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Abstract: Presently, there is a high demand for nutritionally enhanced foods, so it is a current
challenge to look at new raw food sources that can supplement beneficially the human diet. The
nutritional profile and key secondary metabolites of red seaweeds (Rhodophyta) are gaining interest
because of this challenge. In this context, the possible use of the red seaweed Chondracanthus teedei var.
lusitanicus (Gigartinales) as a novel nutraceutical source was investigated. As a result, we highlight
the high mineral content of this seaweed, representing 29.35 g 100 g−1 of its dry weight (DW). Despite
the low levels of calcium and phosphorus (0.26 and 0.20 g 100 g−1 DW, respectively), this seaweed is
an interesting source of nitrogen and potassium (2.13 and 2.29 g−1 DW, accordingly). Furthermore,
the high content of carbohydrates (56.03 g 100 g−1 DW), which acts as dietary fibers, confers a low
caloric content of this raw food source. Thus, this study demonstrates that C. teedei var. lusitanicus is
in fact an unexploited potential resource with the capability to provide key minerals to the human
diet with promising nutraceutical properties.

Keywords: red seaweed; nutritional characterization; nutraceutical; bioactive compounds

1. Introduction

The world’s population is rapidly increasing, placing pressure on traditional food
sources, and causing adverse impacts all over the world. As a result, there is a need to dis-
cover new raw food sources that can provide vital nutrients and minerals to humans to aid
body cell function [1]. Due to the overexploitation of arable land, seaweed has potential for
food supply, as it does not compete with terrestrial plants, and can be produced in different
systems such as in depleted salt pans, estuarine water, or offshore farming systems [2].

There are several records that show that seaweed has been incorporated in the
daily diet of coastal populations and cultures in Europe, Japan, and China since ancient
times [3–6]. Currently, Europe consumes nearly 97 tons of seaweeds each year, of which
the majority are imported [7].

Allied to the need to provide novel nutritious and healthy food sources to ensure
global food security, seaweeds are being explored to be included in a list of possible food
sources for animal and human diets [8,9].

Red seaweeds are recognized as a possible source of several unique metabolites with
a variety of health benefits, in addition to their considerable contribution to the nutritional
and industrial supplies [10]. For example, algal polysaccharides contribute as low caloric
food sources, acting as anti-obesity agents, since these compounds are not digested by the
human organism and provides the sense of satiety [11]. Furthermore, seaweeds synthesize
essential fatty acids and essential amino acids, which are only acquired through the daily
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diet [12]. Because macroalgae are so rich in a variety of minerals that are needed for human
health, red seaweeds are seen as valuable resources to be used as nutraceuticals [13,14].
Structural functions, such as tissue and bone synthesis, as well as regulatory functions, such
as enzymatic activity, oxygen transport, and neurotransmission are supported by minerals
acquired through the daily diet [12–15]. In fact, chronic diseases, such as obesity, diabetes,
cardiovascular diseases, and the increased risk of certain types of cancers are related to
consumption patterns and dietary factors [16]. Mineral elements are connected with organic
substances, so the lack in one mineral will have an impact on the functioning of others [17].
For this reason, adequate mineral intake is needed to maintain the proper functioning of
the human organism and cell homeostasis [12,16]. Minerals, such as calcium, magnesium,
phosphorus, sodium, and potassium are required in larger quantities than trace minerals,
such as iron, zinc, or copper [17]. Nevertheless, the ingestion of these trace elements
is equally important to other minerals [18]. A favorable balance of mineral elements is
required for the body to generate new tissue during growth, pregnancy, lactation, and
other specific stress situations [17]. Moreover, the requirements of minerals intake vary
according to the age and gender [17–19]. For instance, women during pregnancy are
more likely to have low iron and calcium levels because their food consumption does
not always match their needs, putting them at risk of developing anemia or osteoporosis,
respectively [16]. Furthermore, due to poor-quality diets, diseases and therapies with an
impact on a nutrient absorption or use, many people, particularly the senior population,
are exposed to mineral deficiencies [18].

However, more crucial than emphasizing the health benefits of consuming seaweeds,
is ensuring its long-term production through aquaculture while preserving its nutritional
features [1,2]. Novel food sources, such as seaweeds, do not compete with ecological niches
(sustainable food source), must present an important nutritional content in order to be
used as nutraceutical output in the human diet [1], to reduce disease incidence, such as
cancer, cardiovascular-associated diseases and problems related with undernourishment [1].
However, in the seas there are also wild and unstudied seaweeds that could be harmful for
human health, when consumed, due to their retention of heavy metals, toxins and noxious
chemicals, leading to the need for monitoring their production and/or harvesting [2,14].

One of the lesser known seaweeds, Chondracanthus teedei, has already proved to be
a viable food source, and a well-adapted species that can be produced through aquacul-
ture [20,21], showing that may be grown with consistency in terms of nutrients, assuring
as a safe food product and, decreasing the risk of dangerous compounds ingestion [1,2].

The red seaweed Chondracanthus teedei var. lusitanicus (Gigartinales), which inhabits
the Portuguese sea, is a variation of the species Chondracanthus teedei that can be found
in the Atlantic Ocean, Mediterranean and Black Sea [22]. C. teedei var. lusitanicus (J.E. De
Mesquita Rodrigues) Bárbara and Cremades 1996 (Figure 1) is a cosmopolitan species
typically present on lower intertidal and shallow subtidal habitats, can be found in semi-
exposed or protected areas, tolerates mud and/or sand [23]. Its biochemical, but not
nutritional, composition varies depending on life cycle stage, geographical location, and
the harvesting season [24].

