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Gastric cancer (GC) development trends have identified multiple processes ranging from
inflammation to carcinogenesis, however, key pathogenic mechanisms remain unclear.
Tissue microenvironment (TME) cells are critical for the progression of malignant tumors.
Here, we generated a dynamic transcriptome map of various TME cells during multi-
disease stages using single-cell sequencing analysis. We observed a set of key transition
markers related to TME cell carcinogenic evolution, and delineated landmark dynamic
carcinogenic trajectories of these cells. Of these, macrophages, fibroblasts, and
endothelial cells exerted considerable effects toward epithelial cells, suggesting these
cells may be key TME factors promoting GC occurrence and development. Our results
suggest a phenotypic convergence of different TME cell types toward tumor formation
processes in GC. We believe our data would pave the way for early GC detection,
diagnosis, and treatment therapies.

Keywords: gastric disease, dynamic transcriptome map, tissue microenvironment, single-cell RNA
sequencing, biomarkers
INTRODUCTION

Globally, gastric cancer (GC) is the fifth most common cancer tumor (1). GC development
undergoes a multi-stage process, from no-atrophic-gastritis (NAG) to chronic atrophic gastritis
(CAG) to intestinal metaplasia (IM), and finally GC (2). During this process, gastric mucosa tissue
and the tissue microenvironment (TME) undergo dynamic changes (3). The TME includes a variety
of cell types (immune cells, fibroblasts, endothelial, etc.) and stromal components (chemokines,
cytokines, growth factors, etc.) surrounding epithelial cells. Increasingly, it is recognized that the
cellular features of the TME play an important role in enabling tumors to proliferate and
metastasize. Studies have shown that TME cells are not randomly distributed, but are more or
less densely organized into different areas among epithelial cells, forming a complex background
org October 2021 | Volume 12 | Article 7281691
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promoting tumor generation (4, 5). It was showed that TME cells
dynamics in cancer seriously affect disease biology and may affect
response to systemic therapy (5). In addition the interaction
between TME and cancer cells could promote phenotypic
heterogeneity, cell plasticity, and cancer cell stemness,
improving tumor invasion and metastasis (6). Therefore,
elucidating dynamic transcriptome changes in TME cells is
important to identify mechanisms implicated in GC etiology.

While current transcriptome studies have identified TME
variations in GC by bulk RNA-sequencing. For example, some
literature showed the complex TME has severely weakened the
efficacy of anti-tumor immunity (7–9). The infiltrating
immunoinflammatory cells in the lamina propria of gastric
mucosa displayed dynamic change during GC development
(10). However, the principle of these analysis is based on the
according to the assumption that every gene is equally expressed
in every individual cell. Therefore, carrying out traditional RNA-
sequencing is impossible to study the heterogeneity of TME cells
at the subsets level.

Single-cell RNA transcriptome sequencing (scRNA-seq) is used
to investigate cell heterogeneity and predicts and analyzes mutual
cellular influences (11). The technique demonstrates good
practicability for analyzing complicated cell environments and
deciphering changes in cell conditions between multiple disease
stages (12).Up tonow, there has beena dearthofpublicationon this
topic. Zhang et al. studied the characteristics of epithelial cells across
different gastric diseases (NAG-CAG-IM-GC) (13). Sathe et al.
compared GCwith normal mucosa to identify cell reprogramming
mechanisms ingastricTME(14).Wanget al. analyzed intratumoral
heterogeneity ofmetastatic gastric adenocarcinoma (15). However,
changes in TME cells during GC progression have not yet been
elucidated, therefore, scRNA-seq could help determine the specific
cellular and transcriptional features to distinguish the TME cells
among the development of gastric diseases.

In this study, we generated a dynamic transcriptome map of
several TME cell types during multi-stage disease comprising
NAG-CAG-IM-GC processes using single-cell sequencing data.
This map identified the multidimensional features of different
TME cells during different disease states, including subclusters,
marker genes, functional pathways, differentiation trajectories,
activated transcription factors (TFs), immune checkpoints, and
cell-cell communication patterns, etc. Our analyses revealed
significantly increased heterogeneity of TME cells of
macrophages, T, B, mast cell and fibroblast, endothelial, and
pericyte cell during GC tumor formation, and has the potential
to establish strategies for the early detection, diagnosis, and
treatment of GC.
MATERIALS AND METHODS

Data Acquisition
In total, 15 samples from 11 patients were analyzed in this study;
three NAG, three CAG, six IM, and three GC samples
(Supplemental Table 1). Data were downloaded from two sets
of raw scRNA-seq data. Data, with the gene expression omnibus
(GEO) accession number, GSE134520, comprising three NAG,
Frontiers in Immunology | www.frontiersin.org 2
three CAG, six IM and, one GC, were included. Another dataset
with the database of Genotypes and Phenotypes (dbGaP)
accession number, phs001818.v2 comprising two GC cases was
included. These samples spanned the disease spectrum from
gastritis to GC.

