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Temporal correlation has been exploited for accelerated dynamic MRI reconstruction.

Some methods have modeled inter-frame motion into the reconstruction process

to produce temporally aligned image series and higher reconstruction quality.

However, traditional motion-compensated approaches requiring iterative optimization of

registration and reconstruction are time-consuming, while most deep learning-based

methods neglect motion in the reconstruction process. We propose an unrolled deep

learning framework with each iteration consisting of a groupwise diffeomorphic

registration network (GRN) and a motion-augmented reconstruction network.

Specifically, the whole dynamic sequence is registered at once to an implicit template

which is used to generate a new set of dynamic images to efficiently exploit the

full temporal information of the acquired data via the GRN. The generated dynamic

sequence is then incorporated into the reconstruction network to augment the

reconstruction performance. The registration and reconstruction networks are optimized

in an end-to-end fashion for simultaneous motion estimation and reconstruction of

dynamic images. The effectiveness of the proposed method is validated in highly

accelerated cardiac cine MRI by comparing with other state-of-the-art approaches.

Keywords: dynamic MR imaging, deep learning, reconstruction, registration, multi-task learning

1. INTRODUCTION

Dynamic MRI has found various applications in clinical practice, such as cardiovascular,
pulmonary and abdominal imaging. Rapid data acquisition is required in dynamic MRI to provide
sufficient spatial and temporal resolution. However, MRI is known to have low acquisition speed,
and accelerated data acquisition and reconstruction is an important topic in dynamic MRI.

Parallel imaging (1, 2) and compressed sensing (CS) (3) have achieved great success in
accelerating MRI by recovering images from undersampled measurements that are fewer than
those required by the Nyquist law. Image reconstruction from undersampled MRI data is an ill-
posed inverse problem and regularization on prior information is required to stabilize the solution.
For dynamic MRI reconstruction, regularizations have been designed to exploit the spatial and
temporal correlation of dynamic images, including sparsity regularization in transformed domains
(4–6), low-rank constraint (7), or the combination of sparsity and low-rank priors (8–10).
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Attempts have been made to further improve the
reconstruction performance through modeling the motion
to increase the signal sparsity, which is achieved by exploiting
the abrupt signal changes through time caused by inter-frame
motion (11–20). The challenge of applying motion estimation
(ME) and motion compensation (MC) to dynamic MRI
reconstruction is the lack of good quality dynamic images for
motion estimation. In k-t FOCUSS with ME/MC (12), each
frame is individually registered to a high-quality reference
image using a block matching algorithm. However, reference
images of good quality are usually not available. The MASTeR
algorithm (13) estimates motion between adjacent frames to
construct motion-adaptive regularization. Some authors have
modeled the reconstruction process as a joint task of motion
estimation and reconstruction (19–21), with the two tasks
being optimized alternatively, such as MC-JPDAL (19) where
the dynamic sequences and the inter-frame motion vectors
are estimated jointly by combining an intensity-based optical
flow constraint with the traditional CS scheme, and then the
reconstructed dynamic images can be further refined with the
estimated motion vectors.

However, pairwise registration is performed in the above
mentioned approaches, involving only two frames for ME, and
consequently additional information in the rest of the frames
cannot be exploited, whichmakesME sensitive to undersampling
artifacts in the dynamic images. To overcome such shortcomings
of pairwise ME, Royuela-del Val et al. (16) propose to use
groupwise non-rigid registration to register the full set of
dynamic images for only once to generate a temporally-aligned
dynamic sequence to improve the dynamic reconstruction in
a CS framework (GW-CS). Overall, ME/MC can be integrated
into the dynamic reconstruction procedure to improve the
sparsity of CS reconstruction or provide additional constraints to
improve the reconstruction performance. However, the iterative
optimization of ME and CS reconstruction is computationally
demanding. Especially, the non-rigid registration for ME
requires iterative optimization which takes up a lot of the
computation time. Although methods have been developed
to reduce the non-rigid registration time from hours to
minutes, the computation time of registering a sequence
of dynamic images using groupwise registration or multiple
pairwise registrations can still be considerable. Moreover, the
non-rigid registration step has to be performed several times
in the motion-compensated reconstruction procedure, so the
traditional motion-compensated reconstruction approaches tend
to be time-consuming.