It is highlighted in the literature that the nutritional potential of C. teedei in the human
diet [1] but less known in C. teedei var. lusitanicus. C. teedei var. lusitanicus has already
shown some fascinating properties, synthesizing sulfated polysaccharides (carrageenans)
with antifungal activity [24], considered to be, potentially, an edible seaweed well-suited for
consumption either fresh or processed [25] and sustainably produced by aquaculture [26].
For this reason, the aim of this study was to assess the nutritional profile of C. teedei var.
lusitanicus, collected from its natural habitat, and to evaluate whether it has the potential to
be a nutraceutical food source for humans.



Mar. Drugs 2021, 19, 570 3 of 19Mar. Drugs 2021, 19, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Chondrachantus teedei var. lusitanicus (fructified female gametophyte) in Buarcos Bay 
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Figure 1. Chondrachantus teedei var. lusitanicus (fructified female gametophyte) in Buarcos Bay
(Figueira da Foz, Portugal).

2. Results
2.1. Macro- and Micro-Element Profile

The red seaweed C. teedei var. lusitanicus has shown an interesting macro- and micro-
element profile (Table 1), exhibiting a high content in nitrogen and potassium (2.13 and
2.29 g 100 g−1, respectively), comparatively with the content of copper, zinc and manganese
(3.0 × 10−4, 2.4 × 10−3 and 1.2 × 10−3 g 100 g−1, accordingly), which were the lowest
values in the elemental analysis of this seaweed biomass.

Table 1. Macro- and micro-elements characterization of the dried biomass of C. teedei var. lusitanicus.
Results are expressed in mean ± standard deviation. Nutritional value in 7 g of C. teedei var. lusitanicus
according to the established Dietary Reference Intake (DRI) [1,27]. NA—Non applicable.

Macro- and Micro-Elements g 100 g−1 7 g of C. teedei var.
lusitanicus (g) DRI (%)

Nitrogen 2.13 ±0.01 NA NA
Phosphorus 0.20 ± 0.01 1.4 × 10−2 2
Calcium 0.26 ± 0.03 1.82 × 10−2 2.27
Magnesium 0.86 ± 0.02 6.02 × 10−2 16.05
Potassium 2.29 ± 0.07 1.60 × 10−1 8.02
Iron 0.02 ± 0.03 1.28 × 10−3 9.15
Copper 3.0 × 10−4 ± 3.0 × 10−5 2.33 × 10−5 2.33
Zinc 2.4 × 10−3 ± 1.0 × 10−4 1.68 × 10−4 1.68
Manganese 1.2 × 10−3 ± 1.0 × 10−5 8.40 × 10−5 4.20

2.2. Nutritional Evaluation

When the nutritional evaluation (Table 2) of the fresh (FW) and dried (DW) C. teedei
var. lusitanicus biomass weight was analyzed, it was observed that the DW is more
encouraging from a nutritional aspect. A major part of this seaweed is composed of water.
Meanwhile, it is highlighted that among the nutritional components analyzed that both
FW and DW, contain a high content of crude carbohydrate presenting respectively 7.55 and
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56.03 g 100 g−1. FW and DW also showed to be a significant source of protein (1.54 and
11.42 g 100 g−1) and minerals (3.96 and 29.35 g 100 g−1). It was also observed that the ratio
DW:FW of C. teedei var. lusitanicus is 1:7, for all nutritional parameters, meaning that 1 g of
dried algal biomass corresponds, nutritionally, to 7.4 g of fresh seaweed.

Table 2. Nutritional characterization of the fresh (FW) and dried (DW) C. teedei var. lusitanicus biomass
weight. Results are expressed in mean ± standard deviation. Nutritional value in 7 g of C. teedei var.
lusitanicus according to the established Dietary Reference Intake (DRI) [1,27]. NA—Non applicable.

C. teedei var. lusitanicus
(g 100 g−1)

7 g of C. teedei
var. lusitanicus

(g)

DRI
(%)

FW DW DW:FW
Moisture 86.52 ± 0.18 NA NA NA NA
Ash 3.96 ± 0.07 29.35 ± 0.13 1:7.4 2.1 NA
Total lipid 0.19 ± 0.01 1.42 ± 0.01 1:7.4 0.10 0.14
Fiber 0.24 ± 0.01 1.78 ± 0.09 1:7.4 0.13 0.49
Protein 1.54 ± 0.01 11.42 ± 0.01 1:7.4 0.80 1.59
Total carbohydrate 7.55 ± 0.12 56.03 ± 0.05 1:7.4 3.98 1.50
Energy (Kcal 100 g−1) 38 ± 0.47 283 ± 0.23 1:7.4 19.81 * 0.99

* Measured in total Kcal.

2.3. Polyssacharides from C. teedei var. lusitanicus

Carbohydrates are the most abundant nutrient in C. teedei var. lusitanicus (Table 3),
emphasizing the polysaccharide content of this seaweed. When compared all samples,
the female and male gametophytes of C. teedei var. lusitanicus produced the highest
polysaccharide quantity, 40.9 and 42.1%, respectively.

Table 3. Polysaccharide quantification and nutritional value in 7 g of C. teedei var. lusitanicus
according to the established Dietary Reference Intake (DRI) [1,27].

