40 Sunlight CH3CN 28

2 40 22 W CWF bulb CH3CN 22

3 40 1W Green LED CH3CN 7
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a Reaction conditions: 4a (0.3 mmol), 5a (0.36 mmol), and solvent (1 mL), for 12 h at rt under open air. b With
respect to the substrate 4a. c Isolated yield.

With the best experimental conditions for the synthesis of 6a in hand, we first evalu-
ated the efficiency of different substituted indoles 4 while keeping 4-methylbenzenethiol
5a constant. Under the optimized conditions, the desired products 6aa-6ma could be ef-
ficiently obtained in good to excellent yields (Table 2). Various substituted indoles 4, i.e.,
electrondonating (EDG, R = Me, OMe, OBn) and electron-withdrawing (EWG, R = Cl, I,
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CN, CO2CH3) groups successfully afforded the corresponding 3-sulfenylindoles and had
no significant effect on the reactivity and the regioselectivity of reactions. In general, the
EDG were better than the EWG. Furthermore, the introduction of various groups at the
N-1, C-2, -3, -4, -5, -6, or -7 position of the indoles all proceeded with 5a under standard
reaction conditions. Exceptions to this are 4-methylindole and methyl-4-indolecarboxylate,
showing moderate sulfenylation yields (6ha and 6ia), probably due to the steric hindrance
effect (entries 8 and 9). Interestingly, introducing a methyl group at the C-3-position of the
indole afforded the 2-sulfenylindole product 6ma in 84% yield.

Table 2. Scope of indoles a.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 17 
 

 

With the best experimental conditions for the synthesis of 6a in hand, we first 
evaluated the efficiency of different substituted indoles 4 while keeping 
4-methylbenzenethiol 5a constant. Under the optimized conditions, the desired 
products 6aa-6ma could be efficiently obtained in good to excellent yields (Table 2). 
Various substituted indoles 4, i.e., electrondonating (EDG, R = Me, OMe, OBn) and 
electron-withdrawing (EWG, R = Cl, I, CN, CO2CH3) groups successfully afforded the 
corresponding 3-sulfenylindoles and had no significant effect on the reactivity and the 
regioselectivity of reactions. In general, the EDG were better than the EWG. Furthermore, 
the introduction of various groups at the N-1, C-2, -3, -4, -5, -6, or -7 position of the 
indoles all proceeded with 5a under standard reaction conditions. Exceptions to this are 
4-methylindole and methyl-4-indolecarboxylate, showing moderate sulfenylation yields 
(6ha and 6ia), probably due to the steric hindrance effect (entries 8 and 9). Interestingly, 
introducing a methyl group at the C-3-position of the indole afforded the 
2-sulfenylindole product 6ma in 84% yield. 

 

Table 2. Scope of indoles a.. 

Entry R1 R2 R3 Product Yield (%) b 
1 H H H 6aa 87 
2 5-I H H 6ba 83 
3 5-CH3 H H 6ca 89 
4 5-CN H H 6da 78 
5 6-OCH3 H H 6ea 90 
6 7-Cl H H 6fa 80 
7 7-OBn H H 6ga 83 
8 4-CH3 H H 6ha 71 
9 4-CO2CH3 H H 6ia 67 

10 H H 2-CH3 6ja 86 
11 H CH3 H 6ka 86 
12 5-CH3 H 2-CH3 6la 82 
13 c H H 3-CH3 6ma 84 

a Reaction conditions: 4 (0.3 mmol), 5a (0.36 mmol), GO (50 wt %) with respect to the substrate 4a, 
and DCE (1 mL), for 12 h at rt under open air. b Isolated yield. c 3-Methyl-2-(p-tolylthio)-1H- indole 
(6ma) was obtained. 

Next, a diverse array of arylthiols were employed as substrates to explore the 
scope of this reaction (Table 3). These substrates also showed high reactivity in this 
transformation. All reactions proceeded smoothly when the thiophenol was bearing, 
regardless of electron-donating groups (Me and OMe) or electron-withdrawing 
groups (Cl, Br, and NO2) on the phenyl ring; the 3-sulfenylindoles were obtained in 
good to excellent yields. 

 

Entry R1 R2 R3 Product Yield (%) b

1 H H H 6aa 87

2 5-I H H 6ba 83

3 5-CH3 H H 6ca 89

4 5-CN H H 6da 78

5 6-OCH3 H H 6ea 90

6 7-Cl H H 6fa 80

7 7-OBn H H 6ga 83

8 4-CH3 H H 6ha 71

9 4-CO2CH3 H H 6ia 67

10 H H 2-CH3 6ja 86

11 H CH3 H 6ka 86

12 5-CH3 H 2-CH3 6la 82

13 c H H 3-CH3 6ma 84
a Reaction conditions: 4 (0.3 mmol), 5a (0.36 mmol), GO (50 wt %) with respect to the substrate 4a, and DCE
(1 mL), for 12 h at rt under open air. b Isolated yield. c 3-Methyl-2-(p-tolylthio)-1H- indole (6ma) was obtained.

Next, a diverse array of arylthiols were employed as substrates to explore the scope of
this reaction (Table 3). These substrates also showed high reactivity in this transformation.
All reactions proceeded smoothly when the thiophenol was bearing, regardless of electron-
donating groups (Me and OMe) or electron-withdrawing groups (Cl, Br, and NO2) on the
phenyl ring; the 3-sulfenylindoles were obtained in good to excellent yields.

The success in using aryl thiols encouraged us to examine the reaction of indole 4a
with various heterocyclic thiols including benzo[d]thiazole-2-thiol, 1-methyl-1H-imidazole-
2-thiol, 1,3,4-thiadiazole-2-thiol, 5-methyl-1,3,4-thiadiazole-2-thiol, 1-methyl-1H-tetrazole-
5-thiol, and the results are summarized in Scheme 2. In general, the desired products were
formed in moderate to excellent yields under the standard reaction conditions.
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Table 3. Scope of thiols a.
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Organothiocyanates are valuable synthetic intermediates which can be easily trans-
formed into an array of organosulfur molecules [97–99]. Under the optimized conditions,
we sustained our studies by treating indoles or 1H-pyrrolo[2,3-b]pyridine with KSCN under
the standard reaction conditions, and the corresponding thiocyanated product 7a–f were
obtained with 43–85% yields (Scheme 2). The results have shown that electronegativities
of substituents play a major role in governing the reactivity of the substrates. Electron-
donating substitutents show better results than electron-withdrawing substitutents in
this transformation.