Deep learning-based MRI reconstruction methods have been
proposed to significantly reduce the reconstruction time and
have demonstrated better reconstruction quality than CS-based
methods. Deep learning approaches are usually designed to
learn the mapping from undersampled images/measurements
to fully sampled images/measurements based on the training
data (22). Whilst most deep learning reconstruction methods
are for static images, networks such as 3D convolutional neural
network, 2D/3D+1D convolutional networks and 2D recurrent
neural network have been proposed for dynamic reconstruction

(23–28). Those state-of-the-art methods can be impaired by
spatially unmatched anatomies as they could lead to blurry or
temporal inconsistent images for highly undersampled data.

However, so far, only limited works have incorporated motion
information into deep learning-based reconstruction. Previously,
we have developed an end-to-end trainable framework for
motion corrected 3D cardiac image reconstruction (29), but this
framework is not applicable to dynamic reconstruction. Huang
et al. develop a motion-guided dynamic reconstruction network
that utilizes motion estimation and motion compensation to
improve the reconstruction quality, which, however, requires a
fully sampled reference frame that may not be available (30).
The most relevant work is Seegoolam et al. (31), where motion
is estimated in each cascade from an intermediate reconstructed
image to fuse the full information of acquired data and to aid
in improving reconstruction performance. However, this method
requires a large number of pairwise registrations to estimate the
motion between a specific frame and all the other frames, which
are computationally redundant and expensive. A more efficient
motion estimation framework is yet to be developed and to be
incorporated into the dynamic reconstruction network.

To this end, we propose a novel joint learning approach that
performs non-rigid groupwise registration and reconstruction
of highly undersampled dynamic MRI. An unrolled deep
learning architecture is constructed with each unrolled iteration
consisting of a groupwise diffeomorphic registration network
(GRN) and a reconstruction network. The GRN is used to
efficiently exploit the dynamic information across all frames
by estimating the invertible motion fields between the whole
sequence and an implicit template, thereby generating a
new set of dynamic images by transforming the template
with estimated motion fields. The motion-augmented dynamic
sequence is then incorporated into the reconstruction network
to improve the reconstruction performance. For GRN, we
employ the self-supervised deep learning registration model,
which is more efficient and robust than traditional motion
estimation algorithms in the presence of undersampling artifacts
(32, 33). To the best of our knowledge, this is the first
work that embeds groupwise registration network into the
deep learning reconstruction framework to exploit the full
temporal information of the acquired data to aid in the
dynamic MRI reconstruction. The contributions of this work
are three aspects. Firstly, we design a groupwise diffeomorphic
registration network that provides invertible motion fields,
and requires no motion ground truth for training and is
robust to undersampling artifacts. Secondly, we systemically
compare the performance of groupwise registration and pairwise
registration in the proposed joint learning approach regarding
motion estimation and reconstruction performance. Finally,
we devise a composite loss which comprises of a motion
estimation loss and an image reconstruction loss to train
the joint learning network on an end-to-end basis. The
effectiveness of the proposed method is validated in highly
accelerated cardiac cine MRI by comparing with other state-
of-the-art non-learning-based and learning-based dynamic MRI
reconstruction methods.
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2. MATERIALS AND METHODS

The proposed groupwise registration and dynamic
reconstruction network (GRDRN) consists of several unrolled
iterations with each iteration consisting of a groupwise
registration network (GRN) to generate motion-augmented
dynamic sequence and a dealiasing reconstruction network.
Details of each part is introduced as follows.

2.1. Learning-Based Groupwise
Registration
Provided a set of dynamic images X = {X1, · · · ,XN} with N
being the number of dynamic frames, the groupwise registration
attempts to simultaneously estimate a set of transformations
T = {T1, · · · ,TN} that warp the images X to a common
reference image X̄, such that the deformed image Tm ◦ Xm

is similar to Tn ◦ Xn ∀m 6= n with ◦ being the warping
operator. To obtain differentiable and invertible deformation
fields, and following the conventional diffeomorphic registration
that integrates stationary or time-varying velocity fields (34),
a set of stationary velocity fields υ = {v1, · · · , vN}, pointing
from the template image X̄ to the dynamic images X are
estimated. Subsequently, the transformations T and their inverse
transformations T−1 = {T−1

1 , · · · ,T−1
N } can be estimated by

respectively integrating the velocity field υ and the negative
velocity field−υ over unit time (34, 35).

