
Frontiers in Immunology | www.frontiersin.

Edited by:
Derek Alan Wainwright,

Northwestern University,
United States

Reviewed by:
Xian Zeng,

Fudan University, China
Marta Olah,

Columbia University Irving Medical
Center, United States

*Correspondence:
Yunpeng Zhang

zhangyp@hrbmu.edu.cn
Yanjun Xu

xuyanjun@hrbmu.edu.cn
Feng Li

lifeng@hrbmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 12 January 2022
Accepted: 25 April 2022
Published: 23 May 2022

Citation:
Zhang C, Zhang Y, Tan G, Mi W,

Zhong X, Zhang Y, Zhao Z, Li F, Xu Y
and Zhang Y (2022) Prognostic
Features of the Tumor Immune

Microenvironment in Glioma
and Their Clinical Applications:
Analysis of Multiple Cohorts.
Front. Immunol. 13:853074.

doi: 10.3389/fimmu.2022.853074

ORIGINAL RESEARCH
published: 23 May 2022

doi: 10.3389/fimmu.2022.853074
Prognostic Features of the Tumor
Immune Microenvironment in Glioma
and Their Clinical Applications:
Analysis of Multiple Cohorts
Chunlong Zhang†, Yuxi Zhang†, Guiyuan Tan†, Wanqi Mi , Xiaoling Zhong, Yu Zhang,
Ziyan Zhao, Feng Li*, Yanjun Xu* and Yunpeng Zhang*

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China

Glioma is the most commonmalignant tumor of the central nervous system. Tumor purity is
a source of important prognostic factor for glioma patients, showing the key roles of the
microenvironment in glioma prognosis. In this study, we systematically screened functional
characterization related to the tumor immune microenvironment and constructed a risk
model named Glioma MicroEnvironment Functional Signature (GMEFS) based on eight
cohorts. The prognostic value of the GMEFS model was also verified in another two glioma
cohorts, glioblastoma (GBM) and low-grade glioma (LGG) cohorts, from The Cancer
Genome Atlas (TCGA). Nomograms were established in the training and testing cohorts to
validate the clinical use of this model. Furthermore, the relationships between the risk score,
intrinsic molecular subtypes, tumor purity, and tumor-infiltrating immune cell abundance
were also evaluated. Meanwhile, the performance of the GMEFSmodel in glioma formation
and glioma recurrence was systematically analyzed based on 16 glioma cohorts from the
Gene Expression Omnibus (GEO) database. Based on multiple-cohort integrated analysis,
risk subpathway signatures were identified, and a drug–subpathway association network
was further constructed to explore candidate therapy target regions. Three subpathways
derived from Focal adhesion (path: 04510) were identified and contained known targets
including platelet derived growth factor receptor alpha (PDGFRA), epidermal growth factor
receptor (EGFR), and erb-b2 receptor tyrosine kinase 2 (ERBB2). In conclusion, the novel
functional signatures identified in this study could serve as a robust prognostic biomarker,
and this study provided a framework to identify candidate therapeutic target regions, which
further guide glioma patients’ clinical decision.

Keywords: glioma, immune microenvironment, prognosis, subpathway, multiple cohorts
INTRODUCTION

Glioma is the most common malignant tumor of the central nervous system (CNS), accounting for
30% (80%) of all brain (malignant) tumors, which displayed the representative characteristics of
strong genetic heterogeneity, high mortality, and chemotherapy resistance (1, 2). According to the
World Health Organization (WHO) criteria, glioma tumors are histologically separated into Grade I
org May 2022 | Volume 13 | Article 8530741
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through IV. Despite significant improvements in the glioma
clinical treatment strategy, the median survival remains poor,
particularly for those with glioblastoma (GBM, the grade IV of
glioma). Patients with GBM exhibit a median survival of
approximately 1 year and display poor responses to nearly all
clinical therapies (3). Therefore, it is necessary to dissect the
inner biological mechanism involved in glioma patients’ survival
and identify a novel and robust predictive signature for clinical
treatment guidance.

