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The angiotensin converting enzyme 2 (ACE2) catalyzes the
degradation of Angiotensin II (Ang II) to generate Angio-
tensin-(1-7), which reduces inflammation and oxidative stress
stimulated by Ang II. ACE2 has been shown to be protective
in cardiovascular and metabolic diseases including diabetes
and its complications. However, the challenge for its clinical
application is large-scale production of high-quality ACE2
with sufficient target tissue bioavailability. We developed an
expression and delivery system based on the use of probiotic
species Lactobacillus paracasei (LP) to serve as a live vector
for oral delivery of human ACE2. We show that codon-opti-
mized ACE2 can be efficiently expressed in LP. Mice treated
with the recombinant LP expressing the secreted ACE2 in
fusion with the non-toxic subunit B of cholera toxin, which
acts as a carrier to facilitate transmucosal transport, showed
increased ACE2 activities in serum and tissues. ACE2-LP
administration reduced the number of acellular capillaries,
blocked retinal ganglion cell loss, and decreased retinal inflam-
matory cytokine expression in two mouse models of diabetic
retinopathy. These results provide proof of concept for feasi-
bility of using engineered probiotic species as live vector for de-
livery of human ACE2 with enhanced tissue bioavailability
for treating diabetic retinopathy, as well as other diabetic
complications.
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INTRODUCTION
The renin-angiotensin system (RAS) plays an important role in car-
diovascular physiology and body homeostasis through the regulation
of electrolyte balance, blood pressure, and vascular tone. In addition
to circulating RAS, local tissue RAS exists in all organs, including the
eye.1–3 Dysfunction of the RAS, resulting in elevated concentrations
of Angiotensin II (Ang II), contributes to increased oxidative stress,
inflammation, and development of metabolic syndrome, diabetes,
and its complications,4–12 including diabetic retinopathy (DR).13–26

The discovery of ACE2,27,28 which counteracts the effects of angio-
tensin-converting enzyme (ACE) through degradation of Ang II
and generation of Angiotensin-(1-7) (Ang-(1-7)), established a pro-
tective axis for the RAS (i.e., the ACE2/Ang-(1-7)/Mas axis). This
axis has been shown to be effective in producing beneficial effects
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on metabolic, immune, and cardiovascular dysfunctions by blocking
apoptosis, fibrosis, oxidative stress, and inflammation, thus
improving metabolic dysfunction and diabetic complications in a
large number of animal models.29–33 Our recent studies have also es-
tablished the protective effects of ACE2/Ang-(1-7) on retinal inflam-
mation and DR.34–37 However, it is challenging to translate this
fundamental knowledge into clinical applications for management
and treatment of these diseases. Current strategies to deliver thera-
peutic proteins and peptides face a large number of obstacles, from
production, formulation, and administration to limited bioavail-
ability and potential immunogenicity.38–40

Recent evidence also implicates gut dysbiosis, an altered composition
and function of the gut microbiome, in the pathogenesis of both type
1 and type 2 diabetes41–43 and supports the beneficial effects of pro-
biotics in managing diabetes and other metabolic diseases.44–50 Since
increased ACE2 has been shown to be beneficial in multiple organs
and recent evidence links its role in gut and gut microbiome,51,52 it
would be ideal to increase ACE2 function both systemically and
locally at target tissues. In this study, we sought to develop an expres-
sion and delivery system based on the use of recombinant probiotic
species Lactobacillus paracasei (L. paracasei) to serve as a live vector
for the oral delivery of human ACE2. L. paracasei is a gram-positive,
facultative heterofermentative bacteria of the Lactobacillus genus that
are the components of the normal gut microbiota53 and are also
commonly used in the food industry for production of fermented
food and beverages; thus, L. paracasei bacteria are generally recog-
nized as safe (GRAS). Moreover, Lactobacillus bacteria are usually
used as probiotic supplements with beneficial effects in humans.54–56