The developed protocol can also be applied for the preparation of 3-selenyl-indoles
using various indole derivatives 4 and diphenyl diselenide 8. In general, the desired prod-
ucts 9 were formed in good to excellent yields in 8 h (Scheme 3), which was more efficient
than the generation of 3-sulfenylindoles with regard to the yields and reaction times.
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Scheme 3. Synthesis of 3-selenylindoles. Reaction conditions: 4 (0.3 mmol), 8 (0.36 mmol), GO
(50 wt %), and DCE (1 mL), for 8 h at rt under open air. Isolated yield.

In order to demonstrate the effectiveness of this new strategy, a gram scale reac-
tion was performed under the standard conditions. 10 mmol indole 4a and 12 mmol
4-methylbenzenethiol 5a were subjected to the reaction in the presence of GO (468 mg,
40 wt %) in 50 mL DCE at room temperature. After 12 h, the desired product 6a was
obtained in 84% yield, which demonstrated the practical application of this protocol to
prepare 3-sulfenylindoles on a gram-scale (Scheme 4). To our delight, when the amount of
GO was reduced to 40 wt %, the yield was not affected to any observable extent.
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To gain some insight into the mechanism of this reaction, some control experiments
were conducted as shown in Scheme 5. Because the visible-light-induced, GO-promoted
cross-coupling reaction was performed under open air, the role of O2 in this reaction was
explored. Initially, When the optimal reaction was performed under an oxygen atmosphere
instead of open air, there was no effect on the yield, but a faster conversion of the starting
material to the reaction product was observed, indicating that O2 could be involved in the
reaction pathway. Similarly, when the reaction was carried out under an argon atmosphere,
no major effect was observed, indicating that the reaction follows a different route in an
argon environment.
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Scheme 5. Control experiments.

Then, radical trapping experiments were conducted by adding butylated hydroxy-
toluene (BHT) or 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) into the standard condi-
tions of 4a and 5a. Experimental results show that these reaction were completely inhibited,
indicating the involvement of radical species in the transformation.

On the basis of our control experiments and several other reports from the
literature [29,85,100–102], we proposed two plausible mechanisms for this reaction in argon
and in oxygen environments as shown in Scheme 6. Graphene oxide might act as a radical
initiator [29]. Under an argon atmosphere (path A), promoted by the functional groups on the
surface of GO, 5-methylbenzenethiol transformed into phenylthiophenol radical 10. Next, the
thioyl radical 10 interacted with 4a to produce the radical intermediate 11. After that, 11 was
oxidized to the intermediate 12. Finally, deprotonation of intermediate 12 led to the formation of
product 6a. GO probably plays a crucial role during the process of oxidation and deprotonation.
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In 2012, Loh et al suggested that the edge sites with unpaired electrons in GO constitute
the active catalytic sites and afford enhanced kinetics for the trapping and activation
of molecular oxygen by a sequence of electron transport and reduction to superoxide
radical [103,104]. Thus, in the case of an oxygen atmosphere (path B), the anion radical
of O2 (O2•−), which is produced through a SET from unpaired electrons in GO, would
abstract a proton from 12, which would generate the desired product 6a and perhydroxyl
radical (HO2

•). The transfer of H• from 5a to HO2
• would generate 10 and H2O2.

3. Materials and Methods
3.1. General Information

Unless otherwise specified, commercial reagents and solvents were used without fur-
ther purification. Commercially available chemicals were purchased from Leyan (Shanghai,
China) and used without any further purification. 1H and 13C NMR spectra were recorded
on a Bruker spectrometer at 400 and 100 MHz, respectively. The chemical shifts were given
in parts per million relative to CDCl3 (7.26 ppm for 1H) and CDCl3 (77.0 ppm for 13C. Peak
multiplicities were reported as follows: s, singlet; d, doublet; t, triplet; m, multiplet; br.
s, broad singlet and J, coupling constant (Hz). Mass spectra were recorded with Bruker
Dalton Esquire 3000 plus LC-MS apparatus. Elemental analyses are expressed as percentage
values. HRFABMS spectra were recorded on a FTMS apparatus. Silica gel (300–400 mesh)
was used for flash column chromatography, eluting (unless otherwise stated) with an ethyl
acetate/petroleum ether (PE) (60–90 ◦C) mixture.

3.2. General Procedure of the Products 6

In a 10 mL Schlenk tube, indole (0.3 mmol), GO (17.6 mg), and thiol (0.36 mmol) were
stirred in DCE (1 mL) for 12 h at room temperature under an air atmosphere irradiated by
blue LEDs. The reaction mixture was concentrated under reduced pressure. The residue
was purified by flash chromatography on silica gel (eluent: EtOAc/PE = 1:10) to yield the
corresponding product 6.

3-(p-Tolylthio)-1H-indole (6aa). Yellow amorphous solid. 1H NMR (400 MHz, CDCl3):
δ 8.37 (s, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.46 (d, J = 2.6 Hz, 1H), 7.43 (d, J = 8.1 Hz, 1H),
7.26 (dt, J = 1.0, 8.1 Hz, 1H, Ar-H), 7.18 (t, J = 7.1 Hz, 1H), 7.05 (d, J = 8.3 Hz, 2H), 6.99
(d, J = 8.3 Hz, 2H), 2.26 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 136.5, 135.5, 134.7, 130.4,
129.5, 129.1, 126.3, 123.0, 120.8, 119.7, 111.5, 103.6, 20.8. MS (ESI): 240 (M + H+, 100). These
assignments matched with those previously published [27].