Glioma tissue included both cancer cells and non-transformed
cells, which included predominantly resident microglia from the
brain and circulating bloodmonocytes (macrophages), comprising
30%–50% of the cellular content of these tumors (4). The glioma
purity was closely related to patient prognosis (5, 6), implying that
the glioma immunemicroenvironment was involved in key glioma
biology, including prognosis, recurrence, and treatment response.
Recently, many immune-related signatures were identified for
glioma prognostic analysis and functional exploration. A
ferroptosis-related gene signature was identified and correlated
with the tumor immune microenvironment status in the study of
Zheng et al. (7), and this signature displayed a predictive
performance for glioma survival. Cheng et al. (8) performed a
multi-omics integrated analysis and identified an immune-related
gene signature (ABCC3, PDPN, and INA) to predict the prognosis,
immune infiltration status, and immunotherapy and
chemotherapy response of LGG patients with epilepsy. Zhao
et al. (9) performed a glioma immune subtype analysis based on
29 immune cell characterizations and defined three immune
groups, named immune-H, immune-M, and immune-L. The
redefined immune phenotypes were related to patient survival
and contributed to the remodeling of the immunosuppressive
microenvironment (9). However, in addition to immune cell
infiltration, microenvironment features should also include
tumor features, such as stromal remodeling, proliferation, and
tumor procytokines, and consider the full range of immune-related
characteristics. Therefore, it is necessary to characterize the glioma
immune microenvironment based on sufficient samples from
multiple cohorts, especially considering the immune cells
surrounding the tumor, for further guiding the clinical prognosis.

In this study, by analyzing available glioma expression profiles
with survival data of a total of 3,486 samples from eight cohorts,
we utilized the Least Absolute Shrinkage and Selection Operator
(LASSO) model to construct the Glioma MicroEnvironment
Functional Signature (GMEFS) model, which consisted of 25
immune microenvironment signatures. To test the prognostic
performance of GMEFS, we further obtained two independent
glioma cohorts from The Cancer Genome Atlas (TCGA) database,
and the nomogram was constructed for evaluating the prognostic
performance. Meanwhile, the associations between GMEFS and
glioma molecular subtypes, tumor purity, or stromal score, as well
as immune cell infiltration, were explored. The GMEFS score was
also evaluated in multiple-level brain tumor formation and glioma
recurrence from a large number of glioma samples from multiple
cohorts. Finally, we identified risk subpathways related to the
GMEFS score and constructed a comprehensive drug–subpathway
network for candidate target region screening, which provided
important guidance for glioma clinical treatment.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Publicly Available Training and Testing
Cohort Datasets
We searched the available mRNA expression profiles with
prognosis information from several tumor resources, such as
the Gene Expression Omnibus (GEO) database, Chinese Glioma
Genome Atlas (CGGA) database, and Pan-Cancer Analysis of
Whole Genomes (PCAWG) database for glioma prognostic
microenvironment identification. For the datasets from the
GEO database, the cohorts with at least 40 samples were
considered and a total of six public glioma cohorts were
downloaded. We also collected two glioma cohorts (LGG and
GBM) from TCGA database and the multi-omics data including
gene expression, methylation level, and copy number variations
(CNVs) from the Human Glioma Cell Culture (HGCC)
collection as the independent testing set. Finally, 6,920 brain
samples from 27 cohorts were included in our study, and the
total information was shown in Table 1.

Immune Microenvironment Signatures
We collected 175 immune microenvironment-related signatures
from diverse literature for glioma prognostic signature
identification. In detail, 28 signatures were obtained from the
work of Bindea et al. (10), 11 signatures were obtained from
the work of Wolf et al. (11), 24 cell signatures were obtained from
the work of Miao et al. (12), 22 immune signatures were obtained
from CIBERSORT (13), 29 immune microenvironment
signatures were obtained from the work of Bagaev et al. (14),
40 signatures were obtained from Cellmarker database (15), 4
microglia signatures were obtained from the work of Sala
Frigerio et al. (16), 8 brain immune cell signatures were
obtained from scREAD database (17), and 9 microglia subtype
signatures were obtained from the work of Olah et al. (18) More
detailed information is listed in Table S1.

The datasets from GEO, CGGA, and PCAWG databases were
treated as the training set, and the datasets fromTCGAwere treated
as the testing set. Based on the 175 tumor microenvironment
signatures, we firstly utilized the single sample Gene Set
Enrichment Analysis (ssGSEA) method implemented in the R
package to calculate the normalized enrichment score (NES) for
each glioma sample from the training set (19). To remove the
potential batch effects from different cohorts, we further used
Combat function to form a merged NES matrix for
microenvironment signature identification. Finally, the prognostic
performance of this signature was tested using testing datasets.