Quality Control (QC) and scRNA-Seq Data
Pre-Processing
The QC process was performed using Seurat (version 3.0.1) (16). A
raw uniquemolecular identifier (UMI) countmatrix was produced
and converted into a Seurat object. The sequencing counts were
negatively correlated with mitochondrial percentage levels and
positively related to sequencing features (Supplemental
Figure 1A). UMI counts from single cells whose UMI number
was < 400, and the percentage of mitochondrial-derived UMI
counts > 20 were deleted. To optimally eliminate potential
doublets, single cells containing > 7000 genes were also filtered
out. Then, using the “NormalizeData” function, single-cell gene
expression data were normalized, and the normalization method
was set to “LogNormalize”. Finally, we used the corrected
expression matrix as an input for future studies.

Dimensionality Reduction and Batch
Effect Removal
We calculated the total number of UMI coding sequences per cell
and genes in the samples (Supplemental Figure 1B). The results
were initially summarized using principal component analysis
(PCA). The top 20 principal components (PCs) and a resolution
of 0.8 were selected by default using RunTSNE to reduce
dimensionally. The “FindVariableFeatures” option in Seurat
was used to calculate highly variable genes (HVG)
(Supplemental Figures 1C, D). We applied the Harmony R
package to eliminate the utility of batch among patients. The
Adjusted Rand Index (ARI) was used to evaluate batch
calibration based on the purity of cell types and the blend of
batch (17). Low ARI scores indicated adequate mixing effects.

Cell Type Recognition and t-Distributed
Stochastic Neighbor Embedding (tSNE)
Presentation
“FindAllMarkers” was used to identify differentially expressed
genes (DEGs) in each cell type. We assigned cell types based on
marker genes identified from previous studies (Supplemental
Table 2). Single-cell clustering was visualized using tSNE
analysis. The basic principle of this method was to re-calculate
sample distances using the conditional probability of random
neighbor fitting, which was based on Student t distributions in
the high-dimensional space, so cells were in significantly
separated clusters in the low-dimensional space.

DEGs and Functional Enrichment Analysis
DEGs from cell clusters were identified using the “FindMarkers”
function of Seurat. The following cutoff threshold values were
used: adjusted p value (adj. P val) < 0.05 and logarithmic value
(logFC) > 0.25. We used “FindMarkers” to evaluate DEGs from
somatic cell clusters and loaded this information into
clusterProfiler to perform gene ontology (GO) aggregation and
October 2021 | Volume 12 | Article 728169
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GO enrichment analysis. The pathways of adj. P val was < 0.05
and was considered significantly enriched. The Retrieval of
Interacting Genes database search tool for the retrieval of
interacting genes (STRING; string-db.org) was used to assess
interactive DEGs relationships, visualized using Cytoscape (18).
Gene expression profiling interactive analysis (GEPIA; http://
gepia. Cancer - pku. cn) is a web-based tool and provided
customizable functions such as gene expression correlation
analysis based on The Cancer Genome Atlas (TCGA) data (19).

Gene set variation analysis (GSVA, version 1.30.0) was
performed using 50 hallmark gene-sets from the molecular
signature database (20). To assess differential pathways between
sub-cluster of cells, we calculated the activity scores using Limma
package (version 3.38.3) (21). And then visualize T value data of the
first 10 significantly different pathways (P < 0.05) using a heatmap
containing the mean pathway scores of each cluster.

Pseudotime Trajectory Analysis
Monocle 2 is a R package designed for single-cell trajectories (22)
and was used to reveal changes in TME cells during multi-stage
NAG-CAG-IM-GC processes. The following parameters were set:
num_cells_expressed ≥ 10, mean expression ≥ 0.125, and q val <
0.01 (“differentialGeneTest” function). Trajectories were presented
as tSNE plots, while dynamic expression heatmaps were built by
the use of the “plot_pseudotime_heatmap” function.