5-Iodo-3-(p-tolylthio)-1H-indole (6ba). Brown amorphous solid. 1H NMR (400 MHz,
CDCl3): δ 8.51 (s, 1H, NH), 7.99 (d, J = 1.5 Hz, 1H, Ar-H), 7.53 (dd, J = 8.5, 1.5 Hz, 1H, Ar-H),
7.43 (d, J = 1.5 Hz, 1H, Ar-H), 7.21 (d, J = 8.5 Hz, 1H, Ar-H), 7.06–7.01 (m, 4H, Ar-H), 2.29 (s,
3H, CH3). 13C NMR (101 MHz, CDCl3): δ 135.6, 135.1, 134.9, 131.7, 131.4, 131.3, 129.6, 128.4,
126.3, 113.6, 102.8, 84.6, 20.9. MS (ESI): 366 (M + H+, 100). These assignments matched with
those previously published [105].

5-Methyl-3-(p-tolylthio)-1H-indole (6ca). Yellow amorphous solid. 1H NMR (400 MHz,
CDCl3): δ 8.19 (s, 1H, NH), 7.55 (d, J = 0.7 Hz, 1H, Ar-H), 7.40 (d, J = 2.6 Hz, 1H, Ar-H),
7.34 (d, J = 8.2 Hz, 1H, Ar-H), 7.21–7.13 (m, 3H, Ar-H), 7.08 (d, J = 8.2 Hz, 2H, Ar-H), 2.52
(s, 3H, CH3), 2.36 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3): δ 135.9, 134.9, 134.7, 130.94,
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130.4, 129.7, 129.5, 126.2, 124.7, 119.2, 111.5, 102.4, 21.6, 21.0. MS (ESI): 254 (M + H+, 100).
These assignments matched with those previously published [105].

3-(p-Tolylthio)-1H-indole-5-carbonitrile (6da). Yellow amorphous solid. 1H NMR
(400 MHz, DMSO-d6): δ 12.20 (s, 1H, NH), 7.99 (d, J = 1.6 Hz, 1H, Ar-H), 7.81 (s, 1H, Ar-H),
7.66 (d, J = 8.4 Hz, 1H, Ar-H), 7.53 (d, J = 8.4 Hz, 1H, Ar-H), 7.04 (d, J = 8.0 Hz, 2H, Ar-H),
6.99 (d, J = 8.0 Hz, 2H, Ar-H), 2.20 (s, 3H, CH3). 13C NMR (101 MHz, DMSO-d6): δ 139.1,
135.3, 135.2, 134.9, 130.1, 129.0, 126.9, 125.4, 124.1, 120.7, 114.3, 102.8, 102.5, 20.9. MS (ESI):
265 (M + H+, 100). These assignments matched with those previously published [106].

6-Methoxy-3-(p-tolylthio)-1H-indole (6ea). Reddish brown amorphous solid. 1H NMR
(400 MHz, CDCl3): δ 8.33 (s, 1H, NH), 7.51 (d, J = 8.6 Hz, 1H, Ar-H), 7.34 (d, J = 2.2 Hz,
1H, Ar-H), 7.08 (d, J = 8.2 Hz, 2H, Ar-H), 7.02 (d, J = 8.2 Hz, 2H, Ar-H), 6.90 (d, J = 2.2 Hz,
1H, Ar-H), 6.86 (dd, J = 8.6, 2.2 Hz, 1H, Ar-H), 3.87 (s, 3H, OCH3), 2.29 (s, 3H, CH3). 13C
NMR (101 MHz, CDCl3): δ 157.2, 137.3, 135.6, 134.7, 129.5, 129.3, 126.3, 123.3, 120.3, 110.8,
103.4, 95.2, 55.7, 20.9. MS (ESI): 270 (M + H+, 100). These assignments matched with those
previously published [106].

7-(Benzyloxy)-3-(p-tolylthio)-1H-indole (6ga). Reddish brown amorphous solid. 1H
NMR (400 MHz, CDCl3): δ 8.71 (s, 1H, NH), 7.52 (d, J = 7.1 Hz, 2H, Ar-H), 7.49–7.40 (m, 4H,
Ar-H), 7.27 (d, J = 8.4 Hz, 1H, Ar-H), 7.09 (t, J = 7.8 Hz, 1H, Ar-H), 7.07 (d, J = 8.0 Hz, 2H,
Ar-H), 7.01 (d, J = 8.0 Hz, 2H, Ar-H), 6.81 (d, J = 7.8 Hz, 1H, Ar-H), 5.24 (s, 2H, OCH2), 2.28
(s, 3H, CH3). 13C NMR (101 MHz, CDCl3): δ 145.6, 136.9, 135.7, 134.6, 130.8, 130.1, 129.5,
128.7, 128.3, 128.0, 127.2, 126.3, 121.2, 112.6, 104.0, 103.7, 70.4, 20.9. MS (ESI): 346 (M + H+,
100). Anal calcd for C22H19NOS: C, 76.49; H, 5.54; N, 4.05; S, 9.28. Found C, 76.35; H, 5.47;
N, 4.33; S, 8.95.

4-Methyl-3-(p-tolylthio)-1H-indole (6ha). Reddish brown amorphous solid. 1H NMR
(400 MHz, CDCl3) δ 8.41 (s, 1H, NH), 7.43 (d, J = 2.6 Hz, 1H, Ar-H), 7.29 (d, J = 8.1 Hz, 1H,
Ar-H), 7.17 (t, J = 8.1 Hz, 1H, Ar-H), 7.06–6.98 (m, 4H, Ar-H), 6.92 (d, J = 7.1 Hz, 1H), 2.70 (s,
3H, CH3), 2.29 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3): δ 137.9, 137.0, 134.3, 132.2, 131.7,
129.6, 127.0, 125.5, 123.1, 122.4, 109.4, 102.9, 20.9, 18.7. MS (ESI): 254 (M + H+, 100). These
assignments matched with those previously published [106].

