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Abstract. Dementia is a failure of cognitive ability character‑
ized by severe neurodegeneration in select neural systems, and 
Alzheimer's disease (AD) is the most common type of neurode‑
generative disease. Although numerous studies have provided 
insights into the pathogenesis of AD, the underlying signaling 
and molecular pathways mediating the progressive decline of 
cognitive function remain poorly understood. Recent progress 
in molecular biology has provided an improved understanding 
of the importance of molecular pathogenesis of AD, and has 
proposed an association between DNA repair mechanisms 
and AD. In particular, the fundamental roles of phosphatase 
and tensin homologue deleted on chromosome 10 (PTEN) and 
breast cancer gene 1 (BRCA1) tumor suppressors have been 
shown to regulate the pathogenesis of neurodegeneration. 
Consequently, onset of neurodegenerative diseases may be 
deferred with the use of dietary neuroprotective agents which 
alter the signaling mediated by the aforementioned tumor 
suppressors. In a healthy neuron, homeostasis of key intracel‑
lular molecules is of great importance, and preventing neuronal 
apoptosis is one of the primary goals of treatments designed 
for dementia‑associated diseases. In the present review, prog‑
ress into the understanding of dietary regulation for preventing 

or limiting development of dementia is discussed with a focus 
on the modulatory roles of PTEN and BRCA1 signaling.
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1. Introduction

Dementia is a failure of cognitive abilities characterized 
by severe neurodegeneration in selective neural systems, 
and the incidence of dementia is predicted to increase 
significantly within 20 years (1). Dementia is one of the most 
significant health burdens, and, at present, there are no suit‑
able disease‑modifying agents for treatment of progressive 
dementia. Alzheimer's disease (AD) is the most common 
form of dementia, and is the most significant health‑concern 
worldwide (2). Pathologically, AD is a slowly progressing 
neurodegenerative disorder categorized by severe damage of 
neurons and synapses (3). Aberrations of amyloid‑β peptide 
may be responsible for the neuro‑synaptic malfunctions 
leading to cognitive deficits in AD (4). Genetic factors account 
for ~80% of the risk contributing to AD, while modifiable 
factors associated with lifestyle may also be involved (5). 
Epidemiological studies have suggested that nutrition is one of 
the most important yet modifiable risk factors of AD (6). Risk 
factors for vascular dementia, the second most common cause 
of dementia, include hypertension and metabolic syndrome, 
which are also modifiable lifestyle factors. Managing these 
non‑genetic risk factors may provide effective opportunities to 
prevent the progressive cognitive decline.

Studies have shown that oxidative stress represents a major 
risk factor associated with the pathology of dementia (7,8). 
Substantial evidence has established that oxidative stress as an 
aspect in AD is associated with neuronal apoptosis and brain 
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dysfunction (9). Particularly, mitochondrial dysfunction is a 
conspicuous feature observed during neurodegeneration (10), 
which is of importance in the formation of reactive oxygen 
species (ROS) and thus DNA damage. ROS are a group of 
oxygen‑containing molecules which contribute to increased 
oxidative stress, and are formed as a result of oxygen metabo‑
lism in cells. Thus, increased oxidative stress may result 
in increased DNA damage, and subsequently apoptosis, 
which contributes to the degeneration of neuronal tissue. 
Detoxification of ROS and/or reduction of ROS levels may 
protect neurons from DNA damage and apoptosis. Since meta‑
bolic processes physiologically produce ROS, any means used 
to reduce ROS levels may assist in decreasing the prevalence 
and incidence of dementia. Cells possess machinery to retain 
genomic integrity in response to genotoxic damage. There is 
increasing evidence which supports the use of different anti‑
oxidants as a treatment for AD (11), including vitamins (12). In 
addition, dietary and nutritional approaches are of significant 
importance in the management of AD. Improving and altering 
nutrient intake may reduce the progression of chronic neuro‑
degenerative diseases, an area which has recently been gaining 
increased interest (13), and nutritional plans are progressively 
being integrated into public health strategies (14). In the 
present review, the functions of key intra‑cellular signaling 
molecules involved in oxidative genotoxic stress and DNA 
repair in neurons are summarized, offering a clarification 
on the molecular mechanisms for the treatment of dementia. 
Specific attention is placed on the mechanisms underlying the 
neuroprotective effects of specific nutrients against dementia 
in reducing brain damage, which may be used as an efficient 
therapeutic intervention.