TF Analysis
Transcriptional activity among different cell clusters was assessed
by SCENIC (version 1.1.0) (23) with the motif database of
RcisTarget and GRNboost (corresponding to GENIE3 1.4.3,
AUCell 1.4.1 and RcisTarget 1.2.1; with hg19:refseq-
r80:10kb_up_and_down_tss.mc9nr). The area under the curve
(AUC) of each module (calculated using SCENIC) was identified
with the limma package. Regulons with an adj. P val <0.01 were
considered for further investigation. Results were converted to
binary data and visualized using the pheatmap function of R.

Immune Checkpoint Analysis
We calculated the normalized expression levels of mean values of
immune checkpoints of each cell cluster and normalized them
into row Z scores to represent relative expression levels in
different cell clusters.

Cell-Cell Communication Analysis
CellChat is an open source R package (https://github.com/sqjin/
CellChat) which infers, visualizes, and analyses intercellular
communication data from scRNA-seq data (24). CellChat
DataBase (http://www.cellchat.org/cellchatdb) contains 2,021
certified molecular structure interactions, including 60% of
paracrine/autocrine data signal interactions, 21% of extracellular
matrix-receptor interactions, and 19% of cell-cell contact
interactions. To better predict and analyze intercellular
communications, CellChat was used to identify differentially
over-expressed ligands and receptors (L-Rs) for each cell cluster.
Network visualization was performed in R.
Frontiers in Immunology | www.frontiersin.org 3
Immunofluorescence Staining
A total of 5 GC tissues and their corresponding adjacent IM and
distal NAG tissue specimens were included, who were collected
from the endoscopic submucosal dissection at Gastroenterology
of China Medical University. The study was approved by the
Ethics Committee of the First Affiliated Hospital of China
Medical University. Formalin-fixed, paraffin-embedded
Sections (4 mm) were deparaffinized in xylene and then
hydrated in graded alcohol. EDTA (pH 8.0) was used for
antigen retrieval in boiling water. The specimens were blocked
by donkey serum (abs935, 1:20) for 30min. The following
antibodies were used to detect specific fibroblast cell proteins:
anti-RBP4 (abs136011, 1:100 dilution; Absin, China), anti-
ABCA8 (NBP-91641,1:100 dilution; novus,US), anti-NPY
(abs136011, 1:100 dilution; Absin, China), CST1 (abs136011,
1:100 dilution; Absin, China), and anti-ACTA2 (Kit-0006, MXB,
China),was incubated for 1 hour at 37°C, rinsed in PBST, then
detected by fluorescent secondary antibodies (Donkey anti-
mouse IgG-AlexaFlour 594; 1:200; Absin, China) and Donkey
anti-Rabbit IgG-AlexaFlour 488; 1:200; Absin, China) for 30 min
at 37°C,rinsed in PBST, and finally stained with DAPI
(abs42016321, 1:3000 dilution; Absin, China) for 10min and
images captured on an Nikon ECLIPSE Ti2 inverted microscope.
RESULTS

The Expression Profiling of TME Cells
and Change Trends at Different
Disease Stages
To feature the single-cell general of gastric microenvironment,
66,063 single cells were obtained from NAG, CAG, IM, and GC
stages. After QC, 45,336 cells remained. To identify distinct cell
populations, we used the “method completed” option in Seurat
to perform dimensionality reduction, eliminate batch effects, and
develop an unsupervised module clustering (Method Details). As
shown (Supplemental Figure 1D), when HVG = 3000 and
ARI = 0.03740547, the batch effects among different samples
were the lowest. Finally, we identified 24 main cell clusters along
the GC cascade (Supplemental Figures 1E, F). Based on the
expression of canonical markers, we excluded 13 epithelial cell
clusters, 11 TME cell clusters were identified, including T cells
(CD2 and CD3D), B cells (CD79A), macrophages (CSF1R and
CD68), mast cells (TPSAB1), fibroblasts (DCN and PDPN),
endothelial cells (ECs, marked as VWF and ENG), and
pericytes (RDGFRB and RGS5) (Figures 1A, B). During
progression along the NAG-CAG-IM-GC cascade, T cell
proportions increased significantly, especially at the GC stage,
and B cells and ECs decreased significantly. Macrophages,
pericytes, mast cell, and fibroblasts exhibited slight fluctuations
throughout the cascade (Figures 1C, D).