Methyl 3-(p-tolylthio)-1H-indole-4-carboxylate (6ia). Brown amorphous solid. 1H
NMR (400 MHz, CDCl3): δ 9.19 (s, 1H, NH), 7.51 (d, J = 2.6 Hz, 1H, Ar-H), 7.49 (d, J = 1.0 Hz,
1H, Ar-H), 7.38 (d, J = 2.6 Hz, 1H, Ar-H), 7.24 (t, J = 7.8 Hz, 1H, Ar-H), 6.98 (s, 4H, Ar-H),
3.68 (s, 3H), 2.30 (d, J = 37.7 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 169.6, 137.6, 136.4,
134.6, 133.4, 129.4, 126.2, 125.4, 125.3, 122.1, 122.0, 115.1, 103.1, 51.9, 20.8. MS (ESI): 298
(M + H+, 100). Anal calcd for C17H15NO2S: C, 68.66; H, 5.08; N, 4.71; S, 10.78. Found C,
68.80; H, 5.26; N, 4.64; S, 10.57.

2-Methyl-3-(p-tolylthio)-1H-indole (6ja). Reddish brown amorphous solid. 1H NMR
(400 MHz, CDCl3): δ 8.26 (s, 1H, NH), 7.58 (d, J = 7.8 Hz, 1H, Ar-H), 7.36 (dt, J = 1.0, 7.8 Hz,
1H, Ar-H), 7.22 (dt, J = 1,0, 7.8 Hz, 1H, Ar-H), 7.15 (dt, J = 1.0, 7.8 Hz, 1H, Ar-H), 6.99
(s, 4H, Ar-H), 2.54 (s, 3H, CH3), 2.27 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3): δ 141.0,
135.7, 135.5, 134.4, 130.4, 129.5, 125.8, 122.1, 120.7, 119.0, 110.7, 99.9, 20.9, 12.2. MS (ESI): 254
(M + H+, 100). These assignments matched with those previously published [106].

1-Methyl-3-(p-tolylthio)-1H-indole (6ka). Reddish brown amorphous solid. 1H NMR
(400 MHz, CDCl3): δ 7.75 (d, J = 8.2 Hz, 1H, Ar-H), 7.45 (d, J = 8.2 Hz, 1H, Ar-H), 7.39
(dt, J = 1.0, 7.0 Hz, 1H, Ar-H), 7.37 (s, 1H, Ar-H), 7.28 (dt, J = 1.0, 7.0 Hz, 1H, Ar-H), 7.15
(d, J = 8.2 Hz, 2H, Ar-H), 7.07 (d, J = 8.2 Hz, 1H, Ar-H), 3.86 (s, 3H, NCH3), 2.35 (s, 3H,
CH3). 13C NMR (101 MHz, CDCl3): δ 137.6, 136.1, 134.9, 134.6, 123.0, 129.6, 126.3, 126.2,
122.6, 120.5, 119.8, 109.8, 101.3, 33.1, 21.0. MS (ESI): 254 (M + H+, 100). These assignments
matched with those previously published [105].

2,5-Dimethyl-3-(p-tolylthio)-1H-indole (6la). Reddish brown amorphous solid. 1H
NMR (400 MHz, CDCl3): δ 8.03 (s, 1H, NH), 7.46 (s, 1H, Ar-H), 7.25 (d, J = 8.2 Hz, 1H,
Ar-H), 7.10 (dd, J = 8.2, 1.2 Hz, 1H, Ar-H), 7.46 (s, 4H, Ar-H), 2.51 (s, 3H, CH3), 2.49 (s, 3H,
CH3), 2.34 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3): δ 141.3, 136.0, 134.3, 133.8, 130.7,
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130.1, 129.6, 125.7, 123.7, 118.7, 110.5, 99.0, 21.5, 20.9, 12.1. MS (ESI): 268 (M + H+, 100).
These assignments matched with those previously published [106].

3-Methyl-2-(p-tolylthio)-1H-indole (6ma). Reddish brown amorphous solid. 1H NMR
(400 MHz, CDCl3): δ 7.96 (s, 1H, NH), 7.71 (d, J = 7.9 Hz, 1H, Ar-H), 7.33 (d, J = 3.6 Hz, 2H,
Ar-H), 7.26 (m, 1H, Ar-H), 7.12 (d, J = 8.3 Hz, 2H, Ar-H), 7.09 (d, J = 8.3 Hz, 2H, Ar-H), 2.51
(s, 3H, CH3), 2.38 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3): δ 136.9, 135.9, 133.5, 130.0,
128.6, 127.1, 123.4, 122.3, 119.7, 119.5, 119.4, 111.0, 21.0, 9.6. MS (ESI): 254 (M + H+, 100).
These assignments matched with those previously published [106].

3-((4-Chlorophenyl)thio)-1H-indole (6ab). Light yellow amorphous solid. 1H NMR
(400 MHz, CDCl3): δ 8.47 (s, 1H, NH), 7.58 (d, J = 8.0 Hz, 1H, Ar-H), 7.49 (d, J = 2.6 Hz,
1H, Ar-H), 7.45 (d, J = 8.2 Hz, 1H, Ar-H), 7.29 (dt, J = 1.0, 8.0 Hz, 1H, Ar-H), 7.18
(dt, J = 1.0, 8.0 Hz, 1H, Ar-H), 7.12 (d, J = 8.7 Hz, 2H, Ar-H), 7.02 (d, J = 8.7 Hz, 2H, Ar-H).
13C NMR (101 MHz, CDCl3): δ 137.8, 136.5, 130.6, 130.5, 128.7, 128.6, 127.1, 123.1, 121.0,
119.4, 111.6, 102.4. MS (ESI): 260 (M + H+, 30), 262 (M + H+, 100). These assignments
matched with those previously published [105].

3-((4-Bromophenyl)thio)-1H-indole (6ac). Brown amorphous solid. 1H NMR (400 MHz,
DMSO-d6): δ 11.76 (s, 1H, NH), 7.80 (d, J = 2.7 Hz, 1H, Ar-H), 7.51 (d, J = 8.1 Hz, 1H, Ar-H),
7.41–7.35 (m, 3H, Ar-H), 7.20 (dt, J = 1.1, 8.1 Hz, 1H, Ar-H), 7.08 (dt, J = 1.1, 8.1 Hz, 1H,
Ar-H), 6.96 (dt, J = 2.7, 8.6 Hz, 2H, Ar-H). 13C NMR (101 MHz, DMSO-d6): δ 139.5, 137.3,
133.1, 132.1, 128.9, 127.7, 122.7, 120.7, 118.6, 118.0, 112.9, 99.1. MS (ESI): 304 (M + H+, 100),
306 (M + H+, 100). These assignments matched with those previously published [105].