Chondracanthus teedei var.
lusitanicus Life Cycle Phase DW (%) 7 g of C. teedei var.

lusitanicus (g) DRI (%)

Female gametophyte 40.9 ± 1.5 2.86 11.45
Male gametophyte 42.1 ± 4.5 2.95 11.79
Tetrasporophyte 28.1 ± 8.1 1.97 7.87

2.3.1. FTIR-ATR

The isolated polysaccharides were examined using FTIR-ATR. This spectroscopic ap-
proach enabled quick, nondestructive polysaccharide characterization with a small amount
of sample [28]. The bibliography was used to assist the collection of the spectra [29,30].

Along with the presence of three shoulder peaks at 905 cm−1, 930 cm−1, and 1070 cm−1

in the FTIR spectrum, which is associated with the presence of theta-carrageenan, the
C. teedei var. lusitanicus tetrasporophyte (Figure 2 and Table 4) has a hybrid xi/theta
carrageenan [25,29]. Moreover, the tetrasporophyte phase of C. teedei var. lusitanicus, has a
large peak in 830 cm−1, which is typical of two principal peaks near the xi-carrageenan.
The large and prominent peak in this case reveals that this life cycle phase of C. teedei var.
lusitanicus tetrasporophyte (Figure 3A) possesses also an xi/theta carrageenan [25]. The
FTIR-ATR spectra of male and female C. teedei var. lusitanicus gametophytes (Figure 2B,C)
were identical, indicating the existence of a hybrid kappa/iota carrageenan (present in the
peaks: kappa: 930 and 845 cm−1; iota: 805 cm−1).
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Figure 2. FTIR-ATR spectra of the carrageenophytes: A: Chondracanthus teedei var. lusitanicus
tetrasporophyte, B: C. teedei var. lusitanicus male and C: C. teedei var. lusitanicus female gametophytes.

Table 4. FTIR-ATR bands identification and characterization of the C. teedei var lusitanicus (CTGF-female
gametophyte, CTGM- male gametophyte, CTT- tetrasporophyte), based on the literature [30,31].

Wave Number
(cm−1) Bound Compound CTGF CTGM CTT

805 C–O–SO3 on C2 of
3,6-anhydrogalactose DA2S + + -

825–830 C–O–SO3 on C2 of galactose G/D2S - - +
845 D-galactose-4-sulfate G4S + + -
867 C–O–SO3 on C6 of galactose G/D6S + + -

890–900 Unsulfated b-D-galactose G/D + sh sh

905 C–O–SO3 on C2 of
3,6-anhydrogalactose DA2S sh sh sh

930 C–O of 3,6-anhydrogalactose
(agar/carrageenan) (DA) + + sh

970–975 Galactose G/D + + -
1012 Sulfated esters S=O + + +
1070 C–O of 3,6-anhydrogalactose DA + + sh
1100 Sulfated esters S=O + + +

1240–1260 Sulfated esters S=O + + +
Sh—shoulder (where the peak shows intensity but not enough to be designated a peak because of the surrounding
peak intensities).
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Figure 3. 1H-NMR spectra of carrageenans extracted from Chondracanthus teedei var. lusitanicus: A (tetrasporophyte).
B (female gametophyte), C (male gametophyte).

2.3.2. 1H-RMN

The anomeric protons zone of the 1H-NMR (Figure 3) spectra of native and alkali-
modified carrageenan’s from C. teedei var. lusitanicus female and male gametophytes
revealed two strong signals at 5.11 ppm and 5.32 ppm, respectively. The anomeric pro-
tons of 3,6-anhydro-α-D-galactose (DA; kappa-carrageenan) and 2-sulfated 3,6-anhydro-α-
D-galactose (DA2S; iota-carrageenan) are represented by these signals. A weaker sig-
nal with a chemical shift of 5.37 ppm was detected in the spectrum of the alkaline-
extracted female gametophyte sample, in addition to the carrageenan signals. This signal
has been attributed to floridean starch, a common and natural contaminant found in
carrageenan samples [32–35].

2.3.3. 13C-RMN

The anomeric region of the 13C-NMR spectra of alkaline-extracted carrageenan (fe-
male and male gametophytes) contains three significant peaks (Figure 4B,C): 102.5 ppm
corresponds to anomeric carbon of β-D-galactose-4-sulfate residues (G4S) found in both
kappa- and iota carrageenans; 95.3 ppm corresponds to anomeric carbon of 3-6-anhydro-
galactose (DA) in kappa-carrageenan; and 92.1 ppm corresponds to anomeric carbon of
anhydro-galactose-2-sulfate (DA2S) [32,34–36].

Figure 4T show signals at 103.3 and 92.8 ppm, 100.4 and 95.7 ppm that might be
ascribed to the anomeric carbons of xi and theta-carrageenan, respectively, in the 13C-NMR
spectra of native and alkaline-extracted carrageenan from tetrasporophytes [37,38].
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3. Discussion

Among the algal phyla or classes, Chlorophyta (green), Phaeophyceae (brown) and
Rhodophyta (red), the red seaweeds phyla contain the largest number of species [23].
Hereby, it is highlighted the nutraceutical potential that this phylum/class represents [39].
Seaweeds have been seen as a feedstock for bioactive molecules that can be incorporated in
the daily diet as a supplement in order to promote human health, thus being considered
nutraceutical food products [40].