The Dynamic Multidimensional Features of
Macrophages in Different Disease States
We identified 1,162 macrophages in four subclusters (MacC1–
MacC4) according to similar and differential gene expression
October 2021 | Volume 12 | Article 728169
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(Figure 2A). From CAG to IM to GC, the proportion of MacC1
and MacC3 showed a downward trend, MacC2 was on the rise,
whereas MacC4 was uniquely expressed at GC (Figures 2C, D).
Marker genes and MacC1–C4 cluster functions were shown
(Figures 2B, E). MacC1 comprised neutrophil activation and
antigen presentation functions when compared with other cell
clusters. MacC2 comprised granulocyte activation, leukocyte
migration, and regulation of apoptotic signaling pathway
functions. MacC3 cells were involved in protein localization at
the membrane. MacC4 had a higher expression program for
oxidative phosphorylation and ATP biosynthetic processes.
We also identified new marker genes, PLAU, S100A8,
Frontiers in Immunology | www.frontiersin.org 4
CLEC10A, and TFDP2 from MacC1 to MacC4, respectively
(Figure 2F). Of these, S100A8, CLEC10A, and TFDP2
exhibited significantly different expression profiles between
cancer and precancerous stages (Supplemental Figure 2A).
These results indicated that during NAG-CAG-IM-GC,
macrophage clusters were involved in chemotaxis, antigen
presentation, and apoptotic regulation. Similarly, macrophages
were remodeled in the TME to participate in oxidative
phosphorylation and ATP production to promote GC
progression. This trajectory showed that MacC1 cells had the
lowest pseudotime value (Figure 2G), of which MacC1 cells
remained unchanged while some cells transformed to MacC2,
A

B

C

D

FIGURE 1 | Distinct TME cell populations and expression signatures. (A) tSNE plot of TME cells based on their differential expression. (B) Heatmap plots showing
the expression of the top five marker genes of seven major cell types identified in this profile. (C) Line chart showing the trend of the proportion of TME cells across
the four pathological stages (NAG-CAG-IM-GC). (D) Stacked histogram showing TME cell composition across the four pathological stages.
October 2021 | Volume 12 | Article 728169
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processing through MacC3 to MacC4 cells. SCENIC analysis
revealed that the TFs, MSC, MECP2, BCL11A, and ETS2 were
up-regulated, whereas GTF2B, CREB5, MAF, NR1H3, and TCF4
were down-regulated during transformation (Figure 2H).

Furthermore, MacC2 cells showed elevated expression of
chemokines (CXCL5, CXCL2, CCL5, CCL3, CCL20), interleukins
(IL8, IL6, IL1RN, IL1A), and growth factors (VEGFA) when
Frontiers in Immunology | www.frontiersin.org 5
compared with other macrophage clusters, suggesting they
interacted closely with other cells (Supplemental Figure 2C).
Among them, for example, we found CXCL5 expression gradually
increased with GC development (Supplemental Figure 2B). Also,
inhibitory checkpoint analysis showed that the MacC2 cluster
exhibited higher expression of the genes, ICOS, TNFRSF18, CD44,
TNFSF14, TNFSF15, and CD48, whereas MacC4 had high
A B C

D E

F G H

FIGURE 2 | Changes in the composition of macrophages, gene expression, and functions at different stages. (A) tSNE plot of the four macrophage subclusters.
(B) A bubble plot of the top five markers of each cell cluster; dot size represents abundance while the color represents expression level. (C) Line chart showing the
trend of the proportion of the four clusters across the four stages. (D) Stacked histogram showing macrophage composition across the four stages. (E) Bubble plot
showing the biological function of different cell clusters using GO; dot sizes represent abundance while the color represents q values. (F) Violin plots of marker genes
in the four subclusters. (G) The differentiation trajectory of macrophages. Sections are color coded for pseudotime (right) and clusters (left). (H) AUC scores of TF
expression regulation using SCENIC. Results converted to binary data were visualized as heatmap plots constructed using the pheatmap function of R.
October 2021 | Volume 12 | Article 728169
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expression levels of HAVCR2 (TIM3), LAIR1, VSIR, and NRP1
when compared with other clusters (Supplemental Figure 2D).
These data indicated that MacC2 and MacC4 macrophages had
enhanced immunosuppressive properties.