As a result, engineering of Lactobacilli is emerging as a promising
approach for delivery of therapeutics.57–59 Since the codon
usage and codon preferences in Lactobacillus bacteria vary signifi-
cantly from mammalian organisms,60 we generated different gene
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Figure 1. ACE2 Activities in Lactobacillus paracasei

ExpressingHumanACE2 Protein with Three Different

Options for Codon Optimization

Error bars represent SD of three separate assays, each run

duplicate. LP, Lactobacillus paracasei; c.o., codon opti-

mization; RFU, relative fluorescent unit.
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constructs to express human ACE2 protein with codon usage that was
optimized for expression in Lactobacillus. One of the constructs
showed higher level expression of ACE2 in L. paracasei. This
construct was then selected to build a secreted ACE2 protein fused
with the non-toxic subunit B of cholera toxin (CTB) as a carrier to
facilitate transmucosal transport into the circulation and target tissue
uptake. We show that oral administration of recombinant
L. paracasei expressing human ACE2 in mice increased both serum
and tissue levels of ACE2 activity. We further evaluated the efficacy
of the recombinant L. paracasei in two different mouse models of
DR and showed that oral administration of recombinant
L. paracasei expressing human ACE2 significantly reduced dia-
betes-induced retinal capillary and retinal ganglion cell loss and
decreased inflammatory cytokine expression in the retina. These re-
sults provide proof of concept for feasibility of using engineered pro-
biotic species as live vectors for delivery of human ACE2 protein with
enhanced tissue bioavailability for treating DR as well as other cardio-
vascular, metabolic diseases and diabetic complications. This
unconventional approach provides a more efficient and cost-effective
strategy to enhance this protective axis at both circulating and target
tissues for clinical application.

RESULTS
Expression Vector Construction and Codon Optimization

The original Lactobacillus shuttle plasmid containing a GFP reporter
gene driven by the lactate dehydrogenase (LDH) promoter from
Lactobacillus acidophilus was from Addgene (plasmid #27167).61 As
human ACE2 cDNA has very low-level expression in Lactobacillus
(data not shown), codon optimization was performed based on pref-
erence of codon usage of L. paracasei, and three synthetic genes with
different optimization options were cloned into this vector to replace
the GFP. The expression level in Lactobacillus bacteria was deter-
mined by ACE2 enzymatic activity assay using self-quenching fluo-
rescent substrate as previously reported.34 As shown in Figure 1,
only one of the three constructs showed higher level ACE2 activity,
and thus this construct (see Figure S1 for complete sequence) was
selected for subsequent studies.

In Vivo Expression Characterization in Mice Orally Administered

with L. paracasei Expressing Codon-Optimized Human ACE2

To enhance in vivo secretion into the circulation and target tissue
uptake, we designed a construct to express secreted ACE2 fused
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with a carrier protein to facilitate transport
into circulation. As shown in Figure 2A, ACE2
expression is under the control of the LDH pro-
moter and is expressed as a fusion protein with
the non-toxic CTB as a carrier to facilitate transmucosal transport
into the circulation and target tissue uptake. CTB is separated by
a furin cleavage site to release ACE2 once it is expressed. The signal
peptide from the usp45 gene of Lactococcus lactis, slightly modified
from Kajikawa et al.,62 was used. We next confirmed that human
ACE2 protein expressed from recombinant L. paracasei can be
delivered into circulation and taken up by different tissues following
oral administration in vivo. Adult wild-type C57BL/6J mice
(6–8 weeks old) were gavaged with either the same volume of
vehicle (PBS) or recombinant L. paracasei expressing ACE2
(ACE2-LP) at 1 � 1010 colony-forming units (CFUs)/mouse daily
for 3 days. Mice were then sacrificed, and serum and tissue samples
were collected for ACE2 enzymatic activity assay. As shown in Fig-
ure 2B, oral administration of recombinant ACE2-LP not only
significantly increased serum levels of ACE2 activity, an �20% in-
crease compared to control mice, but also ACE2 activities in kidney,
lung, and retina.