3-((4-Methoxyphenyl)thio)-1H-indole (6ad). Brown amorphous solid. 1H NMR
(400 MHz, CDCl3): δ 8.38 (s, 1H, NH), 7.63 (d, J = 8.0 Hz, 1H, Ar-H), 7.46 (d, J = 2.6 Hz, 1H,
Ar-H), 7.41 (d, J = 8.0 Hz, 1H, Ar-H), 7.25 (dt, J = 1.0, 8.0 Hz, 1H, Ar-H), 7.17 (dt, J = 1.0,
8.0 Hz, 1H, Ar-H), 7.13 (d, J = 8.9 Hz, 2H, Ar-H), 6.74 (d, J = 8.9 Hz, 2H, Ar-H), 3.73 (s, 3H,
OCH3). 13C NMR (101 MHz, CDCl3): δ 157.8, 136.5, 123.0, 129.5, 129.0, 128.6, 122.9, 120.8,
119.7, 114.5, 111.5, 104.7, 55.3. MS (ESI): 256 (M + H+, 100). These assignments matched
with those previously published [27].

3-((4-Ethylphenyl)thio)-1H-indole (6ae). Reddish brown amorphous solid. 1H NMR
(400 MHz, CDCl3): δ 8.34 (s, 1H, NH), 7.71 (d, J = 8.0 Hz, 1H, Ar-H), 7.45 (d, J = 2.3 Hz, 1H,
Ar-H), 7.44 (d, J = 8.0 Hz, 1H, Ar-H), 7.32 (dt, J = 1.0, 8.0 Hz, 1H, Ar-H), 7.23 (t, J = 7.5 Hz,
1H, Ar-H), 7.13 (d, J = 8.2 Hz, 2H, Ar-H), 7.06 (d, J = 8.2 Hz, 2H, Ar-H), 2.61 (q, J = 7.6 Hz,
2H, CH2), 1.23 (t, J = 7.6 Hz, 3H, CH3). 13C NMR (101 MHz, CDCl3): δ 141.3, 136.5, 135.9,
130.7, 129.2, 128.5, 126.3, 123.1, 120.9, 119.7, 111.8, 103.2, 28.4, 15.7. MS (ESI): 254 (M + H+,
100). Anal calcd for C16H15NS: C, 75.85; H, 5.97; N, 5.53; S, 12.65. Found C, 75.59; H, 5.63;
N, 5.71; S, 12.32.

3-((2,4-Dimethylphenyl)thio)-1H-indole (6af). Tawny amorphous solid. 1H NMR
(400 MHz, CDCl3): δ 8.28 (s, 1H, NH), 7.71 (d, J = 8.0 Hz, 1H, Ar-H), 7.45 (d, J = 8.0 Hz, 1H,
Ar-H), 7.41 (d, J = 2.6 Hz, 1H, Ar-H), 7.36 (t, J = 7.7 Hz, 1H, Ar-H), 7.27 (t, J = 7.7 Hz, 1H,
Ar-H), 7.09 (s, 1H, Ar-H), 6.83 (d, J = 8.0 Hz, 1H, Ar-H), 6.78 (d, J = 8.0 Hz, 1H, Ar-H), 2.59
(s, 3H, CH3), 2.34 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3): δ 136.6, 134.7, 134.6, 134.4,
130.9, 130.5, 129.3, 127.1, 126.1, 123.0, 120.8, 119.7, 111.6, 103.0, 20.7, 19.9. MS (ESI): 254
(M + H+, 100). Anal calcd for C16H15NS: C, 75.85; H, 5.97; N, 5.53; S, 12.65. Found C, 76.04;
H, 5.83; N, 5.66; S, 12.35.

3-((4-Nitrophenyl)thio)-1H-indole (6ag). Reddish brown amorphous solid. 1H NMR
(400 MHz, CDCl3): δ 8.86 (s, 1H, NH), 8.02 (d, J = 9.0 Hz, 2H, Ar-H), 7.55 (t, J = 7.7 Hz, 1H,
Ar-H), 7.54 (d, J = 2.6 Hz, 1H, Ar-H), 7.53 (d, J = 8.1 Hz, 1H, Ar-H), 7.34 (t, J = 8.1 Hz, 1H,
Ar-H), 7.22 (t, J = 7.7 Hz, 1H, Ar-H), 7.15 (d, J = 9.0 Hz, 2H, Ar-H). 13C NMR (101 MHz,
CDCl3): δ 150.0, 144.9, 136.7, 131.4, 128.5, 125.2, 123.9, 123.5, 121.4, 119.2, 112.1, 100.1. MS
(ESI): 271 (M + H+, 100). These assignments matched with those previously published [107].

3-(Naphthalen-2-ylthio)-1H-indole (6ah). Reddish brown amorphous solid. 1H NMR
(400 MHz, DMSO-d6): δ 11.74 (s, 1H, NH), 7.83 (d, J = 2.5 Hz, 1H, Ar-H), 7.77 (d, J = 8.6 Hz,
1H, Ar-H), 7.73 (d, J = 8.7 Hz, 1H, Ar-H), 7.61 (d, J = 7.5 Hz, 1H, Ar-H), 7.50 (d, J = 2.6 Hz,
1H, Ar-H), 7.48 (s, 1H, Ar-H), 7.40–7.33 (m, 3H, Ar-H), 7.20 (dd, J = 2.6 Hz, 1H, Ar-H), 7.17
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(t, J = 2.6 Hz, 1H, Ar-H), 7.03 (t, J = 7.5 Hz, 1H, Ar-H). 13C NMR (101 MHz, DMSO-d6): δ
137.3, 137.2, 133.7, 133.0, 131.3, 129.1, 128.8, 128.1, 127.1, 127.0, 125.7, 124.9, 123.3, 122.6,
120.6, 118.8, 112.9, 99.8. MS (ESI): 276 (M + H+, 100). These assignments matched with
those previously published [106].