Construction of the Immune
Microenvironment Risk Model
Based on the merged NES matrix, which consisted of 175
immune microenvironment signatures and 4,887 glioma
samples, we firstly performed univariable Cox proportional
hazards regression analysis using 3,486 samples with survival
analysis. A set of 141 signatures was identified with a prognostic
P-value <0.05. The detailed univariable Cox results, including
the hazard ratio (HR) value, 95% CI, and P-values, of
these microenvironment signatures were provided in Table S2.
May 2022 | Volume 13 | Article 853074
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The LASSO Cox regression model (20) was used to find the most
useful prognostic markers among the 141 immune
microenvironment signatures in the training cohort by the R
package glmnet. Ultimately, 25 immune microenvironment
features with non-zero coefficients were selected through
LASSO Cox regression model analysis, and the optimal lambda
value was determined by 10-fold cross-validation. The
multivariable Cox proportional hazards regression analysis was
further performed for these 25 immune microenvironment
signatures obtained from the LASSO analysis, and the
corresponding coefficients are presented in Table S3. Finally, a
novel glioma prognostic signature, GMEFS, was constructed by
comprehensively considering the coefficients of these 25 immune
signatures. The formula was provided as follows:

GMEFS =o
25

i=1
log (HRi)� NESi

where HRi is the HR and NESi is the NES for the ith immune
microenvironment signature.

Functional Analysis and Differential
Expression Analysis
The ESTIMATE score, tumor purity, and stromal and immune
scores for each glioma sample were calculated by using
ESTIMATE package in R with default parameters (21). The
differential expression (DE) analyses for TCGA GBM and LGG
cohorts were performed by the limma package in R (22).
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Functional enrichment analyses, including Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway and subpathway analyses, were performed by using the
clusterProfiler package in R (23), and the P-value was adjusted by
the Benjamini and Hochberg method.

Drug–Subpathway Network
Based on the HGCC resource (24), we obtained the drug IC50
information, as well as gene expression, methylation, and CNV
data for each GBM cell line. Firstly, based on the median IC50
value as cutoff, we defined two cell line groups, high IC50 groups
and low IC50 groups. Then, based on these two groups, we
respectively identified drug-related genes according to gene
expression level, methylation condition, and CNV data. For
gene expression profiles, the T-test was used. For methylation
and CNV data, the Wilcoxon rank sum test was used. The cutoff
for DE analysis was set as adjusted P-value <0.05. Finally, we
evaluated the associations between DE genes and GMEFS
subpathways by using the hypergeometric test method. The
result with P-value <0.05 was considered as a significant
association. An integrated drug–subpathway network was
constructed by considering the significant drug–subpathway
associations shared by two omics results.

Statistical Analysis
According to the GMEFS score, all glioma samples from both
training and testing sets were classified into two groups based on
TABLE 1 | The information of all datasets used in this article.

Dataset Sample Survival timec Usage in this study

Training dSur eInc fRec Drug Network

GSE7696 84 19.25 ± 15.19 √ √

GSE42670 56 20.88 ± 13.20 √

GSE50021 45 12.26 ± 14.48 √ √

GSE72951 110 10.88 ± 7.56 √

GSE74187 60 19.15 ± 10.58 √

GSE83300 50 19.07 ± 10.50 √

CGGA 2,063 44.63 ± 43.07 √ √

PCAWG 2,419 36.51 ± 42.26 √

GBM 151 13.79 ± 12.88 √

LGG 508 32.11 ± 31.98 √

GSE4290 176 √

GSE9385 55 √

GSE15824 45 √

GSE16011 284 √

GSE22866 46 √

GSE35493 21 √

GSE42656 42 √

GSE44971 58 √

GSE50161 62 √

GSE61335a 62 √

GSE61335b 62 √

GSE116520 42 √

GSE60898 151 √

GSE62153 43 √

GSE98995 68 √

GSE101113 56 √

HGCC 101 √
May 20
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the consistent cutoff as the training set. Then, the Kaplan–Meier
(KM) curve and survival P-value calculated by the log-rank test
were performed by using R survminer package. The glioma
molecular subtypes (Classical-like, Codel, G-CIMP-high, G-
CIMP-low, Mesenchymal-like, PA-like) of the glioma patients
were obtained from a previous study (25). For both training and
testing sets, a nomogram was formulated to provide a visualized
risk prediction after each factor was assigned a score. A calibration
plot was generated to assess the calibration ability of the
nomogram (26). Nomograms and calibration plots were
generated by using the rms package. The decision curve analysis
(DCA) was performed by using dca package. All of the P-value
results were considered statistically significant with P-values <0.05.
RESULTS