For learning-based groupwise registration (Figure 1), we
define a network Fθ with parameters of θ to simultaneously
estimate a set of transformations for a dynamic sequence: υ =

Fθ (X) and the transformations T is constructed based on υ . The
network is optimized via the intensity-based similarity (mean-
squared-error, MSE) and velocity field smoothness loss:

Lreg(X,T) =
1

N

N∑

n=1

‖X̄ − Tn ◦ Xn‖
2
2 +

1

N

N∑

n=1

‖Xn − T−1
n ◦ X̄‖22

+ α
1

N

N∑

n=1

‖∇vn‖
2
2, (1)

where the first term enforces the similarity between the implicit
reference image and the warped dynamic images; the second term
imposes the intensity similarity between the original dynamic
images and the generated dynamic images by transforming the
template with the inverse transformations (T−1

n ◦ X̄); the third
term is to encourage the smoothness of the estimated velocity
fields and α is the regularization weight. The implicit template
image is defined as the average of the warped dynamic images
(36, 37):

X̄ =
1

N

N∑

n=1

Tn ◦ Xn. (2)

In addition, to enforce the reference image to lie in the geometric
center of the group, as proposed in Li et al. (37), the average
velocity field is subtracted from each of the estimated velocity
fields: v̂n = 1

N

∑N
n=1 vn, and the sum of all the velocity fields is

consequently zero.

2.2. Motion-Augmented Dynamic
Reconstruction
We aim to integrate the groupwise registration module,
GRN, into an unrolled dynamic MRI reconstruction network
(Figure 2), where the registration and reconstruction modules
are optimized iteratively. In each iteration, the GRN takes
as input the magnitude of undersampled or intermediate
reconstructed dynamic images and outputs the velocity fields
between the implicit template and the dynamic images, from
which the sets of transformations and inverse transformations
can be obtained. As defined in Equation (2), the implicit template
image is the average of all the warped dynamic images so that
the full information of dynamic measurements is efficiently fused
after motion compensation. Then, a set of dynamic images can
be generated by warping the template image X̄k with the inverse

transformations Tk−1 = {Tk−1
1 , · · · ,Tk−1

N } at the k-th iteration:

Gk
n = DC(Tk−1

n ◦ X̄k), (3)

where Gk = {Gk
1, · · · ,G

k
N} is the generated, motion-augmented

dynamic images, DC indicates data consistency enforcement
which is performed by plugging in the originally acquired data
for each frame. The zero-filled reconstructed images are denoted
as X0, and the corresponding template image and generated
dynamic images are X̄0 and G0, respectively.

The motion-augmented dynamic image series which
has fused the information along the temporal dimension
is used as the input to the dealiasing network to aid the
reconstruction. Specifically, two sets of motion-augmented
dynamic images are generated with, respectively, the output
of the previous iteration and the zero-filling reconstructed
images and are stacked together as the input to the
reconstruction network, the combination of which was
demonstrated to be effective as in Seegoolam et al. (31).
Therefore, in the k-th iteration, the dealiased dynamic images
Zk are:

Zk = H8(G
k−1,G0,Xk−1)+ Xk−1, (4)

where the residual learning strategy is employed and
H8 is the dealiasing network patameterized by 8. The
output of the dealiasing network goes through the
DC layer (23) to obtain the reconstruction at the k-
th iteration: Xk = DC(Zk), which are applied as the
input to the next iteration for groupwise registration and
motion-augmented reconstruction.