2. Role of ROS in the pathogenesis of dementia

In AD, significant molecular and biochemical changes result in 
an increase in amyloid‑β substance, which is modified by ROS 
into a toxic product that promotes apoptosis of neurons (15), 
suggesting a link between progression of AD and oxidative 
stress. In cells, metabolic processes physiologically produce 
ROS that cause oxidative damage to DNA (16), and this physi‑
ological production of ROS is associated with aging of the 
brain and neurodegeneration. Under physiological conditions, 
ROS may act as a second messenger in cells (17). ROS controls 
several physiological processes, such as the hypoxic response 
and inflammation, as well as the regulation of growth factor 
signaling (18). Abnormal accumulation of amyloid‑β inhibits 
long‑term potentiation in neurons which is prevented by treat‑
ment with antioxidants (19). Therefore, decreasing oxidative 
damage in the brain may inhibit or reduce the damage to neurons. 
ROS may exert its effects on cells through the regulation of 
several target molecules, including PI3K/AKT/PTEN (20). 
Interactions of ROS with amyloid‑β have been shown to 
prevent mitochondrial respiration (21). In addition, increased 
levels of ROS within the mitochondria of neurons may disturb 
synaptic plasticity, and thus memory formation/retention (22). 
Therefore, ensuring that ROS levels are maintained within 
physiological ranges may improve outcomes in patients with 
AD by preventing/reducing damage to neurons. Neurons 
exhibit considerably high levels of metabolic activity and 
use distinct oxidative damage‑repair mechanisms to reverse 

DNA damage (23). Therefore, malfunctions of the DNA repair 
system in the brain may result in neurological dysfunction. 
Damaged DNA can be repaired by the DNA repair machinery, 
which consists of ataxia telangiectasia‑mutated (ATM) and 
ATR, BRCA1, PTEN and others (24). Abnormalities in these 
molecules are often observed in patients with neurodegenera‑
tive diseases (25).

ROS are free radicals under physiological conditions. 
Hyperglycemia exacerbates the accumulation of ROS in 
neurons leading to increased apoptosis (26). Several envi‑
ronmental and lifestyle associated factors, including tobacco 
smoking, alcohol consumption, exposure to ionizing radiation, 
infections, inflammation and even the aging process may 
result in increased oxidative stress (27). In addition, in popu‑
lation studies, obese patients have been shown to possess 
significantly higher serum levels of ROS, suggesting that 
obesity may increase oxidative stress (28). High‑intensity 
exercise increases oxidative damage and induces disruption 
of the blood‑brain barrier (28). Exercising may upregulate 
the expression of endogenous antioxidants and thus reduce 
oxidative damage; however, vigorous exercise may result in 
the accumulation of ROS (29). Consistent exposure to oxida‑
tive stress is an initiator of various chronic diseases including 
degenerative disorders, diabetes, cardiovascular diseases and 
cancer. In general however, cells are able to correct damage to 
DNA as a result of oxidative stress to a certain extent.

3. PTEN and BRCA1 tumor suppressors participate in 
DNA repair initiated by oxidative DNA damage

PTEN is a tumor suppressor with dual‑specificity phosphatase 
activity; protein phosphatase activity and lipid phosphatase 
activity, and antagonizes the activity of PI3K (30). Cells 
lacking PTEN have higher levels of PIP3 which activates 
downstream targets of PI3K/AKT. The PI3K/AKT signal 
regulates a variety of cellular events including proliferation, 
survival and apoptosis of cells (Fig. 1). PTEN is associ‑
ated with the apoptotic cascade, which may be a result of 
its effect on decreasing PI3K/AKT signaling (31). In part, 
neuronal cell death may be attributed to the differences in 
PTEN expression (32). Inhibition of PTEN protects synaptic 
function and thus cognition in animal models of AD (33). 
Suppressing PTEN and/or increasing the activity of AKT 
reduces the levels of oxidative stress, and thus decreases 
cell death, suggesting that AKT activation may be required 
for neuroprotection. Thus, PTEN contributes to the defense 
mechanisms against severe oxidative damage in the brain. It 
has been shown that PTEN insufficiency results in an increase 
in mitochondrial activity, consistent with the activation of 
the AKT signaling pathway (34), and thus may increase the 
levels of ROS.