The incorporation of the red seaweed Chondracanthus teedei in the daily diet has been
recorded in some coastal areas of Southern Europe [41]. In some other parts of the globe,
C. teedei revealed to be a potential food supplement with nutraceutical potential: so why not
C. teedei var. lusitanicus? For instance, in Brazil, the dried biomass of C. teedei (at 45 ◦C for
48 h) revealed to be constituted by 14.66% of protein, 2.21% of fibers, 1.82% of total lipids, a
mineral content of 28.68% and a moisture content of 86.73% [42]. A study conducted with
C. teedei were, in overall, higher than those recorded in the current research for C. teedei
var. lusitanicus, which may be attributable to differences in geographical harvesting sites,
different physical-chemical parameters of the seawater, abiotic and biotic factors interaction,
or even differences in seaweed processing, such as the drying process [43–45].

Previous findings already showed that the biochemical characterization of C. teedei
can vary within the geographical area and the harvest season [46], particularly the nitrogen
content, which suffers a decrease during the summer and autumn [21]. Indeed, several
factors can influence nutrient uptake (particularly nitrogen and phosphorus), such as light,
temperature, hydrodynamics, desiccation, and salinity [47,48]. In fact, researchers found
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that C. teedei var. lusitanicus harvested at Cabo Mondego (Figueira da Foz) in the summer
of 2019 showed a lower protein content (0.2 g 100 g−1 DW) [49], which may be due to the
different seaweed processing, particularly the drying process [50]. Because seaweeds have
a low lipid content, they are considered a low-fat food [51]. Furthermore, it was discovered
that the lipid profile of this seaweed can change substantially in terms of both qualitative
and quantitative variation depending on its life cycle phase [52,53].

Within the threshold set by the competent authorities, the daily reference intakes of
minerals and trace elements established by the European Parliament and the Council of
European Union, as well as the recommended dietary allowances and adequate intakes
established by the United States of America, C. teedei var. lusitanicus represents an ade-
quate mineral source (namely of nitrogen, phosphorus, calcium, and magnesium) [54,55].
However, according to these results, a 100 g portion of this seaweed can in fact exceed
the recommended dietary allowance and the adequate intake trace elements, particularly
iron (0.014 g—EU; 0.008 g—USA), copper (0.001 g—EU; 0.0009 g—USA), zinc (0.01 g—EU;
0.011 g—USA) and manganese (0.002 g—EU; 0.0023 g—USA) [54,55]. Thus, the recom-
mended intake is about 7 g (DW) of this seaweed species per day, due to the high content
of these micronutrients. Particularly the iron content, which only 7 g of DW seaweed are
near 9.15% of the iron daily intake (Table 1). This is consistent with the literature, which
states that the maximum amount of dried seaweeds that may be consumed with favorable
effects for human health is roughly 7 g, after which the normal function of cell mechanisms
can be directly impacted [14,56].

The supply of macrominerals, such as calcium, magnesium, phosphorus, sodium, and
potassium are required in larger amounts and needed for the proper functioning of the
human body [17].

For instance, calcium is essential for several vital functions, since this mineral is a
structural component of bones and teeth, cell membrane, and it is involved in neuromus-
cular activity, endocrine secretory function, and blood coagulation [57]. For this reason,
the lack of this mineral can be reflected on low bone density, which could lead to the
development of osteoporosis [57].

The lack of phosphorus can lead to the deterioration of mental function and in severe
cases the patients can develop osteomalacia [57,58]. This happens because phosphorus is
involved on regulatory processes, such as energy metabolism, pH maintenance, glycolysis,
muscle, and nerve function, but is also a structural element on bone and cell membrane
synthesis [57]. While sodium, as an electrolyte, has a regulatory role on the human body,
regulating the water distribution, and being involved on the active transport of molecules
through the cellular membrane [59,60]. For this reason, a diet poor in sodium can lead to
dehydration by reduction of the body fluid volume [59,60].

Additionally, magnesium is a key player for human cells as cofactor for more than
300 enzymes that regulates various biochemical processes in the human body, including
protein synthesis, muscle and nerve function, blood glucose control, and blood pressure reg-
ulation [61,62]. Furthermore, 69 g of spinach or 105 g of kale contains the same magnesium
content as this seaweed [63].

Potassium is one of the major intracellular cations, present in all human body cells
because their inherent requirement for the cell homeostasis, as intracellular fluid regulator
(osmosis process) and to intermediate the transmembrane electrochemical gradients (ner-
vous signaling pathways and muscular function) [59,64]. Additionally, potassium helps to
maintain the extracellular fluids, such as the plasma and blood [59,65]. This seaweed DRI
is similar to 17.60 g of beet greens or 34.33 g of spinach [66].

As it shown in Tables 1 and 2, this seaweed is also a rich supply of microminerals:
iron, manganese, copper and zinc, as well as dietary fibers and protein, displaying a strong
nutraceutical source of key elements and compounds for human welfare [1].

Only 7 g DW of C. teedei var. lusitanicus contains the same amount of iron as 226 g of
broccoli or potato [67], this is significant since iron is required for the metabolism of many
human proteins, including enzymes and hemoglobin (responsible for oxygen and carbon
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dioxide transportation system) [68]. Furthermore, disorders caused by a shortage of iron
(e.g., anemia) can be alleviated by iron supplementation in the daily diet [69].