5-Methoxy-3-((4-methoxyphenyl)thio)-1H-indole (6ai). Red amorphous solid. 1H
NMR (400 MHz, CDCl3): δ 8.42 (s, 1H, NH), 7.40 (d, J = 2.6 Hz, 1H, Ar-H), 7.28 (d, J = 8.8 Hz,
1H, Ar-H), 7.17 (dt, J = 2.6, 8.8 Hz, 2H, Ar-H), 7.13 (d, J = 2.4 Hz, 1H, Ar-H), 6.95
(dd, J = 8.8, 2.4 Hz, 1H, Ar-H), 6.80 (dt, J = 2.6, 8.8 Hz, 2H, Ar-H), 3.84 (s, 3H, OCH3),
3.76 (s, 3H, OCH3). 13C NMR (101 MHz, CDCl3): δ 157.8, 155.0, 131.5, 131.0, 129.9, 129.8,
128.3, 114.6, 113.4, 112.5, 103.7, 104.0, 55.9, 55.4. MS (ESI): 286 (M + H+, 100). These
assignments matched with those previously published [108].

3-(p-Tolylthio)-1H-pyrrolo[3,2-b]pyridine (6aj). Light yellow amorphous solid. 1H
NMR (400 MHz, DMSO-d6): δ 11.86 (s, 1H, NH), 8.36 (d, J = 4.0 Hz, 1H, Ar-H), 8.00
(d, J = 2.6 Hz, 1H, Ar-H), 7.86 (d, J = 8.1 Hz, 1H, Ar-H), 7.19 (dd, J = 8.1, 4.5 Hz, 1H, Ar-H),
7.00 (d, J = 7.2 Hz, 2H, Ar-H), 6.96 (d, J = 7.2 Hz, 2H, Ar-H), 2.19 (s, 3H, CH3). 13C NMR
(101 MHz, DMSO-d6): δ 146.0, 143.8, 136.2, 135.9, 134.5, 129.8, 129.7, 126.5, 120.0, 117.7,
101.6, 20.9. MS (ESI): 241 (M + H+, 100). Anal calcd for C14H12N2S: C, 69.97; H, 5.03; N,
11.66; S, 13.34. Found C, 70.21; H, 5.37; N, 11.31; S, 13.15.

2-((1H-indol-3-yl)thio)benzo[d]thiazole (6ak). Brown amorphous solid. 1H NMR
(400 MHz, DMSO-d6): δ 12.03 (s, 1H, NH), 8.04 (d, J = 2.8 Hz, 1H, Ar-H), 7.82 (dd, J = 2.8,
1.8 Hz, 1H, Ar-H), 7.80 (dd, J = 2.1, 1.0 Hz, 1H, Ar-H), 7.57 (d, J = 7.8 Hz, 1H, Ar-H), 7.56
(d, J = 7.8 Hz, 1H, Ar-H), 7.41 (dt, J = 1.2, 8.4 Hz, 1H, Ar-H), 7.30–7.23 (m, 2H, Ar-H), 7.15
(dt, J = 1.0, 7.1 Hz, 1H, Ar-H). 13C NMR (101 MHz, DMSO-d6): δ 173.8, 154.6, 137.2, 135.4,
134.4, 128.4, 126.6, 124.4, 123.1, 122.1, 121.6, 121.3, 118.5, 113.1, 97.7. MS (ESI): 283 (M + H+,
100). These assignments matched with those previously published [101].

3-((1-Methyl-1H-imidazol-2-yl)thio)-1H-indole (6al). Yellow amorphous solid. 1H
NMR (400 MHz, DMSO-d6): δ 11.51 (s, 1H, NH), 7.69 (s, 1H, Ar-H), 7.60 (d, J = 7.6 Hz, 1H,
Ar-H), 7.39 (d, J = 7.6 Hz, 1H, Ar-H), 7.16 (s, 1H, Ar-H), 7.10 (t, J = 7.1 Hz, 1H, Ar-H), 7.04 (t,
J = 7.1 Hz, 1H, Ar-H), 6.85 (s, 1H, Ar-H), 3.66 (s, 3H, CH3). 13C NMR (101 MHz, DMSO-d6):
δ 140.0, 136.7, 131.0, 128.9, 128.5, 124.0, 122.4, 120.3, 119.1, 112.5, 100.6, 34.0. MS (ESI): 230
(M + H+, 100). Anal calcd for C12H11N3S: C, 62.86; H, 4.84; N, 18.33; S, 13.98. Found C,
63.10; H, 5.07; N, 18.05; S, 13.61.

2-((1H-indol-3-yl)thio)-1,3,4-thiadiazole (6am). Yellow amorphous solid. 1H NMR
(400 MHz, DMSO-d6): δ 11.98 (s, 1H, NH), 9.29 (s, 1H, Ar-H), 8.00 (d, J = 2.8 Hz, 1H, Ar-H),
7.56 (d, J = 8.0 Hz, 1H, Ar-H), 7.53 (d, J = 7.9 Hz, 1H, Ar-H), 7.25 (dt, J = 1.0, 8.0 Hz, 1H,
Ar-H), 7.16 (d, J = 7.9 Hz, 1H, Ar-H). 13C NMR (101 MHz, DMSO-d6): δ 173.0, 154.3, 137.2,
133.6, 127.8, 123.2, 121.3, 118.4, 113.2, 98.6. MS (ESI): 234 (M + H+, 100). Anal calcd for
C10H7N3S2: C, 51.48; H, 3.02; N, 18.01; S, 27.48. Found C, 51.83; H, 3.39; N, 17.85; S, 27.17.