In addition to PTEN, BRCA1 serves an important role in 
the response to DNA damage (35). The PI3K/AKT signaling 
pathway has been shown to be constitutively activated in 
BRCA1‑defective cells (35). BRCA1, is one of the best studied 
and prominent suppressors of breast cancer, mutations of 
which are associated with breast and/or ovarian cancer risk 
in addition to genetic susceptibility (36). BRCA1 exerts 
several effects on the DNA repair system (37). BRCA1‑related 
hereditary cancer is a type of cancer with functional defects 
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in the DNA repair mechanisms (38). Mutations of the BRCA1 
gene are associated with increased genomic instability (30,31), 
which may increase the rate of accumulation of genetic muta‑
tions. The primary recognition molecule for DNA damage 
is ATM, which is the checkpoint kinase that phosphorylates 
a number of proteins including BRCA1 in response to DNA 
damage (39). Reduced levels of BRCA1 expression have been 
observed in the brains of patients with AD (40). Knocking down 
neuronal expression of BRCA1 results in an increased rate of 
DNA double‑stranded breaks, synaptic plasticity impairments 
and memory deficits (40). Therefore, BRCA1 may support 
neuronal integrity and cognitive function by protecting the 
neuronal genome, and depletion of neuronal BRCA1 may result 
in cognitive deficits. Activation of the DNA repair system to 
protect neurons may occur during the early stages of neurode‑
generation, as the impairment of BRCA1 accelerates disease 
progression (41). Oxidative damage to the DNA of neurons has 
been demonstrated to be a significant contributing factor in the 
development of dementia. BRCA1 reduces the production of 
ROS (42), which in‑turn, results in decreased oxidative damage 
to the DNA (35). BRCA1 also supports the telomere, altera‑
tions of which may result in neurodegeneration (43). BRCA1 
serves an important role in telomere maintenance, although 
the exact mechanisms remain unknown (43). Telomere length 
insufficiency is a typical feature of degenerating neurons in the 
brains of patients with dementia (44). Additionally, there may 
be an indirect association between PTEN and BRCA1 gene 
function (45). PTEN inhibition represses nuclear translocation 
of BRCA1, which impairs DNA repair resulting in an accumu‑
lation of DNA damage (46).

4. Certain dietary compounds exhibit neuroprotective 
effects by modulating PTEN and/or BRCA1 activity

Due to a lack of reliable treatment options, brain dysfunc‑
tion and/or dementia is an increasing public health concern. 
A number of disease‑protective factors, such as physical 
activity, sleep and dietary patterns, have been proposed 
by epidemiological research (47). Among these factors, 
dietary choices may exhibit certain neuroprotective effects. 
In particular, dietary choices may result in alterations to 
AKT/PTEN as well as BRCA1 signaling, and may prevent 
neurodegenerative diseases or reduce progression. Several 
plants and fruits are promising candidates for reducing the 
progression or risk of dementia diseases. An ingredient 
derived from the root of Curcuma longa, curcumin, present 
in culinary turmeric, may reverse the effects of dementia 
on memory (48). The neuroprotective effects of curcumin 
may be mediated through modification of the PI3K/AKT 
signaling pathway (49). Kaempferol is a flavanol present in 
several plants, including grapefruit and edible berries, which 
has been shown to demonstrate neuroprotective effects in 
a rat animal model (50), and Kaempferol protects neurons 
through activation of AKT signaling (51). A neuroprotective 
ingredient of a Chinese medicinal herb, Herba epimedii, 
Icariin, reduces PTEN expression following activation of 
PI3K/AKT signaling (52). Furthermore, certain compo‑
nents of rosemary herb prevent the expression of PTEN in 
K562 myeloid cells (53). In contrast to this, the expression 
levels of PTEN are increased following treatment with 
Ginsenoside (54).

Figure 1. Schematic illustration of PTEN and BRCA1 signaling pathways. Examples of molecules involved in Alzheimer's disease known to affect cell 
survival, apoptosis and DNA repair are presented. Some critical pathways have been omitted for clarity and brevity. BRCA1, breast cancer gene 1; PTEN, 
phosphatase and tensin homologue deleted on chromosome 10; PI3K, PI3K, phosphoinositide‑3 kinase.
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Fat soluble lycopene is a carotenoid with a red pigment 
found in several fruits and vegetables such as tomatoes. 
Treatment with the lycopene increased the mRNA expression 
levels of BRCA1 (55). In addition, lycopene increases phos‑
phorylation of BRCA1 in breast cancer cells (56). Treatment 
with phytoestrogens result in higher expression levels of 
BRCA1 by reversing DNA hypermethylation (57), and indi‑
viduals with phytoestrogen‑rich diets possessed increased 
expression levels of BRCA1 mRNA (58). Rats exposed to 
genistein showed higher expression levels of BRCA1 in the 
mammary glands (59). Genistein and indole‑3‑carbinol are 
biochemicals derived from soy and green vegetables, respec‑
tively. These phytoestrogens have been shown to reduce 
the risk of AD progression (60). Furthermore, gallic acid, a 
phenolic compound present in natural plants, increases the 
phosphorylation of BRCA1 (61).