Generally, macrophage phenotypes are labeled M1 or M2,
with anti-cancer and cancer-promoting effects, respectively (17).
We examined the expression of marker genes for M1 (IL7R,
IL2RA, BCL2A1, CXCL9, and CCL5) and M2 (CD163, CCL23,
CCL13, CCL18, and MRC1) across our macrophage clusters.
However, M1/M2 gene expression could not distinguish between
clusters (Supplemental Figure 2E), and these genes were co-
expressed in the same cluster. These observations suggested
macrophage gene expression heterogeneity during GC was
irrelevant to M1/M2 classification.

The Dynamic Multidimensional Features of
T Cells at Different Stages
We identified four T cell clusters designated as CD8+T, CD4+T,
Treg, and natural killer (NK) T cells according to known marker
genes (Figures 3A, B). During the cascade from NAG to GC
stages, CD8+T and CD4+T cells were gradually decreased and
replaced by Treg and (NK)Tcells (Figure 3C). Approximately
1,213 CD4+T cells were represented by three subclasses
(Supplemental Figures 3A–C). These classes did not
significantly change during GC tumorigenesis (Supplemental
Figures 3D, E), therefore, we conducted a subgroup analysis on
CD8+T, Treg, and NKT cells.

As shown (Figure 3D), CD8+T (n = 2,410) cells were divided
into five clusters (CD8+C1- CD8+C5). The proportion of CD8+C1
and CD8+C3 clusters gradually decreased, but CD8+C2 and
CD8+C4 clusters gradually increased, especially from IM to GC
where they displayed a sharp upward trend (Figures 3E, F).
CD8+C5 did not change significantly between the different stages.
Marker genes and functions of CD8+C1–CD8+C4 clusters are
shown (Figures 3G, H). CD8+C1 displayed functions in immune
effector processes, leukocyte activation, and translational initiation
when compared with other clusters. CD8+C3 featured defense
responses, responses to biotic stimulus, and cytokine-mediated
signaling pathways. CD8+C2 exhibited functions toward the
positive regulation of leukocyte cell-cell adhesion, T cell receptor
signaling pathways, and immune responses. CD8+C4 exhibited
substantially higher expression of the genes, CXCL13, RBPJ,
TRAC, LAYN, and IRS2 (Figure 3I), of which CXCL13 and
LAYN indicate T cell exhaustion (25). Notably, the inhibitory
checkpoints genes, TNFSF4, TNFRSF9, TMIGD2, CD200,
TNFSF15, TNFRSF4, TNFRSF18, HAVCR2, VSIR, TIGIT, and
CD70 were up-regulated in the CD8+C4 cluster (Figure 3I).
These results indicated that between normal, precancerous, and
cancer stages, a portion of CD8+T cells was exhausted and
immunosuppressed, while another portion dominated the
activation of immune responses to resist tumor cells.

As shown (Figure 4A), 478 Treg cells were classified into two
clusters (TreC1 and TreC2); TreC1 (FOXP3-IL2RA+) and TreC2
(FOXP3+IL2RA+) (Figure 4B), with most derived from the GC
stage (Figure4C).Whencomparedwith theTreC1cluster,DEGs in
the TreC2 cluster were enriched for oxidative phosphorylation and
Frontiers in Immunology | www.frontiersin.org 6
Th17 cell differentiation processes (Figure 4D). In addition, these
cells expressed several immune checkpoints (TIGIT, VSIR,
HAVCR2, CD48, TMIGD2, CD80, and CD44) and co-stimulatory
molecules (TNFRSF9, TNFRSF4, TNFRSF18, CD27, CD70, and
ICOS) (Figure 4E), suggesting important roles in carcinogenesis.
Further analyses revealed that SH2D1Awas a representative gene of
the TreC2 cluster (Figure 4B). FOXP3 and SH2D1A displayed a
strong correlation (P<0.001,R=0.7,Figure4F), however, nodirect
interactions were observed between them (Figure 4G).