Identification of Glioma Immune
Microenvironment Functional Signatures
for Prognostic Analysis
Based on the training set that consisted of a total of 8 glioma
cohorts, we constructed a microenvironment-based prognostic
model named GMEFS (seeMaterials and Methods). The GMEFS
consisted of 25 glioma immune microenvironment signatures,
and the detailed LASSO results of these 25 signatures were
displayed in Figures 1A, B. We calculated the GMEFS score
for each glioma patient in the training cohort and stratified the
patients into high or low GMEFS groups according to the median
cutoff. As shown in Figure 1C, the samples with a high GMEFS
score had a significantly shorter overall survival than samples
with a low GMEFS score in the training cohort (P < 0.0001; log-
rank test). The associations between each of the 25 immune
microenvironment signatures and clinical survival are also
shown in Figure 1D. To further examine the robustness of the
GMEFS model, two independent glioma cohorts, GBM and LGG
datasets, were also obtained as testing sets for the prognosis
analysis (see Materials and Methods). With the same formula,
the samples from the testing set were stratified into high and low
GMEFS groups by the cutoff value obtained from the entire
training set. As shown in Figures 1E, F, the samples with a high
GMEFS score also had significantly worse overall survival than
those who displayed a low GMEFS score in both GBM and LGG
cohorts (GBM P = 0.0091, LGG P < 0.0001; log-rank test).
Meanwhile, survival analysis for progression-free survival (PFS)
was also performed, and the predictive performance of GMEFS
in GBM (Supplementary Figure 1A, P = 0.015) and LGG
(Sepplementary Figure 1B, P < 0.0001) was confirmed.
Similar results were observed in the entire TCGA cohort for
both overall survival and PFS (Supplementary Figures 1C, D).

To further test the performance of predicting the glioma
patient prognosis, a nomogram that integrated both the GMEFS
and clinical factors (including gender and age) was constructed
by using patients from the training set. Based on the nomogram
results, a score can be calculated for a glioma patient for
predicting the 3-, 5-, and 10-year overall survival for an
individual, suggesting the power of GMEFS score in
Frontiers in Immunology | www.frontiersin.org 4
contributing the risk point (Figure 2A). The calibration curves
for 3, 5, and 10 years of the training cohort were respectively
illustrated in Figures 2B–D, showing the GMEFS’s performance
in the glioma patient survival prediction.

The Clinical and Functional
Characterizations Between the Samples
With High and Low GMEFS Scores
To test the associations between GMEFS and molecular subtypes,
we obtained the glioma subtype information (see Materials and
Methods). As shown in Figure 3A, the samples from Classic-like,
G-CIMP-low, and Mesenchymal-like subtypes displayed high
GMEFS scores, whereas samples from the Codel subtype had a
low GMEFS score, and the overall difference was significant.
Moreover, an imbalance in terms of these five molecular
subtypes within the two GMEFS group was observed
(Figure 3B). Only small proportions of Codel subtype (6.5%)
distributed in the high GMEFS group in contrast with 100% of
Mesenchymal-like type and 100% of Classic-like type. Similar
results were observed between molecular subtype and GBM
GMEFS groups. Then, the correlations between tumor purity,
stromal characterization, and GMEFS score were also explored.
It was observed that the GMEFS score was positively correlated
with the stromal score, immune score, and ESTIMATE score,
whereas it was negatively correlated with tumor purity for TCGA
LGG cohorts (Figure 3C), showing that the GMEFS score was a
presentation of the immune microenvironment characterization.