The aforementioned potential compounds found in 
foodstuffs which may exhibit neuroprotective effects, 
predominantly do so by exerting some sort of influence on 
tumor suppressor molecules, such as PTEN and BRCA1. Thus, 
PTEN and BRCA1 functions may be important for individual 
brain health (Fig. 2). As mentioned above, imbalances in 
the activity between PTEN and AKT may contribute to the 
pathogenesis of dementia. Therefore, appropriate activation 
and/or inhibition for maintaining the balance of kinases may 
be important (31). Certain food and/or dietary components may 
aid in maintaining the balance of these signaling molecules 
by modulating their functional activities (Fig. 3). Thus, future 
studies should focus on determining the most appropriate 
method of using these neuroprotective compounds identified 
in in vitro studies and animal models, and translating them to 
bedside therapeutics.

5. Dietary nutrients may reduce oxidative stress

Superoxide dismutases (SODs) exhibit robust antioxidant 
activity characterized by their ability to scavenge ROS (61). 
SODs catalyze the reaction of superoxide to hydrogen 
peroxide (62). As aberrantly increased ROS levels results in 
extensive oxidative DNA damage, SODs have been suggested 
to serve as a principal defense system against oxidative 
stress. There are three types of SODs that have been identi‑
fied in humans, SOD1‑3. Cytosolic SOD1 may serve a role in 
conjunction with Cu2+/Zn2+ ions in the prevention of central 
nervous system damage (63). Several mutations in the SOD1 
gene are responsible for mitochondrial impairments, leading 
to progressive neurodegenerative diseases including familial 
amyotrophic lateral sclerosis (64). SOD1‑null animals also 
develop other seemingly unrelated diseases, such as muscle 
atrophy (65). SOD2 is a functional tumor suppressor, and 
SOD2 expression has been reported to be significantly reduced 
in several tumors (65). SOD2 and Mn2+ ions are present in the 
matrix of the mitochondria, the primary site of free radical 
formation from the electron transport chain. ATP produc‑
tion in mitochondria is impaired in patients with AD (66). 
Therefore, the primary function of SOD2 may be to protect the 
mitochondria against oxidative damage. SOD3 and Cu2+/Zn2+ 
are secreted into the extracellular matrix and contribute to 
metabolic regulation of neurons by altering the rate of blood 
flow (67), and may be induced by chemical antioxidants such as 
vitamin C (68). Dietary intake of Cu2+ stabilizes SOD activity, 
indicating a potential therapeutic benefit (69). It has been 
suggested that inhibition of ROS by SODs decreases neuronal 
cell apoptosis, microglial cell activation, and disruption of the 
blood brain barrier, thus maintaining brain health (70). Active 

Figure 2. Imbalances in the activities between oxidants and antioxidants and/or between DNA repair and DNA damage contribute to the pathogenesis of 
dementia as a result of neuronal cell death. SOD, superoxide dismutase; BRCA1, breast cancer gene 1; PTEN, phosphatase and tensin homologue deleted on 
chromosome 10; Vit., vitamin; ATM, ataxia telangiectasia‑mutated.
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aglycone‑genistein inhibits ROS production by activating 
SODs (71). Lycopene also inhibits neuronal apoptosis by 
reducing ROS levels, and by improving mitochondrial func‑
tion (72). Expression of SODs is dependent on the activity of 
peroxisome proliferator‑activated receptors (73). Therefore, 
resveratrol analogs, which activates peroxisome prolifer‑
ator‑activated receptors, may increase the mRNA and protein 
expression levels of SODs (74). Furthermore, increased expres‑
sion of SOD2 has been observed following administration of 
grape juice (75). The polyphenolic antioxidant, resveratrol, and 
calorie restriction may promote human longevity. Stevioside, 
a natural sweetener, may also increase the expression of 
SOD1‑3 (76). In addition, butyrate, a short‑chain fatty acid, 
increases the expression of SODs (77).