2.3. End-to-End Optimization Framework
The registration loss and reconstruction loss are designed for
each unrolled iteration to train the proposed GRDRN. For
registration, previous works (32, 33) have demonstrated that
by constructing the MSE loss based on the fully sampled
ground truth images, it is possible to learn the motion from
undersampled images. Therefore, while the input to GRN is
the undersampled or intermediate reconstructed images, the
registration loss as defined in Equation (1) for the k-th iteration
L
k
reg(X

gt,Tk) is calculated based on the fully sampled ground
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FIGURE 1 | The framework of the learning-based groupwise registration network (GRN, Fθ ). The GRN takes a sequence of images as input and generates the

invertible forward and backward motion fields between an implicit template and the dynamic images, where the template is the average of the warped dynamic

images with the forward motion. A new sequence of dynamic images can be generated by warping the template using the backward motion fields.

truth dynamic images Xgt = {X
gt
1 , · · · ,X

gt
N }. The reconstruction

of each unrolled iteration is compared with the fully sampled
ground truth to calculate the reconstruction loss: Lk

rec(X
gt,Xk) =

1
N

∑N
n=1 ‖X

gt
n −Xk

n‖
2
2. The joint training loss of each iteration is a

weighted combination of the registration loss and reconstruction
loss, and the end-to-end optimization problem is formulated as:

argmin
θ ,8

K∑

k=1

wk(Lk
rec(X

gt,Xk)+ λLk
reg(X

gt,Tk)), (5)

where K is the number of unrolled iterations, wk = exp(k−K) is
the weighting factor of each unrolled iteration, and λ is the weight
controlling the contribution of the registration loss. It is noted
that the network parameters are shared for different unrolled
iterations to reduce the number of trainable parameters (38).

The UNet architecture (39) is adapted for the registration
network Fθ and dealiasing network H8, while the network
architecture can be modified for specific applications. We adopt
the 2D UNet for Fθ with the magnitude of the dynamic
images stacked along the channel dimension, and employ the
3D UNet for H8 with the real and imaginary components
of the complex images stacked along the channel dimension.
The convolution layers produce a set of C feature maps by
individually convolving the input with C kernels. In this work,
we use C = [32, 64, 128, 256, 128, 64, 32] for both Fθ and H8.
Each convolution layer is of kernel size (3, 3) and (3, 3, 3) for
Fθ and H8 respectively, followed by a leaky ReLU layer for

nonlinear activation except for the last convolution layer where
no activation function is used. Max-pooling and transposed
convolution is respectively used for the downscale and upscale
layers. The whole model has a total number of around 7M
trainable parameters.

2.4. Experiments
We evaluate our method on the dataset of breath-held 2D cardiac
cine MRI, where repeated breath-holds are usually required to
cover the whole left ventricle. During the acquisition, acceleration
is essential to reduce the scan time and the number of breath-
holds, and highly accelerated MRI acquisition may enable the
scan of whole-heart cine in a single breath-hold. We therefore
target for high acceleration factors of 8×, 12×, and 16×. We
evaluate the motion estimation and reconstruction performance
of the proposed method in retrospectively undersampled cardiac
cine MRI data. We compare GRDRN with state-of-the-art
conventional dynamic reconstructionmethods withME/MC and
learning-based dynamic reconstruction approaches with pairwise
registration or without motion estimation. The compared
methods are detailed in the Section of 2.4.3.

2.4.1. Dataset and Preprocessing

We use a dataset of 56 cardiac cine MRI scans including 34
healthy volunteers and 22 patients with suspected cardiovascular
diseases acquired using a commercially available 2D balanced
steady-state free precession cine imaging technique. Multiple
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FIGURE 2 | (A) The unrolled architecture of GRDRN for K iterations, where Fθ and H8 is the groupwise registration and dynamic reconstruction network respectively.

(B) The detailed framework of the k-th iteration in GRDRN. The groupwise registration network Fθ takes as input the reconstructed dynamic images from the previous

iteration and outputs the invertible motion fields between the implicit template and dynamic images. The reconstruction network H8 denoises the dynamic images

with additional inputs of the motion augmented dynamic sequences. After the data consistency layer (DC), the denoised dynamic images will be inputted to the next

iteration.

short-axis slices are acquired in 6–8 breath-holds of around 12-
s duration (2 slices per breath-hold) each with 20 s pause in
between, which results in an acquisition time of 3–4 min. The
imaging parameters are: in-plane spatial resolution = 1.9 × 1.9
mm; matrix size = 176 × 144; slice thickness = 8 mm; TR/TE
= 2.12/1.06; flip angle = 52◦; bandwidth = 915 Hz/pixel; 25
dynamic frames with temporal resolution of 40 ms; parallel
imaging factor= 2.