Some potential factors that determine brain tumor
immunogenicity , including macrophage regulat ion,
homologous recombination deficient (HRD), TGF-beta
response, and wound healing, were compared between the high
GMEFS group and the low GMEFS group from TCGA LGG
cohort (Figure 3D). The mean activity values for other factors of
the high GMEFS group were significantly higher than those of
the low GMEFS group. In addition, the samples with a higher
GMEFS displayed a higher proliferation score than that of
patients with a lower GMEFS, which was consistent with the
prognostic performance of GMEFS. Overall, the differences in
brain tumor immunogenicity between the GMEFS groups were
significant, and the high GMEFS group had a relatively high
immunogenicity. Next, we identified 83 upregulated genes in the
high GMEFS group vs. the low GMEFS group by the cutoffs of
log-fold change (FC) >1.5 and false discovery rate (FDR) <0.05.
The GO biological process terms enriched by these genes
included many immune-related processes, such as neutrophil
activation, antigen processing and presentation, and neutrophil-
mediated immunity (Figure 3E). Similar GO biological process
terms and KEGG pathway results were illustrated in TCGA-
GBM cohort (Supplementary Figure 2).

Furthermore, we quantified these 83 LGG gene signatures in
data from the Ivy Glioblastoma Atlas Project (IGAP), which
performed RNA sequencing (RNA-seq) on microdissections of
glioma anatomical structures from hematoxylin and eosin
(H&E) staining (Ivy Glioblastoma Atlas Project; http://
glioblastoma.alleninstitute.org). The higher expression activity
of these genes was enriched in samples from the hyperplastic
May 2022 | Volume 13 | Article 853074
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blood vessels, microvascular proliferation, and perinecrotic zone.
These gene signatures displayed a lower expression level in
infiltrating tumor and leading edge (Figure 3F). To test the
glioma association of 83 genes, we further obtained several
glioma-related gene sets from a previous study (27). As shown
in Supplementary Figure 3A, these genes displayed a significant
overlap with GBM disease genes. These GBM genes were also
enriched in the samples with a high GMEFS score compared to
those with a low GMEFS score (Supplementary Figure 3B).
Immune Cell Proportion
Analyses for Samples With High
and Low GMEFS Scores
To further explore the different immune cell proportions within
the two GMEFS groups, we performed CIBERSORT analysis
with 1,000 permutations for glioma cohorts (13). As shown
in Figures 4A, B, the proportions of 22 common immune cell
Frontiers in Immunology | www.frontiersin.org 5
types of the two GMEFS groups of LGG were displayed. The
samples from the low GMEFS group had significantly higher
proportions of plasma cells, monocytes, activated mast cells, and
eosinophils than those of samples from the high GMEFS group
(P < 0.05). Correspondingly, the proportions of memory resting
CD4 T cells, M2 macrophages, and CD8 T cells in the high
GMEFS group were significantly higher than those in the low
GMEFS group (P < 0.05). We further studied the correlation
between the GMEFS score and the proportion of immune cell
infiltration. The results revealed that CD8 T cells and M2
macrophages were positively correlated with the GMEFS, and
activated mast cells and T helper cells were negatively correlated
with GMEFS (Figure 4C). By comparing brain cell-type marker
gene from the PanglaoDB database (28), we identified 9 cell types
associated with the two GMEFS groups, including microglia,
astrocytes, and oligodendrocyte progenitor cells (Figure 4D).
Parenchymal microglia are the major component of myeloid
cells involved in heterogeneous Central Neural System (CNS)
A B

D E

F

C

FIGURE 1 | Construction and validation of the Glioma MicroEnvironment Functional Signature (GMEFS) model. (A) Partial likelihood deviance revealed by the Least
Absolute Shrinkage and Selection Operator (LASSO) regression model in the 10-fold cross-validation. The vertical dotted lines were drawn at the optimal values by
using the minimum and 1-SE criteria. (B) LASSO coefficient profiles of 25 selected immune cell signatures in the 10-fold cross-validation. (C) Kaplan–Meier estimate
of the overall survival for the training cohorts. (D) The forest plot of the associations between the infiltrate levels of 25 immune cell signatures and overall survival in
the training cohort. The HR, 95% CI, and P-value were determined by univariate Cox regression analysis. Kaplan–Meier estimate of the overall survival for two testing
cohorts, The Cancer Genome Atlas-glioblastoma (TCGA-GBM) (E) and The Cancer Genome Atlas-low-grade glioma (TCGA-LGG) (F), divided by the GMEFS model.
May 2022 | Volume 13 | Article 853074
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immune microenvironment (29, 30), and microglia play
important roles in the brain-related tumors, including
glioma (31).