The manganese content of C. teedei var. lusitanicus is equivalent to 8.4 g sweet
potato or 7.6 g brown rice [70]. Manganese is an important cofactor for enzymes such
as manganese superoxide dismutase, arginase, and pyruvate carboxylase [71,72]. Fur-
thermore, this mineral is involved in a variety of metabolic processes, such as amino
acid, cholesterol, glucose, and carbohydrate metabolisms. Additionally, manganese is
involved in the scavenging of reactive oxygen species, bone formation, reproduction, and
immunological response [73–75].

Just 7 g of this seaweed contains the same amount of copper as 7.6 g of sweet potato
or 0.95 g of sesame seeds [76], being a necessary micronutrient due to its involvement in
numerous biological processes such as antioxidant defense, neuropeptide production and
immunological function [77,78].

Zinc is a critical microelement that plays a regulatory and structural role in cell
membrane stabilization, and only 7 g of this seaweed can provide the same amount of zinc
as 12.9 g of Shiitake Mushrooms or 21 g of spinach [79].

Although some minerals are beneficial at low concentrations, they are extremely
dangerous at medium concentrations, even causing human mortality. As a result, in order
to attain the greatest advantage, this seaweed must be ingested in small doses, as indicated,
making it a food supplement containing essential minerals with nutraceutical potential for
human health [1].

The fiber level of 7 g of C. teedei var. lusitanicus is equivalent to 6 g of broccoli or 4 g
of sweet potato [67]. The fiber in this seaweed is primarily carrageenan [25], and the key
benefits are that it is digestible and swells in aqueous solution. As a result, carrageenan in-
creases satiety and weight loss by decreasing stomach discharge and so providing improved
glycemic control (reducing hyperglycemia-related illnesses). Furthermore, fibers have a
favorable impact on the microbiome and gut transit in the gastrointestinal system [80].

Proteins are the fundamental building blocks of human cells, as well as the precursors
of enzymes, antibodies, and hormones [81]. Hence, it is highlighted that the protein content
in 7 g of the studied seaweed can replace 37 g of asparagus or 29 g of broccoli in a meal [67].

Carbohydrates are unique to each taxonomic group of seaweeds; and are also the
major components of seaweeds biomass, which the human digestive system does not
digest (acting as dietary fibers) [1]. However, seaweeds contain monosaccharides that
despite having a low proportion, provide energy to human cells, to work and sustain their
metabolism and regular functioning [1].

This nutritional comparative analysis highlights the quality of C. teedei var. lusitanicus
as a nutritious food source, which has a potential to be used as a food supplement to enrich
the deficiency of several macro and micronutrients in a typical diet. This seaweed can also
be used as a food nutrient source for people that are living in developing countries as well
as an alternative source of several minerals required for human cell homeostasis [82].

Important bioactive compounds that must be present in the human diet, such as
proteins, lipids, carbohydrates, and minerals, are usually acquired through the vegetable
consumption. Nevertheless, our results show that only 7 g (DW) or 50 g (FW) of C. teedei
var. lusitanicus can contribute to a healthy diet than higher amounts of vegetables. Hence,
it is highlighted the nutraceutical potential of this unexploited marine resource.

Although the nutritional and mineral profiles of this seaweed are consistent across all
life cycles, the polysaccharide profile differs from gametophytes to the tetrasporophyte [22].

According to Pereira (2004) [83], the carrageenan extraction yield of C. teedei var.
lusitanicus (female and male gametophyte, tetrasporophyte) is consistent, even the sampling
site was the same in both studies.

Regarding the spectroscopic analysis, it revealed that the two phases of the life cycle of
C. teedei var. lusitanicus showed similar variation, which was also found in other Chondracan-
thus genus species [84]: carrageenans of the kappa family are produced by the gametophyte
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stages (hybrid kappa/iota/mu/nu carrageenan), whereas carrageenans of the lambda
family are produced by the tetrasporophyte stages (hybrid xi/theta-carrageenan).

The male gametophyte of C. teedei var. lusitanicus appears to possess a similar phy-
cocolloid to the female gametophytes, based on the FTIR-ATR, 1H- and 13C-NMR spectra
of its carrageenans. Even though both thalli formed a kappa/iota hybrid carrageenan
(Table 1), the male thalli had equal levels of kappa and iota-fraction, but the kappa-fraction
was slightly dominant in female gametophytes.

Regarding the male and female gametophytes alkaline-extracted carrageenan, our
findings are similar to those of Pereira et al. (2004) and Zinoun et al. (1993) [32,85]. The
existence of xi-carrageenan is indicated by the FTIR spectra of tetrasporic samples of
C. teedei, which display stronger peaks at 830 cm−1, but less absorption at 820 cm−1. The
presence of a hybrid xi/theta-carrageenan was confirmed by the 13C-NMR spectra, despite
the 1H-NMR spectra not being conclusive (results not reported).

Following the minerals, polysaccharides, initially identified as carbohydrates, were
found to contribute for a significant portion of the DW of the seaweed biomass. However,
most of these polysaccharides are carrageenans, known as dietary fiber, due to its inability
to break the high weight molecule in the human digestive tract.

Because of the negative effects that can occur if the cumulative dosage of seaweed
polysaccharides (and particularly their lower-molecular-weight oligomers) exceeds the
limit of 25 g/day, the diversity of seaweed polysaccharides (and particularly their lower-
molecular-weight oligomers) needs to be quantified [86,87]. The recommended biomass
intake of C. teedei var. lusitanicus ranges between 11 and 7% of this value, indicating that it
is a supplement for human food intake that promotes human wellness.