The 2-fold accelerated data is firstly reconstructed using
a k-space based parallel imaging method GRAPPA (2). The
reconstructed multi-coil k-space data is coil combined into
single-coil k-space data and regarded as the “fully sampled”
reference in this work. The image reconstructed by inverse
Fourier Transform of the single-coil k-space is thus considered
as the ground truth image for training and evaluation of
the reconstruction methods. We have randomly selected 35
subjects for training, 3 subjects for validation and 18 subjects
for testing. For each subject, 6–8 central slices are selected
resulting in 263, 23, and 128 slices for training, validation and
testing, respectively.

We consider Cartesian undersampling in this work, where the
data is fully sampled along the frequency-encoding dimension
and is randomly undersampled along the phase-encoding
dimension. The sampling density conforms to a zero-mean
Gaussian distribution, and five central k-space lines are always

sampled for each frame. We follow the implementation in
Schlemper et al. (23) to generate undersampling masks for 8×,
12×, and 16× acceleration factors.

2.4.2. Implementation Details

The number of unrolled iterations in the proposed GRDRN is set
to 4. The weighting factor α and λ was, respectively, optimized
to be 0.05 and 1 by a limited number of searches. The network
performance reaches a plateau within 60 epochs. The training
samples are shuffled at the beginning of each epoch and the
undersampling masks are generated on-the-fly during training to
reduce overfitting. We train the network with Adam optimizer
with the initial learning rate of 1e − 4, which is reduced by half
every 20 epochs. The network is trained on a single NVIDIA
GeForce RTX 3090 graphics card. With batch size of 1, the
network training took around 12 h and 19 GB GPU memory.

2.4.3. Baseline Methods

The reconstruction performance of the proposed method
is compared with state-of-the-art non-learning-based and
learning-based dynamic MRI reconstruction methods.
Specifically, for conventional methods, we consider two
reconstruction approaches that modeled cardiac motion
during reconstruction. One is GW-CS (16), which adopts a
B-spline based groupwise registration approach to register the
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whole sequence to a common template to generate temporally
aligned dynamic images, which are highly sparse in temporally
transformed domains and can benefit the compressed sensing
reconstruction. The other is MC-JPDAL (19) which combines
intensity-based optical flow constraint with the compressed
sensing scheme to jointly reconstruct the dynamic sequence
and estimate the motion fields between adjacent frames. Then,
the dynamic reconstruction is further refined through motion
compensation with the estimated motion fields in MC-JPDAL.
We have used the codes provided by the authors: GW-CS, https://
www.lpi.tel.uva.es/node/609; MC-JPDAL, https://github.com/
ning22/Motion-Compensated-Dynamic-MRI-Reconstruction-
with-Local-Affine-Optical-Flow-Estimation. The relevant
reconstruction parameters are optimized for our dataset.

For the learning-based methods, the motion-estimation
groupwise registration network is removed from the joint
learning approach to understand its benefits. This thus results
in a classic unrolled deep learning reconstruction framework
which alternates between network-based dealiasing and data
consistency enforcement (23), which is termed as CNN-DC
in this work. Furthermore, we hypothesize that the groupwise
registration should perform better than pairwise registration in
registering a group of dynamic images. To validate this point,
we replace the groupwise registration network with a pairwise
registration network where the dynamic images are registered
to a selected frame instead of the learned implicit template.
For the considered cardiac cine MRI, the diastolic phase which
is the first frame in the dynamic sequence is selected as the
registration reference. The pairwise registration-based motion
estimating dynamic reconstruction framework is called PRDRN
in this work. Other components are kept the same for GRDRN
and PRDRN except for the registration scheme. The CNN-DC
and PRDRN are trained with the same data and training settings
to GRDRN for fair comparison.

2.4.4. Evaluations

We analyze the reconstruction performance quantitatively by
calculating the peak signal-to-noise ratio (PSNR) and the image
structure similarity (SSIM) (40) between the ground truth images
and the reconstructed images with each reconstruction method.