In VivoEvaluation of Recombinant L. paracaseiExpressingACE2

in Animal Models of Diabetic Retinopathy

To determine the efficacy of recombinant L. paracasei expressingACE2
in protection against DR, two type 1 models of diabetes were used. The
first model was generated by using streptozotocin (STZ) in eNOS�/�

mice and shows an accelerated time course and increased DR
severity.36,63 The secondmodel is the Akita mouse, which carries a mu-
tation in the insulin 2 gene resulting in mice exhibiting reduced b cell
mass and reduced insulin secretion.64 Mice heterozygous for the Akita
spontaneousmutation (Ins2Akita) develop progressive retinal abnormal-
ities including increased vascular permeability, apoptosis, and inner
retinal thinning as early as 12 weeks after the onset of
hyperglycemia.65 For both models, mice were gavaged with either
1� 1010 CFU ofwild-type L. paracasei (WT-LP), LP expressing human
ACE2 (ACE2-LP), or vehicle (PBS) at three times/week. The diabetic
eNOS�/� mice were treated for 8 weeks after STZ-induced diabetes.
This duration of treatment for diabetic eNOS�/� mice was based on a
previous characterization when severe retinopathy was developed.36,63

As the progression of retinopathy in Akita mice is slower, these mice
were treated for 12 weeks beginning at 6 weeks of age.

Diabetes in eNOS�/� mice resulted in severe capillary loss, as previ-
ously reported.36,63 Mice treated with ACE2-LP demonstrated
reduced capillary loss (Figure 3A). Similar retinal protection was



Figure 2. Construction of Lactobacillus Vector for

Expression of Secreted Human ACE2 Protein Fused with

CTB and Evaluation of In Vivo ACE2 Activities

(A) Diagram of the Lactobacillus vector expressing codon opti-

mized human ACE2. ACE2 is expressed as a secreted fusion

protein with the CTB, which is separated by a furin cleavage site

to release ACE2 once it is expressed. (B) ACE2 activities in

different tissues in mice administered with LP-ACE2. RFU,

relative fluorescent unit. N = 4/group.
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seen in Akita mice treated with ACE2-LP (Figure 3B). Treatment with
WT-LP showed slightly but insignificant improvement compared to
vehicle-treated mice in both models.

Untreated or vehicle-treated diabetic eNOS�/� and Akita mice
showed an �20% loss of Brn3a-positive retinal ganglion cells
(RGCs), which was completely prevented by ACE2-LP in both dia-
betic eNOS�/� and Akita models, whereas WT-LP did not show
any effect (Figure 4).
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Real-time RT-PCR was used to evaluate the expres-
sion level of pro-inflammatory cytokines and chemo-
kines in the retina from each experimental group. In
diabetic eNOS�/� mice, ACE2-LP treatment signifi-
cantly reduced retinal expression of tumor necrosis
factor alpha (TNF-a) and intercellular adhesion
molecule 1 (ICAM-1) but did not have any effect
on the expression level of interleukin-1a (IL-1a)
and moocyte chemoattractant protein-1 (MCP-1)
(Figure 5A). WT-LP treatment did not affect the
expression of any of the cytokines in diabetic
eNOS�/� mouse retina. In contrast, the retinal
expression of all of these genes was significantly
reduced in ACE2-LP-treated Akita mice (Figure 5B),
and unexpectedly, WT-LP treated Akita mice also
showed significantly reduced expression of IL-1a,
ICAM-1, and MCP-1 but no significant difference
in TNF-a level compared to the vehicle-treated
group. The expression levels of IL-1a, ICAM-1, and
MCP-1 in ACE2-LP-treated mice were also signifi-
cantly reduced compared to WT-LP-treated Akita
mice.

DISCUSSION
In this study, we developed an expression and deliv-
ery system based on the use of recombinant probi-
otic species L. paracasei to serve as a live vector
for the oral delivery of human ACE2. We show
that codon-optimized human ACE2 can be effi-
ciently expressed in L. paracasei with enzymatic
activity. Oral administration of recombinant
L. paracasei expressing the secreted ACE2 in fusion
with CTB in mice increased both serum and tissue
ACE2 activities. More importantly, oral administra-
tion of recombinant ACE2-LP significantly reduced diabetes-
induced retinal neurovascular degeneration in two mouse models
of DR.