Polysaccharides from seaweed with a high molecular weight are typically thought
to be desirable dietary fibers. These are considered to be essential contributors in human
health and illness prevention in certain applications [88]. These advantages are enlarged
because the gut microbiome interacts with the host at both the intestinal and systemic
levels, resulting in balance between the host and the microbiota. Food intake can have
a beneficial or negative impact on the microflora balance, resulting in immunological,
physiological, metabolic, and even psychological effects [88,89].

In addition to their biological properties, seaweed polysaccharides also have innate
features that are very important for intestinal health; these include the viscosity and the
high potential for water-binding activity, which adjusts the transit time of food through the
gut. Such properties are demonstrated to promote satiety and weight loss; additionally,
they delay gastric discharge, therefore promoting glycemic control (i.e., minimizing the
incidence of diabetes). In the intestinal tract, all seaweed-derived polysaccharides are
reported to enhance gut transit, maintaining regular stool volume, and promote benefi-
cial alterations to the composition of the microbiome [14]. These advantages add up to
improved metabolization of volatile fatty acids (VFAs), which are also known as short
chain fatty acids (SCFAs), by members of the microflora, promoting positive effects in
the gastrointestinal system, and thus improving cardiometabolic, immune, bone, and
health conditions [14,90–92].

Due to the polysaccharides fermentation in the intestinal tract, reducing the mi-
croflora/bile salt hydrolase activity, anti-obesity effects have been identified as one of the
most advantageous properties of seaweed polysaccharides for human ingestion, which
is one theory for this observed effect [93–95]. In this case, in vitro experiments revealed
that the microbiome composition changed to an enhanced condition, including popula-
tions of Bifidobacterium, Bacteroides, Lactobacillus, Roseburia, Parasutterella, Fusicatenibacter,
Coprococcus and Fecalibacterium colonies [93–95].

Carrageenans are one of the most bioactive polysaccharides found in seaweeds; their
chemical structure allows them to form hydrogels, allowing them to be employed as
antiviral and antibacterial components in a myriad of product formulations [96,97]. Given
the excellent levels of safety, efficacy, and biocompatibility, as well as the fact that they
are biodegradable and non-toxic, there are strong reasons to use these compounds [98].
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Carrageenan has also been used as a traditional medicine to treat coughs and the common
cold, according to ancient documents, hence in vitro and in vivo experiments using animal
models have corroborated this ethno-botanical information. The actions of carrageenans on
blood platelet aggregation are principally responsible for this capability (i.e., anticoagulant
activity) [99,100]. Other carrageenan bioactivities, such as anti-tumor, anti-viral, and
immunomodulation, have been proven and are commercially exploited [101,102]. In the
case of herpes simplex virus types 1 and 2, HIV-1 and human rhinovirus, the carrageenan
antiviral system operates by keeping virus particles far from the cell, which is considered
to be an encouraging outcome [103,104].

Furthermore, the inclusion of this red seaweed species in the human diet contributes as
a flavor enhancer in soups, salads, or seafood, imparting a pleasant mushroom scent [105].
However, the existence of some harmful volatile chemicals, such as bromoform, im-
plies that the inclusion of this fresh seaweed into the human diet should be done with
caution [105,106]. Although the application of the Asparagopsis sp. to feed cattle with the
objective to reduce the methane, the bromoform molecules are a main target to understand
their behavior during the seaweed processing [107]. Furthermore, it is supported that the
seaweed drying and other type of processing (such as washing or cooking) reduce the
bromoform and other volatile (such as iodine) compounds concentration in the seaweeds,
mainly the solar drying and seaweed dehydration [108–111]. Only, the freeze drying
maintain the same level of bromoform compounds in the dried seaweeds [108].

4. Materials and Methods
4.1. Seaweed Harvesting and Preparation

On 27 May 2020, the red seaweed Chondracanthus teedei var. lusitanicus was harvested
in the Portuguese seashore of Buarcos Bay at Figueira da Foz (40.165867, −8.885556).
Afterwards seaweeds were placed in plastic bags inside a coolbox and transported to the
laboratory where were frozen at −20 ◦C for prior use. Some days later, the seaweeds
were washed with filtered seawater to remove sand, epiphytes and other detritus from
the seaweed biomass. Afterwards, the seaweed biomass was washed with distilled water
to remove the salt content from the seawater, placed in plastic trays, and dried in an
air-forced oven (Raypa DAF-135, R. Espinar S.L., Barcelona, Spain) at 60 ◦C during 48 h.
Dried biological samples were milled (<1 cm) with a commercial grinder (Taurus aromatic,
Oliana, Spain) and stored in sterile flasks in a dark and dry place (54% humidity) at room
temperature (23 ◦C).

4.2. Mineral and Trace Element Characterization

With the ashes obtained, the mineral content was analyzed through dry mineralization
and assessed using flame atomic absorption spectrometry (PerkinElmer PinAAcle 900 T,
Waltham, MA, USA) [112]. Phosphorus analysis was performed by spectrophotometry (PG
instruments T80+ UV/VIS spectrophotometer, Leicestershire, United Kingdom) [113].

For this analysis, we performed an acid digestion with nitric acid 65% (m/v), in a
water bath at 100 ◦C around 30 min. Finally, the samples were filtrated for a volumetric
flask and the volume adjusted with distilled water. After the necessary dilutions (1:10,
1:100 and 1:500) the analysis was carried out on the atomic absorption spectrophotometer
equipped with the cathode corresponding to each element.