We evaluate the motion estimation performance for the
pairwise and groupwise registration adopted in the deep learning
dynamic reconstruction task, PRDRN and GRDRN. The motion
estimation error cannot be calculated directly as motion ground
truth is not available. We propose to evaluate the registration
performance by evaluating the similarity between the generated
dynamic images with estimated motion fields and the original
dynamic ones. All learning-based registration methods in this
work are able to produce invertible motion fields, where
backward motion fields point from the dynamic images to
the reference image, and forward motion fields point from
the reference image to the dynamic images. For GRDRN, we
use the estimated forward motion fields to warp the fully
sampled dynamic images to obtain the implicit template, and
then warp the template image with the backward motion fields
to generate a new set of dynamic images. For PRDRN, we
warp the designated reference image with the backward motion

for the motion augmented dynamic images. We then calculate
PSNR and SSIM between the generated dynamic images and the
original fully sampled dynamic images with the assumption that
better registration performance should result in higher PSNR and
SSIM metrics.

3. RESULTS

3.1. Dynamic Reconstruction
We have a total of 128 slices from 18 testing subjects to
evaluate the reconstruction and motion estimation performance.
Figure 3 shows the example reconstructions of GW-CS, MC-
JPDAL, CNN-DC, PRDRN and the proposed GRDRN as
well as the fully sampled and zero-filled reconstructed images
for 12× acceleration, where five representative frames (frame
1, 6, 11, 16, and 21 ranging from systole to end-diastole)
are demonstrated. The error map of frame 21 for each
reconstruction method is shown in the last column to better
visualize the reconstruction difference. Comparing between
the reconstruction methods with ME/MC, over-smoothness
and/or residual undersampling artifacts can be observed in MC-
JPDAL and GW-CS reconstructions for this high acceleration
factor, while the learning-based PRDRN and GRDRN performs
better in removing artifacts and preserving image details.
Quantitatively, the groupwise registration-based reconstruction
approach GW-CS and GRDRN results in higher PSNR than the
pairwise registration-based reconstruction method MC-JPDAL
and PRDRN, respectively (GW-CS vs. MC-JPDAL: 36.89 vs.
31.46; GRDRN vs. PRDRN: 37.10 vs. 36.86), suggesting that
groupwise registration works better than pairwise registration in
improving the reconstruction quality. Comparing between the
learning-based methods, more obvious residual undersampling
artifacts can be observed in the CNN-DC reconstruction than
PRDRN and GRDRN, indicating that incorporating motion
estimation benefits reconstruction.

Figure 4 shows the representative cardiac cine images and
temporal profiles reconstructed with the five reconstruction
approaches for 8×, 12×, and 16× acceleration factors. The
image quality of PRDRN and GRDRN degrades less than
other reconstruction methods with the increasing of acceleration
factors. The proposed GRDRN results in the best visual
image quality for all acceleration factors among all the
compared methods.

The PSNR and SSIM of all the five reconstruction methods
for 8×, 12× and 16× accelerated cardiac cine MRI are
shown in the box plots in Figure 5. The quantitative metrics
agree with the visual assessment that the proposed GRDRN
consistently performed the best among the testing methods.
Notably, the PSNR and SSIM of GRDRN and PRDRN at
16× are similar to those of other reconstruction methods at
12×. We then emphasize the strength of the deep learning-
based motion-estimating dynamic reconstruction approaches
of producing good reconstruction quality even with high
acceleration factors. The average computation times per slice of
different reconstruction methods are: GRDRN 2.44s; PRDRN
2.38s; CNN-DC 0.29s; GW-CS 506.11s; and MC-JPDAL 298.59s.
It can be seen that deep learning-based methods operate much
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FIGURE 3 | Visualization of reconstructed images as well as the fully sampled and zero-filling (ZF) reconstructed images for five representative frames (systolic to

end-diastolic) in the case of acceleration rate 12×. The last column shows the difference maps between the reconstructed and ground-truth images for the frame in

the fifth column. The color bar represents the magnitude of the error in the difference maps.

faster than the traditional methods. Among the deep learning-
based methods, CNN-DC is the fastest as it does not have the
ME component, while the reconstruction times of GRDRN and
PRDRN are similar.