We divided 452 NKT cells into two subtypes (C1 and C2), most
of which came from tumor tissues (Figures 4H, I). Marker genes
and their functions are shown (Figures 4J,K). Themain functionof
C1was related to protein localization to the endoplasmic reticulum,
RNA catabolic processes, and translational initiation (Figure 4K)
suggesting NKT cell activation. C2 was related to immune and
cellular defense responses, indicating the potential for anti-tumor
responses (Figures 4K). Some inhibitory molecules (TIGIT,
HAVCR2, TMIGD2, CD48, CD44) and co-stimulatory molecules
(TNFRSF9, TNFRSF18, TNFSF14) were also expressed in these
clusters (Figure 4L).

The Dynamic Multidimensional Features of
B Cells at Different Stages
In total, 2,573 B cells were divided into four clusters (C1-C4), most
ofwhichwerederived fromthe inflammation stage (Figures 5A,B).
We showed that C1 andC3 clusters increased gradually in the CAG
stage and then declined with disease progression (Figure 5C). The
C2 cluster varied upwards and downwards. The C4 cluster only
appeared in the GC stage. Marker genes and their functions are
shown (Figures 5D, E). C1was related to responses to bacteria and
digestion functions. The C2 cluster comprised glycosphingolipid
catabolic processes and processes involving the negative regulation
of the endoplasmic reticulum-associated degradation (ERAD)
pathway. C3 was related to cytokine-mediated signaling pathways
and responses to cAMP and bacteria. The C4 cluster comprised
functions related to the positive regulation of intrinsic apoptotic
signaling pathways by p53 and the negative regulation of ubiquitin
ligase activity. These results suggested that B cells actively
participated in immune responses during inflammatory stages,
but lost their functions at the cancer stage, with a tendency to
induce apoptosis.

The trajectory showed that the C2 cell was the starting point
that had the lowest pseudotime value. C3 and C4 appeared at
each end of the differentiation trajectory (Figure 5F). SCENIC
analysis showed that the activity of many key motifs, including
those in STAT3, FOXP1, TGIF1, YY1, and REL was activated,
whereas those in FOS, EPAS1, EGR1, and JUN were suppressed,
which led to C2–C4 processes (Figure 5G).

The Dynamic Multidimensional Features of
Mast Cells at Different Stages
In total, 370 mast cells were divided into two clusters (C1 and
C2). As shown (Supplemental Figures 4A–C), the MasC1 mast
cell cluster was replaced by MasC2 in GC and was characterized
by the high expression of SLC18A2 and HDC genes.
October 2021 | Volume 12 | Article 728169
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A B C
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H

FIGURE 3 | Characterization of multiple changes in T cell subtypes at different stages. (A) tSNE plots of 4,553 T cells, 2,410 CD8+T cells, 1,213 CD4+T cells, 478
Treg cells, and 452 NKT cells. Colors indicate cell type. (B) A bubble plot of markers of each cell type; dot sizes represent abundance while the color represents
expression levels. (C) Line chart showing changing trend of the proportion of the four cell types across the four stages. (D) A tSNE plot of the five CD8+T cell
subclusters. (E) Stacked histogram showing CD8+T composition across the four stages. (F) Line chart displaying changing trend of the proportion of the five clusters
across the four stages. (G) Bubble plot of top five markers of CD8+ T cell clusters; dot sizes represent abundance while colors represent expression levels. (H) A
bubble plot showing the biological functions of different cell clusters using GO. Dot sizes represent abundance while colors represent q values. (I) Heatmap of
immune checkpoints altered during the differentiation process of CD8+T cells, which was clustered into five clusters. A row Z score was used to represent
expression levels.
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A B C
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FIGURE 4 | Treg and NKT cell clusters. (A) tSNE plot of two Treg cell subclusters. (B) Violin plots of marker genes for the C2 cluster. (C) A pie chart representing Treg
cells from different pathological stages. (D) Circle diagram showing the functions of different cell clusters using GO, colors represent different functions, brighter colors
indicate high expression. (E) Heatmap of immune checkpoints altered during the differentiation process of Treg cells. (F) GEPIA was used to assess the correlation of two
genes based on the TCGA database. (G) STRING database was used to analyze protein interaction networks, while Cytoscape was used to visualize these networks.
(H) tSNE plot of two NK cell subclusters. (I) Pie chart representing NK cells from different pathological stages. (J) Bubble plot of the top five markers in NK cell clusters;
dot sizes represent abundance while colors represent expression levels. (K) Bubble plot showing the biological functions of different cell clusters using GO; dot sizes
represent abundance while colors represent q values. (L) Heatmap of immune checkpoints altered during NK cell differentiation processes.
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The Dynamic Multidimensional Features of
Non-Immune Cells at Different Stages
Next,we assessed the transcriptome transition of non-immune cells
in the TME, including fibroblast, endothelial, mast, and pericyte
cells. As shown (Supplemental Figures 4A–C), the MasC1 mast
Frontiers in Immunology | www.frontiersin.org 9
cell cluster was replaced byMasC2 in GC and was characterized by
the high expression of SLC18A2 and HDC genes. As shown
(Supplemental Figures 4D–G) the C1 cluster of pericyte cells
had the highest composition ratio at every disease stage, therefore,
we conducted a subgroup analysis offibroblast and endothelial cells.
A B