2-((1H-indol-3-yl)thio)-5-methyl-1,3,4-thiadiazole (6an). Yellow amorphous solid. 1H
NMR (400 MHz, DMSO-d6): δ 11.95 (s, 1H, NH), 7.96 (d, J = 2.7 Hz, 1H, Ar-H), 7.55
(d, J = 2.7 Hz, 1H, Ar-H), 7.53 (d, J = 2.7 Hz, 1H, Ar-H), 7.24 (d, J = 7.5 Hz, 1H, Ar-H), 7.16
(d, J = 7.5 Hz, 1H, Ar-H), 2.50 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3): δ 172.4, 165.7,
137.1, 133.5, 128.0, 123.1, 121.3, 118.4, 113.1, 98.8, 15.6. MS (ESI): 248 (M + H+, 100). Anal
calcd for C11H9N3S2: C, 53.42; H, 3.67; N, 16.99; S, 25.92. Found C, 53.76; H, 3.92; N, 16.84;
S, 25.59.

3-((1-Methyl-1H-tetrazol-5-yl)thio)-1H-indole (6ao). Pink amorphous solid. 1H NMR
(400 MHz, DMSO-d6): δ 11.85 (s, 1H, NH), 7.94 (d, J = 2.7 Hz, 1H, Ar-H), 7.54 (d, J = 8.7 Hz,
1H, Ar-H), 7.51 (d, J = 8.7 Hz, 1H, Ar-H), 7.22 (d, J = 7.2 Hz, 1H, Ar-H), 7.13 (d, J = 7.2 Hz,
1H, Ar-H), 4.03 (s, 3H, NCH3). 13C NMR (101 MHz, DMSO-d6): δ 153.8, 136.9, 133.5, 128.8,
122.9, 121.0, 118.6, 112.9, 94.5, 34.5. MS (ESI): 232 (M + H+, 100). Anal calcd for C10H9N5S:
C, 51.93; H, 3.92; N, 30.28; S, 13.86. Found C, 52.20; H, 4.28; N, 29.91; S, 13.93.

3-Thiocyanato-1H-indole (7a). White amorphous solid. 1H NMR (400 MHz, CDCl3): δ
8.76 (s, 1H, NH), 7.83 (dd, J = 5.9, 3.1 Hz, 1H, Ar-H), 7.52 (d, J = 2.8 Hz, 1H, Ar-H), 7.45 (dt,
J = 5.9, 3.1 Hz, 1H, Ar-H), 7.35 (t, J = 3.1 Hz, 1H, Ar-H), 7.33 (t, J = 3.1 Hz, 1H, Ar-H). 13C
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NMR (101 MHz, CDCl3): δ 136.0, 131.0, 127.7, 123.9, 121.9, 118.8, 112.1, 111.9, 92.3. MS (ESI):
175 (M + H+, 100). These assignments matched with those previously published [109].

5-Chloro-3-thiocyanato-1-H-indole (7b). Yellow amorphous solid. 1H NMR (400 MHz,
DMSO-d6): δ 12.20 (s, 1H, NH), 8.05 (s, 1H, Ar-H), 7.66 (s, 1H, Ar-H), 7.55 (d, J = 7.7 Hz, 1H,
Ar-H), 7.26 (d, J = 7.7 Hz, 1H, Ar-H). 13C NMR (101 MHz, DMSO-d6): δ 135.3, 135.2, 129.1,
126.4, 123.5, 117.4, 115.0, 112.5, 89.9. MS (ESI): 209 (M + H+, 100), 211 (M + H+, 32). These
assignments matched with those previously published [110].

5-Methyl-3-thiocyanato-1-H-indole (7c). White amorphous solid. 1H NMR (400 MHz,
DMSO-d6): δ 12.00 (s, 1H, NH), 7.94 (d, J = 2.9 Hz, 1H, Ar-H), 7.35 (d, J = 8.2 Hz, 1H, Ar-H),
7.12 (t, J = 8.2 Hz, 1H, Ar-H), 6.93 (d, J = 7.1 Hz, 1H, Ar-H), 2.85 (s, 3H, CH3). 13C NMR
(101 MHz, DMSO-d6): δ 137.2, 134.6, 129.9, 125.7, 123.4, 123.0, 114.3, 111.3, 89.8, 19.2. MS
(ESI): 189 (M + H+, 100). These assignments matched with those previously published [111].

5-Methoxy-3-thiocyanato-1H-indole (7d). White amorphous solid. 1H NMR (400 MHz,
CDCl3): δ 8.55 (s, 1H, NH), 7.67 (d, J = 8.7 Hz, 1H, Ar-H), 7.40 (d, J = 2.7 Hz, 1H, Ar-H), 6.97
(dd, J = 8.7, 2.1 Hz, 1H, Ar-H), 6.90 (d, J = 2.1 Hz, 1H, Ar-H), 3.86 (s, 3H, OCH3). 13C NMR
(101 MHz, CDCl3): δ 157.7, 136.9, 129.8, 121.8, 119.5, 112.1, 111.9, 95.2, 92.3, 55.7. MS (ESI):
205 (M + H+, 100). These assignments matched with those previously published [109].

3-Thiocyanato-1-H-indole-5-carbonitrile (7e). Yellow amorphous solid. 1H NMR
(400 MHz, DMSO-d6): δ 12.52 (s, 1H, NH), 8.23 (d, J = 2.6 Hz, 1H, Ar-H), 8.21 (s, 1H, Ar-H),
7.71 (d, J = 8.5 Hz, 1H, Ar-H), 7.64 (dd, J = 8.6, 2.6 Hz, 1H, Ar-H). 13C NMR (101 MHz,
DMSO-d6): δ 143.4, 141.1, 132.5, 130.9, 128.6, 125.1, 119.5, 117.2, 108.7, 96.8. MS (ESI): 200
(M + H+, 100). These assignments matched with those previously published [110].