3.2. Motion Estimation
Following the scheme described in the section of Evaluations,

we evaluate the registration performance by assessing the

dynamic images generated using the invertible motion fields.

Animated images showing motion fields for a whole dynamic
sequence with 8×, 12× and 16× accelerations are provided in
Supplementary Figure S1. It is noted that the learned motion
is smooth and reasonable, and is mostly in the cardiac region.
Figure 6 illustrates two frames (one diastolic and one systolic
frame) of the generated cardiac cine images with motion

fields estimated with PRDRN and GRDRN models trained in
12× accelerated cardiac cine MRI. By visualizing the error
maps, GRDRN achieves similar registration accuracy for both
diastolic and systolic frames, while the error level of the
systolic frame is obviously higher than the diastolic frame for
PRDRN which uses the end-diastolic frame as the registration
reference. Overall, the groupwise registration-based GRDRN has
better registration than the pairwise registration-based PRDRN
regarding PSNR (41.46 vs. 37.90) and SSIM (0.985 vs. 0.972)
in this subject. Figure 7 provides the PSNR and SSIM of the
generated cine images for 8×, 12×, and 16× acceleration factors.
The higher PSNR of SSIM of GRDRN than PRDRN indicates
the groupwise registration gives better motion estimation than
pairwise registration, leading to better reconstruction of GRDRN
as demonstrated in the previous section.
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FIGURE 4 | Visual comparison of reconstructions with different reconstruction approaches for 8×, 12×, and 16× acceleration rates. The temporal profile at the

location indicated by the red line is shown for each reconstruction.

4. DISCUSSION

We propose an end-to-end trainable joint learning approach
which performs groupwise registration-based motion estimation
and dynamic reconstruction, denoted as GRDRN. We construct
an unrolled network architecture where the registration and
reconstruction are optimized alternatively, and the two tasks are
beneficial to each other as accuratemotion estimation contributes
to improving the reconstructed image quality and good image
quality in turn helps to improve the motion estimation
accuracy. We evaluate GRDRN in breath-hold cardiac cine
MRI for aggressive undersampling rates of 8×, 12× and 16×,
aiming to reduce the number of breath-holds substantially and
ultimately to achieve whole-heart cine MRI in a single breath-
hold. The proposed method consistently achieves improved
reconstruction performance compared with deep learning
dynamic reconstruction with pairwise registration PRDRN
or without exploiting motion information CNN-DC, and
the conventional state-of-the-art dynamic MRI reconstruction
methods with ME/MC, confirming the superiority of GRDRN.

A common strategy for registration is to register a moving
image to a reference image. When there are multiple images
to be registered, another strategy that can be beneficial is to

register multiple images to a common space instead of in pairs,
the process of which is termed as groupwise registration. There
are in general three different types of groupwise registration:
sum-of-pairs approach that attempts to reduce the registration
loss among all image pairs; reference-based approach that
requires the designation of one image as reference; implicit
template approach that implicitly determines the template
image during registration, and can avoid the bias caused by
selecting one particular image as reference while being more
computationally efficient than the sum-of-pairs method (41).
Deep learning groupwise registration has been adopted in several
recent studies (36, 37, 42) and has demonstrated superior
performance over pairwise registration. For example, Zhang et
al. propose an one-shot learning groupwise registration network
to register respiratory motion-resolved 3D CT images (36).
Martín-González et al. (42) develop a deep learning framework
to achieve groupwise registration of 2D dynamic sequence, in
which the implicit template deep learning groupwise registration
approach is adopted to estimate the nonrigid motion across the
dynamic sequence.

The motion estimation performance is evaluated by
employing the estimated invertible motion fields to generate a
new sequence of cine images to be compared with the original
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FIGURE 5 | Box plots of PSNR and SSIM values of the reconstructed dynamic images with different reconstruction methods for 8×, 12×, and 16× acceleration

rates. Boxes depict the 25 and 75% percentile, horizontal line shows the median, whiskers show the standard deviation and dots represent the outliers.