Antioxidant supplements may reduce cognitive decline. 
Vitamin C, vitamin E and the vitamin‑like substance coen‑
zyme Q10 have been used to treat patients with dementia with 
some efficacy (78), and the plasma levels of vitamin C have 
been found to be considerably lower in patients with AD (79). 
Decreased levels of plasma vitamin E are associated with an 
increased risk of neurodegenerative disorders (80). Vitamin 
E acts as a scavenger of free radicals (81), and thus, may 
exhibit a neuroprotective effect by scavenging ROS. In addi‑
tion, ingestion of vitamin E is associated with an increase 
in the levels of SODs (80). Dietary omega‑3 polyunsatu‑
rated fatty acid (PUFA) has been demonstrated to improve 
memory and learning processes (82). Long‑term diets rich 
in omega‑3 PUFA may lead to lower levels of DNA damage 
caused by oxidative stress (83). Perilla frutescens is a good 
source of the omega‑3 PUFA. The perilla‑diet promotes 

neuronal signaling and alters synaptic plasticity, improving 
learning and memory (84), possibly by enhancing intracel‑
lular SOD activity (85). Together, these studies support 
the hypothesis that SODs, as well as antioxidant vitamins, 
offer a certain degree of neural protection against dementia 
progression. However, the association between neuroprotec‑
tion and nutrient consumption is a complex matter of study. 
Difficulties in the variabilities of human‑diets makes this a 
challenging subject to research.

6. Conclusion

To maintain physiological cellular function, cells prevent 
against oxidative damage through the use of antioxidants. In 
neurons, excess oxidative stress may result in neuronal cell 
death and potentially dementia. In dementia, genomic DNA 
damage is a feature of the pathogenesis of neurodegeneration; 
however, DNA damage may be additionally explained by a lack 
of or improper DNA repair mechanisms. Therefore, increased 
production of ROS and/or alterations in BRCA1 and PTEN 
function concurrently suggest a neurodegenerative stimulus 
present in dementia. Several compounds in naturally occurring 
foodstuffs may exhibit neuroprotective effects, which may 
facilitate DNA repair or reduce ROS‑production, and some 
of these neuroprotective compounds may form the basis of 
future potential therapeutic options for preventing or limiting 
the progression of dementia. Future therapeutic strategies 
should utilize the observation that defects in the key processes 
required for neuronal homeostasis, which results in unfavorable 
neuronal conditions, and this should represent a basis for the 

Figure 3. Several food ingredients and/or dietary components may improve the balance of oxidants/antioxidants, reducing neuronal cell death and thus 
maintaining a healthy brain. SOD, superoxide dismutase; BRCA1, breast cancer gene 1; PTEN, phosphatase and tensin homologue deleted on chromosome 10; 
Vit., vitamin; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid.
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development of dietary treatments for dementia. One aspect 
to consider is the difference between psychiatric illnesses 
and dementia. For treatment of psychiatric illnesses, it is 
important to maintain the levels of key intracellular molecules 
balanced (31). For dementia, it is also imperative to limit or 
prevent neuronal apoptosis (Fig. 3). However, both these aspects 
are important for keeping the brain functioning healthily.

Numerous neuroprotective factors have been suggested as 
potential targets for preventing or limiting neuronal apoptosis. 
For example, phytoestrogens may rescue neurons and glial cells 
from cell apoptosis by preventing oxidative stress. However, 
despite experimental interpretations based on in vitro and 
in vivo studies, the translational value of the neuroprotective 
compounds in the clinical setting remains to be determined. 
The potential therapeutic effects for preventing dementia 
should be more cautiously considered in clinical research (86). 
It may also be possible to use these compounds found in 
natural foodstuffs as an adjuvant alongside established treat‑
ment modalities. Further mechanistic studies are required to 
understand the detailed molecular mechanisms underlying the 
neuroprotective effects of the compounds highlighted in the 
present review. Additionally, clinical studies are required to 
determine their efficacy in humans.

In conclusion, ROS as well as PTEN and BRCA1 tumor 
suppressors may be involved in the pathogenesis of dementia 
and neuroprotective compounds found in certain diets may 
reduce or prevent dementia by reducing oxidative DNA damage.
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