Human ACE2 is a large protein (805 amino acid residues) with
several predicted glycosylation sites.66 The original human cDNA
has a very low expression level in L. paracasei and several other spe-
cies of Lactobacillus (data not shown). Even with different codon
optimization, only one construct showed higher level expression,
Clinical Development Vol. 14 September 2019 163
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Figure 3. Evaluation of Retinal Acellular Capillary in Diabetic eNOS–/– and Akita Mice

(A and C) Representative images of trypsin-digested retinal vascular preparations from non-diabetic (NDM) and diabetic (DM) eNOS�/� mice treated with vehicle (PBS),

WT-LP, and ACE2-LP (A); wild-type littermate control and Akita mice (C) treated with PBS, WT-LP, and ACE2-LP; and quantitative measurements of acellular capillaries of

eNOS�/� (B) and Akita (D) mice. Arrows indicate the acellular capillaries. *p < 0.01 (versus PBS-treated groups). nsa, not significant (versus PBS-treated group). nsb, not

significant (versus control group). Error bars represent SD (n = 8/group). Treatments with ACE2-LP significantly reduced acellular capillaries in both eNOS�/� and Akita mice.

LP alone showed slight but not statistically significant reduction of capillary loss in both diabetic eNOS�/� and Akita mice. Scale bar, 50 mm.
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suggesting that codon optimization is critical to achieve high expres-
sion levels in Lactobacillus species. Since the ACE2 expressed by
Lactobacillus bacteria is enzymatically active and functional in vivo,
the potential glycosylation or other protein modifications of ACE2
may not be critical for its function.

In order to increase both serum and tissue level of ACE2 in vivo, the
construct with the highest expression level of ACE2 in L. paracasei
was selected to create the final fusion gene of ACE2 with a secretion
signal peptide and CTB, which facilitates transmucosal transport into
the circulation and tissue uptake by GM1 receptor-mediated endocy-
164 Molecular Therapy: Methods & Clinical Development Vol. 14 Septe
tosis. Oral administration of recombinant L. paracasei expressing the
secreted ACE2 in mice resulted in increased ACE2 activities not only
in serum but also several tissues including kidney, lung, and retina,
suggesting that bacteria-expressed ACE2 can be efficiently secreted
into circulation and target tissues following oral gavage. Oral admin-
istration of ACE2-LP bacteria significantly reduced diabetes-induced
retinal capillary loss compared to WT-LP or vehicle-treated animals
in both models, consistent with our previous results using AAV viral
vector for ACE2 local delivery.36,37 Treatment with ACE2-LP bacteria
prevented retinal ganglion cell loss to the same extent in both models.
However, the effect of ACE2-LP treatment on retinal cytokine and
mber 2019



Figure 4. Evaluation of Retinal Ganglion Cell (RGC) Density Detected by Brn3a Immunostaining in Diabetic eNOS–/– and Akita Mice

Representative immunofluorescence images of Brn3a staining from non-diabetic (NDM) and diabetic (DM) eNOS�/� mice treated with vehicle (PBS), WT-LP, and ACE2-

LP (A); wild-type littermate control and Akita mice (C) treated with PBS, WT-LP, and ACE2-LP; and quantification of Brn3a-positive cells of eNOS�/� (B) and Akita (D) mice.