4.3. Nutritional Profile
4.3.1. Moisture and Ashes Content

According to the international standard method 930.04 of Official Methods of Anal-
ysis of AOAC International [114], the moisture content was assessed through the fresh
weighting of the algal samples and, then, after oven-drying (Memmert, Büchenbach,
Germany) at 60 ◦C during 48 h. Afterwards, the samples were milled (<1 mm) and, ap-
proximately, 2 g of each sample was placed in crucibles and dried at 105 ◦C for 2 h. Then,
the samples were placed in a desiccator until constant weight for being again weighted,
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in order to calculate the moisture content. In accordance with the AOAC method 930.05,
the dried samples at 105 ◦C were placed in an incineration muffle during 2 h at 550 ◦C
(Induzir, Batalha, Portugal) and further cooled in a desiccator and weighted to assess the
ashes amount.

4.3.2. Crude Lipids

The total lipids content was gravimetrically quantified following a continuous ex-
traction process with diethyl ether in a Soxhlet apparatus (Behr Labor-Technik GmbH,
Düsseldorf, Germany), as it follows the international standard AOAC method 930.09 [114].
The distillation flasks were previously dried at 105 ◦C for 2 h, cooled in a desiccator and
weighted in an analytical scale (Sartorix, Göttingen, Germany). Afterwards, the distillation
flasks were filled (2/3 of their capacity) with diethyl ether (Panreac, Chicago, IL, USA).
Then, approximately 2 g of the algal samples were packed in filter paper and placed into
the thimble. After 16 h of extraction, all the solvent was collected and evaporated (BÜCHI
Labortechnik AG, Flawil, Switzerland). The distillation flasks were then dried at 105 ◦C for
2 h and weighted when cooled down.

4.3.3. Total Nitrogen/Protein

The total nitrogen/protein content was determined by Kjeldhal method (AOAC
method 978.04) [114], while it was used 5 as a protein conversion factor [115]. In a Kjeldhal
tube, was added approximately 0.5 g of the previously dried algal sample, and then it
was added a selenium catalyst (PanReac AppliChem, Darmstadt, Germany) and 12 mL
of sulfuric acid (Chem-Lab NV, Zedelgem, Belgium). The tubes were then placed into
the Kjeldhal digester (VELP Scientifica, Usmate Velate MB, Italy) at 400 ◦C for 2 h. The
samples could cool in the fume cupboard, and it was added 50 mL of distilled water in
each tube and putted into the Kjeldhal distiller. Concurrently, it was placed 30 mL of boric
acid (Chem-Lab NV, Zedelgem, Belgium) in an Erlenmeyer (one for sample), being further
placed into the Kjeldhal distiller as well (VELP Scientifica, Usmate Velate MB, Italy). To
the Kjeldhal tube was added 50 mL of distilled water and 50 mL of sodium hydroxide
(NaOH) at 40% (m/v) (JMGS—José Manuel Gomes dos Santos, Odivelas, Portugal). The
distilled solution was collected and titrated with chloridric acid (HCl) 0.1 M (Chem-Lab
NV, Zedelgem, Belgium).

4.3.4. Crude Fiber and Total Carbohydrates/Nitrogen-Free Extractives

According to the standard method 930.10 of AOAC [114], the crude fiber was an-
alyzed through the weighting of 2 g from the algal samples, previously oven dried
(Memmert, Germany) at 105 ◦C for 2 h and placed in a 600 mL goblet. It was then added
200 mL of sulfuric acid (H2SO4) 12.5 g/L (Chem-Lab NV, Belgium) and the samples were
placed in a fiber analyzer (Labconco Corporation, Kansas City, MO, USA) for 30 min. After
this procedure, the samples were filtered with a filter crucible G2 under vacuum (General
Electric, Boston, MA, USA). The residue was then placed into the goblet with 250 mL of
sodium hydroxide (NaOH) 12.5 g/L (JMGS—José Manuel Gomes dos Santos, Odivelas,
Portugal) and set into the fiber analyzer for more 30 min. With the same filter crucible G2,
the samples were again vacuum filtered and dried at 130 ◦C for 2 h. After the samples were
cooled down in a desiccator, they were weighted in an analytical scale (Sartorix, Germany)
and placed into an incineration muffle at 550 ◦C (Induzir, Batalha, Portugal) for 2 h. Finally,
the samples could cool down and were weighted to calculate the crude fiber. Nitrogen-free
extractives are the difference for 100 of the remaining constituents (moisture, lipids, protein,
crude fiber and ash), while the total carbohydrates, corresponds approximately to the
difference between 100 and the sum of the moisture, ash, lipids and protein.
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4.4. Polyssacharides Characterization

Due to carrageenan type variation, the red seaweed C. teedei var. lusitanicus was
separated into phases based on their life cycle using a binocular magnifying glass (Kern &
Sohn GmbH, Balingen, Germany).

4.4.1. Carrageenan Extraction

The extraction of carrageenan was carried out in accordance with the method reported
by Pereira and van de Velde (2011) [116]. Before extraction, the milled seaweed (1 g)
was pre-treated with an acetone (Fisher Chemicals, Portugal): methanol (VWR Prolabo
Chemical, Portugal) (1:1) solution in a final concentration of 1% (m/v) (final volume:
100 mL; 50 mL acetone: 50 mL methanol) for 16 h, at 4 ◦C, to remove the organic-soluble
fraction. The liquid solution was decanted, and the seaweed residues obtained were dried
in an air-forced oven (Raypa DAF-135, R. Espinar S.L., Barcelona, Spain) at 60 ◦C before
the extraction.