5-Nitro-3-thiocyanato-1-H-indole (7f). Yellow amorphous solid. 1H NMR (400 MHz,
DMSO-d6): δ 12.63 (s, 1H, NH), 8.51 (d, J = 1.8 Hz, 1H, Ar-H), 8.27 (s, 1H, Ar-H), 8.12
(dd, J = 9.0, 1.8 Hz, 1H, Ar-H), 7.70 (d, J = 9.0 Hz, 1H, Ar-H). 13C NMR (101 MHz, DMSO-
d6): δ 142.6, 140.0, 137.5, 127.3, 118.6, 114.8, 114.1, 112.4, 93.6. MS (ESI): 220 (M + H+, 100).
These assignments matched with those previously published [110].

4-Methyl-3-thiocyanato-1-H-indole (7g). White amorphous solid. 1H NMR (400 MHz,
DMSO-d6): δ 11.91 (s, 1H, NH), 7.92 (d, J = 2.9 Hz, 1H, Ar-H), 7.46 (s, 1H, Ar-H), 7.43
(d, J = 8.3 Hz, 1H, Ar-H), 7.10 (dd, J = 8.3, 1.1 Hz, 1H, Ar-H), 2.45 (s, 3H, CH3). 13C NMR
(101 MHz, DMSO-d6): δ 135.1, 133.5, 130.5, 128.2, 125.0, 117.7, 113.0, 112.8, 89.0, 21.6. MS
(ESI): 189 (M + H+, 100). These assignments matched with those previously published [110].

3-Thiocyanato-1H-pyrrolo[2,3-b]pyridine (7h). White amorphous solid. 1H NMR
(400 MHz, DMSO): δ 12.62 (s, 1H, NH), 8.40 (d, J = 4.5 Hz, 1H, Ar-H), 8.18 (s, 1H, Ar-H),
8.13 (d, J = 7.8 Hz, 1H, Ar-H), 7.31 (dd, J = 7.8, 4.7 Hz, 1H, Ar-H). 13C NMR (101 MHz,
DMSO): δ 148.8, 145.0, 134.4, 127.0, 120.3, 117.8, 112.6, 89.5. MS (ESI): 176 (M + H+, 100).
These assignments matched with those previously published [112].

3-(Phenylselanyl)-1H-indole (9a). Yellow amorphous solid. 1H NMR (400 MHz,
CDCl3): δ 8.43 (s, 1H, NH), 7.69 (d, J = 7.9 Hz, 1H, Ar-H), 7.49 (d, J = 2.5 Hz, 1H, Ar-H),
7.46 (d, J = 8.2 Hz, 1H, Ar-H), 7.33–7.27 (m, 3H, Ar-H), 7.24–7.12 (m, 4H, Ar-H). 13C NMR
(101 MHz, CDCl3): δ 136.4, 133.9, 131.3, 130.0, 129.0, 128.7, 125.6, 123.0, 120.9, 120.4, 111.4,
98.2. MS (ESI): 274 (M + H+, 100). These assignments matched with those previously
published [30].

2-Methyl-3-(phenylselanyl)-1H-indole (9b). Yellow amorphous solid. 1H NMR (400 MHz,
CDCl3): δ 8.20 (s, 1H, NH), 7.64 (d, J = 7.7 Hz, 1H, Ar-H), 7.36 (d, J = 7.9 Hz, 1H, Ar-H), 7.26
(dd, J = 3.5, 1.4 Hz, 1H, Ar-H), 7.23 (dd, J = 3.5, 1.4 Hz, 2H, Ar-H), 7.20 (d, J = 4.1 Hz, 1H, Ar-H),
7.19–7.12 (m, 3H, Ar-H), 2.56 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3): δ 141.0, 135.8, 134.0,
131.3, 129.0, 128.4, 125.5, 122.2, 120.7, 119.8, 110.6, 96.2, 13.2. MS (ESI): 288 (M + H+, 100). These
assignments matched with those previously published [113].

5-Methyl-3-(phenylselanyl)-1H-indole (9c). Yellow amorphous solid. 1H NMR (400 MHz,
CDCl3): δ 8.30 (s, 1H, NH), 7.51 (d, J = 0.5 Hz, 1H, Ar-H), 7.44 (d, J = 2.5 Hz, 1H, Ar-H), 7.35
(d, J = 8.3 Hz, 1H, Ar-H), 7.31–7.28 (m, 2H, Ar-H), 7.22–7.14 (m, 4H, Ar-H), 2.49 (s, 3H, CH3).
13C NMR (101 MHz, CDCl3): δ 134.7, 134.1, 131.5, 130.4, 130.3, 129.0, 128.6, 125.6, 124.7, 119.9,
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111.1, 97.4, 21.5. MS (ESI): 288 (M + H+, 100). These assignments matched with those previously
published [32].

5-Methoxy-3-(phenylselanyl)-1H-indole (9d). Yellow amorphous solid. 1H NMR
(400 MHz, CDCl3): δ 8.42 (s, 1H, NH), 7.44 (d, J = 2.5 Hz, 1H, Ar-H), 7.33 (d, J = 8.8 Hz,
1H, Ar-H), 7.30 (dd, J = 8.2, 1.5 Hz, 1H, Ar-H), 7.29 (s, 1H, Ar-H), 7.21–7.13 (m, 4H, Ar-H),
6.97 (dd, J = 8.8, 2.5 Hz, 1H, Ar-H), 3.85 (s, 3H, OCH3). 13C NMR (101 MHz, CDCl3): δ
155.1, 134.0, 132.0, 131.4, 130.8, 129.1, 128.5, 125.6, 113.5, 112.4, 101.6, 97.5, 55.9. MS (ESI):
304 (M + H+, 100). These assignments matched with those previously published [113].

4. Conclusions

In summary, we have developed a practical GO-promoted and transition metal-free
light induced methodology for the construction of a carbon-chalcogen (S and Se) bond
that provides 3-chalcogenyl indoles in good to excellent yields under open air. The key
features of this simple and robust protocol are: (1) metal-free and iodine-free conditions; (2)
easy-to-handle oxidant; (3) open to the air; (4) atom-economic; (5) performed on a gram-
scale; (6) regioselective; and (7) applicable to different sources of organochalcogenides
with substituted indoles for this transformation. Moreover, very few methods report the
combination of GO and light which works in synergy to efficiently promote the organic
reactions [83].
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