*p < 0.01 (versus PBS-treated groups). nsa, not significant (versus PBS-treated group). nsb, not significant (versus control group). Error bars represent SD (n = 6/group). Scale

bar, 50 mm. Treatments with ACE2-LP prevented diabetes-induced RGC loss in both eNOS�/� and Akita mice.
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chemokine gene expression was different in the two models; the
expression of all four cytokines measured was significantly reduced
in Akita mice treated with ACE2-LP, but only TNF-a and ICAM-1
expression was significantly reduced in diabetic eNOS�/� mice. Sur-
prisingly, treatment with WT-LP also significantly reduced retinal
expression of IL-1a and ICAM-1 in Akita mice but had no effects
in diabetic eNOS�/� mice. Future studies will be required to further
elucidate the mechanisms responsible for the different responses be-
tween the two models. Although WT-LP showed some effects on
retinal cytokine expression in Akita mice, WT-LP treatment did
not show any protective effects on diabetes-induced retinal capillary
and RGC loss in either model. The species L. paracasei has been
used as probiotic supplement;67–69 recent studies also indicate
L. paracasei and its related species are beneficial in diabetes; however,
such an effect is likely strain specific.
Molecular The
A wide range of doses of different probiotic Lactobacillus species,
varying from 107 to 1011 CFU, has been reported in different mouse
disease models. In this study, we have chosen a higher dose (1010

CFU/mouse) to establish the feasibility and efficacy of recombinant
LP-ACE2 in protection against DR in mouse models. The frequency
of oral administration used in this study (three times/week) was based
on the observation that increased serum and tissue ACE2 activities
can be detected 48 h after a single oral gavage (data not shown).
Nevertheless, future studies will be required to further determine
optimal doses and frequency for oral administration.

Overall, these results provide proof of concept for feasibility of using
engineered probiotic species as live vectors for delivery of human
ACE2 protein with enhanced tissue bioavailability for treating DR,
as well as other cardiovascular and metabolic diseases and diabetic
rapy: Methods & Clinical Development Vol. 14 September 2019 165
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Figure 5. Real-Time RT-PCR Analysis of Retinal mRNA

Levels of Inflammatory Cytokines in Diabetic eNOS–/– and

Akita Mice

Retinal mRNA levels of inflammatory cytokines in diabetic eNOS�/�

(A) and Akita mice (B). Values on y axis represent relative expression

levels compared to PBS-treated group for each gene. NDM, non-

diabetic; DM, diabetic. *p < 0.01 (versus PBS groups). #p < 0.05

(versusWT-LP group). ns, not significant (versus PBS groups). Error

bars represent SD (n = 4/group).

Molecular Therapy: Methods & Clinical Development
complications. The probiotic-based delivery of ACE2 offers advan-
tages also. Probiotics are generally recognized as safe with many bene-
ficial effects on their own, including anti-diabetes effects. As ingested
probiotics can survive both gastric acid and bile to reach the small in-
166 Molecular Therapy: Methods & Clinical Development Vol. 14 September 2019
testine and colon, where they exert their effects, they are
ideal vehicles for delivery of protein drugs. Convention-
ally, protein therapeutics has to be administered intrave-
nously with limited bioavailability to target tissues; by
using receptor-mediated transmucosal oral delivery via
CTB as a carrier, probiotics-based oral delivery of pro-
tein therapeutics enables efficient transmucosal trans-
port into the circulation and target tissue uptake, thus
enhancing their bioavailability. Moreover, oral delivery
of therapeutics is more patient friendly and cost effec-
tive. Due to their safety profile, long history of use in
food industry, and probiotic beneficial health effects, ge-
netic engineering of lactic acid bacteria has been used to
deliver several therapeutic proteins.57–59 The novel
aspect of our strategy is that we use the CTB fusion as
a carrier to enhance the bioavailability of our therapeu-
tic protein, ACE2. Furthermore, because a large number
of probiotic species and strains are known to have
different beneficial effects, specific probiotics species
or strains can be selected for oral delivery of therapeutics
to optimally target specific patient populations, thus
achieving the precision medicine paradigm.

The prevalence of diabetes has been continuously
increasing for the last few decades70–73 and so is the
prevalence of DR, the most common diabetic complica-
tion and the leading cause of severe vision loss in people
under the age of 60.74–78 Growing evidence implicates
gut dysbiosis as one of the key factors contributing to
the incidence of diabetes and obesity;41–43,79–88 probiot-
ics-based delivery of ACE2 may provide a promising
and more cost-effective approach for therapy and man-
agement for this devastating condition.