The Involvement of GMEFS in Glioma
Formation and Recurrence
To test the performance of the GMEFS in glioma formation and
recurrence, we further obtained the glioma datasets from the
GEO database (Table 1). The GMEFS scores were calculated for
each analytical sample, and the difference was evaluated between
glioma and normal samples, as well as recurrence glioma and
primary glioma samples. As shown in Figure 5A, among 14
independent glioma cohorts, the glioma samples displayed
consistently higher GMEFS scores than those in normal
samples in a total of 12 cohorts. These significant cohorts
contained glioma samples (11/12) and Diffuse Intrinsic
Pontine Glioma (DIPG) samples (1/12). In addition, within 2
of 7 glioma cohorts, the recurrence samples also displayed higher
GMEFS scores than those in primary samples (Figure 5B). All
these findings show that the GMEFS was not only a risk
characterization for evaluating high-risk samples from low-risk
samples but also could distinguish glioma samples from normal
samples, considering the diagnosis index for glioma patients. As
shown in Figures 5C, D, within two glioma cohorts with
available stage information, we observed that the samples with
a higher stage displayed a higher GMEFS score than samples
with a lower stage, which was consistent with the prognostic
Frontiers in Immunology | www.frontiersin.org 6
performance of the GMEFS groups (GSE16011, P = 1.9e-08;
GSE4290, P < 2.2e-16). Using these testing sets from the GEO,
we further confirmed the GMEFS difference in histology
subtypes and molecular subtypes, which was also consistent
with previous results (GSE60898 and GSE72951 from
Figures 5E, F, Figure 3A). As shown in GSE116520
(Figure 5G), the GMEFS score was also related to glioma
region distribution; GMEFS was higher in core tumor tissue
and lower in non-neoplastic brain tissue.

Subpathway-Level Exploration Driven by
GMEFS and Drug–Subpathway Network
In our previous studies (32, 33), we observed that the regions of
the whole pathway, which is also named as subpathway, was
closely related to disease formation and progression. The related
results further confirmed that the subpathway displayed more
advantages over the whole pathway with providing detailed
biological information. We firstly obtained the subpathway list
from subpathwayMiner R package with the default parameters
(33). Based on the training, TCGA-GBM, and TCGA-LGG
cohorts, we utilized the GSEA algorithm to identify the
significantly enriched subpathways between the high GMEFS
and low GMEFS groups. As shown in Figures 6A, B, a total of 32
risk subpathways were shared by three glioma cohorts. These risk
subpathways were derived from Focal adhesion, ECM–receptor
interaction, and pathways in cancer. Notably, a total of 8
subpathways derived from Focal adhesion were identified.
A

B DC

FIGURE 2 | Nomogram developed for predicting the probability of 3-, 5-, and 10-year overall survival in the training cohort. (A) The nomogram was constructed in
the training cohort, with the GMEFS and available clinical factors incorporated. Calibration plot of the nomogram in terms of agreement between the predicted and
observed (B) 3-, (C) 5-, and (D) 10-year outcomes.
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Take one subpathway (path:04510_9) as an example, and the
subpathway activity was calculated for the corresponding tumor
samples. As shown in Figures 6C–E, the Focal adhesion
subpathway could distinguish all samples into two groups with
significant prognosis (Training cohort, p < 0.0001; TCGA-GBM,
p = 0.017; TCGA-LGG, p < 0.0001). To explore the detailed
associations between antineoplastic compounds and GMEFS
subpathways shared by two cohorts, we constructed a multi-
omic integrated network based on HGCC resource (seeMaterials
and Methods). As shown in Figure 6F, many subpathways were
targeted by many candidate drugs, such as path: 04062_2 from
chemokine signaling pathway and path: 04510_9 from focal
adhesion. The subpathway 04062_2 was targeted by many
approved molecules, such as mesalamine, pamelor, angormin,
Frontiers in Immunology | www.frontiersin.org 7
and amlodipine. Some subpathways from the same whole
pathway (path: 04510) were commonly targeted by some
molecules, such as etoposide, paludrine, and suloctidil.
Notably, as an experimental drug, suloctidil was closely related
to many risk subpathways. Furthermore, we obtained several
drug target genes for glioma collected from a recent study (34).
We observed that many subpathways within networks contained
known drug targets. Notably, three subpathways (path: 04510_8,
_10, and _12) from Focal adhesion contained four target genes,
including PDGFRA, EGFR, and SRC. The systematically
reconstructed drug–subpathway network provided a novel
framework for identifying subpathway regions as candidate
therapy targets and screening-approved or experimental
molecules as novel drugs for clinical use.
A B