The dried samples were placed in 150 mL of NaOH (Applichem Panreac, Chicago, IL, USA)
(1 M) (1 g of initial seaweed: 150 mL of NaOH solution) in a hot water bath system (GFL
1003, GFL, Burgwedel, Germany), at 85–90 ◦C, for 3 h. The solutions were hot filtered,
under vacuum (Laborport N820, Lisbon, Portugal) through a cloth filter supported in a
Buchner funnel. After that, the extract was again filtered under vacuum with a Goosh
2 silica funnel. The extract was evaporated (rotary evaporator model: 2,600,000, Witeg,
Germany) under vacuum to one-third of the initial volume (50 mL). The carrageenan
was precipitated by adding twice its volume of 96% ethanol (José Manuel Gomes dos
Santos, Portugal) (100 mL). The carrageenan precipitated was washed with ethanol 96%,
48 h at 4 ◦C before dry in an air force oven (60 ◦C, 48 h) (Raypa DAF-135, R. Espinar S.L.,
Barcelona, Spain).

4.4.2. FTIR-ATR Characterization

The Fourier Transform Infrared Spectroscopy—Attenuated Total Reflection (FTIR-
ATR) examination is a methodology of infrared spectroscopy that is frequently used to
investigate and characterize carbohydrates found in seaweeds (among other chemicals)
and is based on the procedure outlined by Pereira, Gheda and Ribeiro-Claro (2013) [30].

The dried polysaccharide samples from the previous polysaccharide extraction phases
were powdered using a commercial mill and subjected to direct examination without
further preparation for FTIR-ATR analysis. This technique requires only a dried milled
(<1 mm) sample to be evaluated.

FTIR-ATR spectra were recorded on an Perkin Elmer Spectrum 400 spectrometer
(Waltham, MA, USA), with no need for sample preparation, since these assays only required
dried samples [31]. All spectra are the average of two independent measurements from
650 to 1500 cm−1 with 128 scans, each at a resolution of 2 cm−1.

4.4.3. 1H-NMR Characterization
1H-NMR spectra were made on a Bruker AMX600 spectrometer operating at 500.13 MHz

at 65 ◦C. Typically, 64 scans were recorded with an interpulse delay of 5 s (T1 values for the
resonance of the anomeric protons of κ- and ι-carrageenan are shorter than 1.5 s). Sample
preparation for the 1H-NMR experiments involved dissolving the carrageenan sample
(5 mg mL−1) at 80 ◦C in D2O containing 1 mMTSP (3-(trimethylsilyl) propionic-2,2,3,3-d4
acid sodium salt) and 20 mM Na2HPO4, followed by sonication (Branson 2510) for three
periods of 1 h. Chemical shifts (δ) are referred to internal TSP standard (δ = 0 ppm for 1H)
according to Knutsen and Grasdalen (1987) [33]. The chemical shift data described by Van
de Velde et al. (2002a) [34] were used to assign the 1H-NMR spectra.

4.4.4. 13C-NMR Characterization

Female and male gametophytes alkaline-extracted carrageenans 13C-NMR spectra were
obtained on a Varian Unity 500 spectrometer at 125.69 MHz. Samples (15/20 mg mL−1) were
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dissolved in D2O and the spectra were recorded at 80 ◦C, 10.000 accumulations, pulse 15 µs,
acquisition time 3 s and relaxation delay 5 s. 13C-NMR spectra of tetrasporic carrageenans
were recorded on a Bruker AMX500 spectrometer operating at 125.76 MHz, as described in
the literature [34,35].

The sample preparation was as follows: a solution of 5 mg mL−1 carrageenan in
H2O was prepared at 80 ◦C. This solution was sonicated for three periods of 30 min in
melting ice (Heat Systems XL 2020 sonicator, 12 mm tip, power 475 W, frequency 20 kHz);
the solution was centrifuged at elevated temperature to remove insoluble material. The
sonicated material was dialyzed against phosphate buffer (20 mM Na2HPO4; 3 times 2 L),
water (1 time 2 L) and lyophilized. A concentration of 70–100 mg mL−1 in D2O containing
20 mM Na2HPO4 and 30 mM TSP, was used to dissolve the material. Chemical shifts
(δ) were referred to an external TSP/DMSO standard (δDMSO = 39.45 ppm for 13C), in
accordance with Usov et al., (1980) [36]. The chemical shift data summarized by Van de
Velde et al., (2002) [34] was used to assign the 13C-NMR spectra.

5. Conclusions

The chemical analysis of the red seaweed Chondracanthus teedei var. lusitanicus shows
that this species has a favorable nutritional profile for human diet and may have some
nutraceutical benefits in lowering several common fast food-related disorders (such as
diabetes, obesity, or cardiovascular diseases).

Further research is needed on this seaweed, mainly to determine which growing
techniques are more adequate to cultivate, and, in such conditions, to study the expected
changes in its nutritional profile.

Finally, this red seaweed has nutraceutical potential that should be exploited as a food
supplement, which even in low doses can improve human welfare.

On the other hand, this seaweed intake overdosage can have a negative influence on
human health, mostly through an uncontrolled mineral intake and can have an impact on
cell homeostasis. For this reason, to consider any seaweed proper for human consumption,
its nutritional composition must be monitored regularly.
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