FIGURE 6 | Visualization of generated dynamic images with motion fields estimated with PRDRN (pairwise registration) and proposed GRDRN (groupwise registration)

models trained in 12× accelerated data. Two representative frames at diastole and systole are shown with the corresponding error maps.

dynamic images. The joint motion estimation and reconstruction
model achieves similarly good quantitative metrics for a range
of acceleration factors, indicating that the motion estimation
in GRDRN is robust to undersampling artifacts. Moreover, the
results indicate that groupwise registration performs better than
pairwise registration in registering a set of dynamic images
by finding a template image that lies in the geometric center

of the group. Besides aiding in improving the reconstruction
performance, cardiac motion estimation is an important step
in myocardial strain analysis. The applicability of the estimated
motion with the proposed joint learning approach to myocardial
strain analysis will be investigated in the future work.

In GRDRN, motion-augmented dynamic images are
generated based on both the intermediately reconstructed and
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FIGURE 7 | Box plots of PSNR and SSIM for the registration task with pairwise (PRDRN) and groupwise (GRDRN) registrations, where the metrics are reported

between generated dynamic image sequences and the original ones.

the zero-filling reconstructed images as additional inputs to the
reconstruction network. In our initial experiments, we have tried
to use motion-augmented dynamic images generated from the
intermediate reconstruction only, which leads to a decrease of
the reconstruction PSNR of 1-2dB compared to reconstruction
with both sets of motion-augments images. The possible reason
could be that the undersampling artifacts are gradually removed
in the unrolled iterations. However, the images of intermediate
reconstructions tend to get smooth and may lose some fine
details. On the other hand, the zero-filling motion-augmented
images though being more undersampled, may contain more
image details than the motion-augmented images generated
from the intermediate reconstructions. Consequently, adding
the zero-filling motion-augmented images will allow the
reconstruction network to exploit such details at all stages of
the cascade, and can ultimately improve the reconstruction
performance. It is noted that similar strategy has been employed
in a previous study (31) that adopts pairwise registration to
augment the reconstruction.

The appearance of the heart and the motion pattern may be
heterogeneous in the short-axis cardiac cine MR images from the
base to the apex of the heart, which may lead to heterogeneous
reconstruction performance for the basal, middle and apical
slices. We then analyze the 128 testing slices thoroughly and
find that reconstruction and motion estimation metrics of
apical slices are similar to those of middle slices. However,
for some basal slices where the myocardium is not intact we
do observe the performance drop for all the reconstruction

methods, indicating the basal slices are more challenging to be
reconstructed. Specifically, there is a total of 17 basal slices, and
the reconstruction PSNR of 8× accelerated cine MRI of the
basal slices is 32.46 ± 3.46, 31.84 ± 3.24, 30.89 ± 2.94, 30.81
± 3.34, and 30.06 ± 4.08 for the methods of GRDRN, PRDRN,
CNN-DC, GW-CS and MC-JPDAL respectively, compared with
PSNR of 34.82 ± 2.73, 34.19 ± 2.94, 32.90 ± 2.44, 33.30 ±

3.00, and 32.34 ± 3.29 of non-basal slices. We can see that the
proposed GRDRN still outperforms other testing methods in the
challenging basal slices.

The single-coil acquisition scenario is simulated in this work
to reduce computation complexity and memory consumption,
while the proposed GRDRN can be extended to multi-coil
reconstruction by adapting the data consistency layer. It is noted
that the applicability of the proposed method needs to be further
tested in prospectively undersampled data.

In conclusion, we propose an end-to-end trainable joint
learning approach which performs groupwise registration-
based motion estimation and dynamic reconstruction. The
groupwise registration network GRN, predicts invertible motion
fields between all dynamics and an implicit template. Taking
advantage of the estimated motion, all measurements along
the temporal dimension are fused to the implicit template,
from which a new sequence of dynamic images with lower
undersampling can be generated to assist in the reconstruction.
We evaluate the proposed approach on cardiac cine MRI datasets
for aggressive acceleration factors and demonstrate that the
proposed GRDRN can achieve state-of-the-art reconstruction
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performance benefiting from the motion information from the
groupwise registration.
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