D

E F

C

FIGURE 3 | Clinical significance and functional analysis of the two GMEFS groups in TCGA-LGG. (A) Violin plot illustrating the distribution of the GMEFS score in
different intrinsic molecular subtypes. (B) Sankey plot of the GMEFS values in subtypes with different intrinsic molecular subtypes. (C) Correlations between the
GMEFS score, stromal score, immune score, ESTIMATE score, and tumor purity. (D) Comparison of Macrophage Regulation, Proliferation, TGF-beta Response,
Homologous R Defects, Wound Heal between the high and low GMEFS groups. TCGA-LGG patients were classified into low and high GMEFS groups. Visualization
of the top 10 enriched biological processes (E) by the upregulated differentially expressed genes (DEGs) in the high vs. low GMEFS groups. (F) Heatmap of the
upregulated DEGs in the Ivy Glioblastoma Atlas Project (IGAP) dataset. Samples were ordered along the row by the structure regions.
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DISCUSSION

In this study, the relative quantitative infiltrate levels of 175
immune microenvironment signatures in a total of 4,887glioma
patients from multiple cohorts were estimated, and a novel
prognostic model (GMEFS) consisting of functional signatures
was constructed. To test the predictive performance of the
GMEFS, we further obtained independent glioma cohorts from
TCGA. In addition, many other glioma cohorts from the GEO
database were also obtained to analyze the different GMEFS
scores between brain tumor and normal samples. Data from one
glioma cell line from HGCC were utilized to construct a drug-
related network. In a word, a total of 6,920 brain samples were
utilized in this study to comprehensively identify and explore the
glioma immune microenvironment characterization for
prognosis analysis.

For the input in LASSO-Cox regression analysis, we have
collected as many tumor-related microenvironment signatures as
possible, including the functional signatures from the study of
Bagaev et al. (14). A total of 175 immune microenvironment
signatures were collected from diverse resources in this study.
Frontiers in Immunology | www.frontiersin.org 8
The 25 functional signatures in the GMEFS included 17 risk
signatures with HR > 1 and 8 protective signatures with HR < 1.
Among these 25 immune microenvironment signatures, some
signatures were specific for the brain tissue, such as
oligodendrocytes and pericytes from the study of Jiang et al.
(17) and microglia clusters from the study of Olah et al. (18).
Also, some neuron-related signatures were included in the
GMEFS, such as Immature olfactory sensory neuron and late
activated neural stem cell (as risk factors) and Olfactory sensory
neuron (as protective factor). Moreover, some tumor
characterizations were also included, such as protumor
cytokines, matrix, and matrix remodeling from the study of
Bagaev et al. (14), and all of these signatures displayed risk
distribution in the GMEFS model. From another tumor study of
Wolf et al. (11), two module signatures that the authors defined,
Development/differentiation module and Stromal mixed
module, were also identified.

Recently, a large scale of bioinformatics studies utilized public
data resources to identify glioma prognostic signatures, including
gene signatures (35–40), lncRNA signature (41), and gene-set
signature (42, 43). The summary of all of these prognostic studies
A B