However, there are questions that remain unanswered.
First, unlike conventional protein drug delivery, in
which the concentration of therapeutic protein spikes
following systemic delivery and is quickly cleared
from circulation, probiotic bacteria-expressed therapeutic protein
is constitutively secreted into circulation and target tissues; there-
fore, the therapeutic dose is influenced not only by the expression
level and the amount of bacteria, but also survival and persistence
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of orally delivered probiotics. Detailed analysis of factors affecting
the survival and persistence of recombinant probiotics will be
critical for future clinical application. Second, the impact of recom-
binant bacteria expressing human ACE2 on gut microbiome,
intestinal function, and immune system will also require further
investigation. Despite these challenges, our results demonstrate the
feasibility of using engineered probiotic species as live vector for de-
livery of human ACE2 protein with enhanced tissue bioavailability,
and this approach may hold important therapeutic potential for
treating DR, as well as other cardiovascular and metabolic diseases
and diabetic complications.

MATERIALS AND METHODS
Bacterial Strains and Growth Conditions

The Lactobacillus bacteria L. paracasei (ATCC 27092) used in this
study were from American Type Culture Collection (ATCC; Mana-
ssas, VA, USA) and were cultured in de Man, Rogosa, and Sharpe
(MRS) broth (Thermo Fisher Scientific, #DF0881-17-5) at 37�C for
18 h without shaking. The plasmid pTRKH3-ldhGFP (Addgene,
plasmid #27170) was used as a backbone for cloning of human
ACE2 gene constructs, which were synthesized by Genscript (Piscat-
away, NJ, USA). The resulting plasmids were electroporated into
Lactobacillus bacteria by electroporation as described by Welker
et al.89. Recombinant Lactobacillus bacteria expressing ACE2 were
grown in the MRS media supplemented with 5 mg/mL erythromycin
(Sigma-Aldrich, St. Louis, MO, USA). For oral gavage of mice, bacte-
ria were harvested by centrifugation at 5,000 � g for 20 min and re-
suspended in sterile PBS.

Animals and Experimental Procedures

Wild-type C57BL/6J (stock number 000664), eNOS�/� (stock num-
ber 002684), and Akita mice (stock number 003548) were purchased
from the Jackson Laboratory (Bar Harbor, ME, USA) and main-
tained in the Animal Care Service at the University of Florida. Akita
mice were maintained by breeding C57BL/6J inbred females with
heterozygous males and confirmed by genotyping using protocol
provided by the Jackson Laboratory. All procedures adhered to
the Association for Research in Vision and Opthalmology
(ARVO) statement for the use of Animals in Ophthalmic and
Vision Research, and the protocol was approved by the Animal
Care and Use Committee of the University of Florida. The animals
were fed standard laboratory chow and allowed free access to water
in an air-conditioned room with a 12-12-hr light-dark cycle. Dia-
betes in adult eNOS�/� mice (8–10 weeks old) was induced by
STZ injection as reported previously.63 Gavage of diabetic eNOS�/�

mice was performed with either 1 � 1010 CFU of WT-LP, ACE2-LP,
or vehicle (PBS), three times/week for 8 weeks. Akita mice were gav-
aged with the same dose for 12 weeks.

ACE2 Activity Assay

To measure ACE2 activity in L. paracasei, bacterial protein was ex-
tracted using the lysozyme treatment method described by Sieo
et al.90 In brief, the cell pellet was suspended in 0.15 M Tris/HCl
buffer (pH 6.8). Lysozyme (10 mg/mL) was added and incubated at
Molecular The
37�C for 90 min, followed by sonication and centrifugation at
8,000 rpm for 10 min at 4�C. The protein concentration in the super-
natant was determined using a BCA protein assay kit (Pierce, Thermo
Fisher Scientific, Rockford, IL, USA). To measure mouse tissue ACE2
activity, proteins were extracted by sonication in ACE2 assay buffer
and centrifugation at 8,000 rpm for 10 min at 4�C as described
before.35 The ACE2 activity assay was performed using 50 mg of ex-
tracted protein or 10 mL of serum diluted in assay buffer (75 mM
Tris, 1 M NaCl, 0.5 mM ZnCl2 [pH 7.5]) in black 96-well opaque
plates with 50 mM ACE2-specific fluorogenic peptide substrate
(R&D Systems, Minneapolis, MN) in a final volume of 100 mL per
well reaction mixture. The fluorescent intensity was measured using
SpectraMax M3 fluorescence microplate reader (Molecular Devices,
Sunnyvale, CA, USA) for every 90 s with excitation at 340 nm and
emission at 400 nm at 37�C for 2 h, as described previously.35 Exper-
iments were carried out in duplicate, and results were expressed as
relative fluorescent units (RFU).