DC

FIGURE 4 | Immune cell proportion analyses of the two GMEFS groups in TCGA-LGG. (A) Relative proportions of immune infiltration for 22 signatures in the high
and low GMEFS groups. (B) Boxplots illustrate the 22 immune cell proportions in TCGA-LGG. (C) The associations between the GMEFS score and infiltration score
of activated mast cells, CD8 T cells, M2 macrophages, and T helper cells. (D) The GSEA analysis for cell markers from PanglaoDB database between the high and
low GMEFS groups. *, 0.01<p; **, 0.001<p; ***, p-value<0.001.
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and our study was displayed in Table S4. Most of the previous
studies utilized less than 6 cohorts to identity and validate the
prognostic model, and the most frequent training sets were from
TCGA or CGGA. Lin et al. (35) constructed a 5 gene-based
prognostic model that was derived from hypoxia function to
predict the glioma survival. The glioma cohorts from CGGA
were utilized for model construction (35). Tan et al. (38)
constructed a 6-gene risk model based on glioma samples from
TCGA and validated it using CGGA samples. Some other studies
performed the survival analysis based on some key genes or gene
sets without identifying signature procedures (39, 42). Regarding
both the construction and validation of the prognostic model, an
adequate number of the training set and testing set were
necessary for a robust risk model analysis. In our GMEFS
construction, we utilized a total of 3,486 samples with survival
information from 8 glioma cohorts to perform signature
identification, and a total of 27 multiple cohorts were included
in our analysis.
Frontiers in Immunology | www.frontiersin.org 9
Based on TCGA-LGG cohort with available treatment
information, we further observed that the GMEFS was
significantly decreased in patients with complete or partial
response when compared with those with stable or progressive
disease. The effectiveness of the GMEFS value in predicting the
response of cancer patients to immunotherapy was also verified
(Supplementary Figure 4). TCGA-GBM, which contained a
limited number of samples with available response
information, was not included in this analysis.

Some limitations were also displayed in this study. Firstly, the
signatures involved in the GMEFS were an independent
functional set, and the complex interactions between tumor
cells and immune cells were not explored. Secondly, the key
gene or protein molecules underlying the GMEFS should further
be identified, or the key signatures of the GMEFS should be
further mined. However, it also displayed advantages over other
studies that a total of more than 6,000 brain samples were
utilized for constructing and verifying the prognostic and
A

B

D

E F

G

C

FIGURE 5 | The confirmation of the GMEFS in glioma formation and recurrence. (A) Volcano plot of the GMEFS score between the two types of samples within
each dataset for the tumor vs. normal conditions. (B) Volcano plot of GMEFS score between the two types of samples within each dataset for the recurrence vs.
primary condition. Boxplot illustrating the distribution of the GMEFS score in different clinical information including clinical stage: (C) GSE16011, (D) GSE4290;
molecular subtypes: (E) GSE60898, (F) GSE72951; and tumor regions: (G) GSE116520.
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distinguishing glioma sample performance. Meanwhile, we
developed a novel framework to identify functional signatures
and explore drug–subpathway associations for glioma
treatment guidance.
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FIGURE 6 | Subpathway-level functional exploration and drug–subpathway network. (A) Venn diagram of risk subpathways from training cohorts, testing TCGA-
GBM cohorts, and TCGA-LGG cohorts. The risk subpathways were identified using the GSEA method based on the high and low GMEFS groups from the three
cohorts. (B) The subpathway number statistics for 32 risk subpathways shared by the three cohorts. The Kaplan–Meier survival curves according to the activity value
of one subpathway (path:04510_9) in the training cohort (C), testing TCGA-GBM cohort (D), and testing TCGA-LGG cohort (E). (F) The drug subpathway network.
The network shows the subpathways (squares) that could be targeted by drugs (diamonds) based on three levels of omics data from the HGCC database. The color
of the drug indicates the five drug classes from the HGCC resource. The size of the subpathways or drugs increases with the degree that reflects the associations
between the drugs and regulated subpathways.
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Supplementary Figure 1 | Kaplan-Meier estimate of the overall survival of the
TCGA-GBM (PFS)(A), TCGA-LGG (PFS) (B), TCGA-GBM&LGG (OS) (C) and
TCGA-GBM&LGG (PFS) (D) divided by two GMEFS model.

Supplementary Figure 2 | TCGA GBM patients were classified into high and low
GMEFS groups. Visualization of the top 10 enriched biological processes (A) and the top
10 enriched KEGG pathways (B) by the DEGs in the high versus low GMEFS groups.

Supplementary Figure 3 | (A) the venn plot between DEGs from TCGA
LGG high GMEFS and low GMEFS groups, and glioma related gene set.
Frontiers in Immunology | www.frontiersin.org 11
(B) The GSEA plot for GBM disease genes in the all rank genes by two
GMEFS groups.

Supplementary Figure 4 | The associations between GMEFS groups
and therapy response in the TCGA LGG cohorts. (A) Boxplot illustrating
the distribution of GMEFS for patients with different therapy responses.
Significance was determined by the Wilcoxon test. (B) Bar graph illustrating the
numbers of clinical responses to therapy in the high and low GMEFS groups.
(C) Waterfall plot illustrating the distribution of GMEFS for patients with different
therapy responses.
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