Retinal Vascular Preparation

Retinal vasculature was prepared using trypsin digest as described
previously.63 In brief, eyes were fixed in 4% paraformaldehyde freshly
made in PBS overnight. Retinas were dissected out from the eyecups
and digested in 3% trypsin (Gibco-BRL) for 2–3 h at 37�C. Retinal
vessels were separated from other retinal neuronal cells by gentle
shaking and manipulation under a dissection microscope. The vessels
were then mounted on a clean slide, allowed to dry, and stained with
PAS-H&E (periodic acid solution-hematoxylin, Gill No.3, Sigma, St.
Louis, MO, USA) according to the instruction manual. After staining
and washing in water, the tissue was dehydrated and mounted using
Permount mounting media (Sigma, St. Louis, MO, USA). The pre-
pared retinal vessels were imaged using the Leica LAS X widefield sys-
tems. At minimum, 10 representative, non-overlapping fields from
each quadrant of the retina were imaged. Acellular capillaries are
counted from images for each retina and expressed as number of acel-
lular vessels per mm2.

Immunofluorescence

For immunofluorescence studies, eyes were fixed in 4% paraformal-
dehyde overnight at 4�C and subsequently processed for paraffin
embedding. Four mm-thick paraffin sections were cut and mounted
on Superfrost Plus slides. The paraffin sections were first deparaffi-
nized followed by antigen retrieval in low-pH citric acid buffer for
20 min. The sections were then incubated in blocking solution (5%
BSA + 0.3% Triton X-100 in PBS) for 1 h. This was followed by incu-
bation overnight at 4�C with primary mouse anti-Brn3a (1:200,
MAB1585; Millipore, Billerica, MA, USA). After washing, secondary
antibody conjugated to Alexa 488 (Molecular Probes/Invitrogen,
Carlsbad, CA, USA) was incubated for 1 h at room temperature. Sec-
tions were washed in PBS containing the nuclear counterstain DAPI
and mounted in Dako mounting media. The images were captured
with a Leica fluorescence microscope LAS X system (Leica Microsys-
tems, Buffalo Grove, IL, USA). Brn3a-positive cells in each eye were
quantified from at least 15 sections from at least six animals for
each experimental group.
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Real-Time RT-PCR Analysis of Inflammatory Cytokines

Total RNA was isolated from freshly enucleated eyes using Trizol re-
agent (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s
instructions. Reverse transcription was performed using an enhanced
avian HS RT-PCR kit (Sigma-Aldrich, St. Louis, MO, USA) following
manufacturer’s instructions. Real-time PCR was carried out on a real-
time thermal cycler (iCycler; Bio-Rad Life Sciences, Hercules, CA,
USA) using iQTM Sybr green supermix (Bio-Rad Life Sciences,
Hercules, CA, USA), and relative quantification was determined as re-
ported previously.35 Each reaction was run in duplicate. All the reac-
tions were repeated at least twice. Primer sequences used in this study
are shown in Table S1.

Statistical Analysis

Data are expressed as the mean + SD of at least two independent ex-
periments. Differences between mean values of multiple groups
were analyzed by one-way ANOVA with Dunnett’s test for post
hoc comparisons. A p value less than 0.05 was considered statistically
significant.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.
1016/j.omtm.2019.06.007.
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