E

C

D

GF

FIGURE 5 | Characterization of multiple changes in B cell subtypes at different stages (A) tSNE plot of four B cell subclusters. (B) Pie chart representing B cells from
different pathological stages. (C) Line chart displaying changing trend of the proportion of the four cell types across the four stages. (D) Bubble plot of the top five
markers of each cell cluster; dot sizes represent abundance while colors represent expression levels. (E) Bubble plot showing the biological functions of different cell
clusters using GO; dot sizes represent abundance while colors represent q values. (F) B cell differentiation trajectory in the four stages, with each color coded for
pseudotime (right) and clusters (left). (G) AUC scores of transcription factor expression regulation using SCENIC. Results converted to binary data were visualized as
heatmap plots constructed using the pheatmap function of R.
October 2021 | Volume 12 | Article 728169

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yin et al. TME Cells and GC Development
In total, 1,730 fibroblasts cells were divided into five clusters
(FibC1-C5) using different gene expression patterns (Figure 6A).
FibC1 cluster cells dominated the CAG stage, whereas FibC2
and FibC4 clusters gradually increase towards the IM stage. The
FibC3 cluster only appeared at the GC stage which may have
been tumor-related, whereas FibC5 displayed a low composition
ratio across all stages (Figures 6B, C). Marker genes and
functions for all clusters are shown (Figure 6D). GO analyses
indicated that responses to growth factors were highly enriched
in FibC1 (Figure 6E), especially of BMP4 (Figure 6F).
Inflammatory responses, complement activation, apoptosis,
and proteolytic regulation processes were significantly higher
in FibC2 and FibC4 (Figure 6E). Cardiovascular development,
collagen fibril organization, and cell adhesion processes were
highly enriched in FibC3 (Figure 6E). We also observed new
marker genes (Figure 6G), of which RBP4, ABCA8, and GPM6B
were primarily indented in the CAG stage; CST1 mainly
appeared at the GC stage and NPY dominated the IM stage
(Figure 6H). To confirm the expression, immunofluorescence
assays were performed as shown in Figures 6K–N that RBP4,
S100A8, NPY, and CST1 were co-expressed with a conventional
marker of fibroblasts (ACTA2) in different stages of stomach
disease. RBP4, S100A8, NPY mostly appeared in CAG and IM
stages, while CST1+ fibroblasts almost only appeared in the GC
stage, and they were almost absent in NAG tissues.

Trajectory analysis showed that FibC2 cells had the lowest
pseudotime value and that FibC3 appeared at the end of the
differentiation trajectory, with the highest pseudotime value
(Figure 6I). SCENIC analysis showed trajectory trend may be
regulated by NR2F1, TCF21, FOXF1, and SOX6 expression
decreased, whereas STAT1, STAT2, FOXP1, FOXO1, and
NR2F2 were up-regulated (Figure 6J). The changes in TFs
may be key to cell development mechanisms.

Four endothelial cell clusters (EndC1-C4) were identified from
1,115 cells (Figure 7A). The EndC1 cluster gradually decreased
during tumorigenesis. The EndC2 cluster was slightly increased in
GC. EndC3 cluster cells were the majority cells at IM, whereas the
EndC4 cluster only appeared at GC (Figures 7B, C). The EndC2
cluster hadhighly expressedmitochondrial genes andhadno specific
genes (Figure7D).TheEndC3cluster exhibitednegative correlations
with TGF-b signaling, angiogenesis, and EMT (Epithelial-
Mesenchymal Transition). The EndC4 cluster was mainly related
to G2M checkpoint, MYC targets, and EMT processes (Figure 7E).
Additionally, EndC4 displayed significantly increased chemokine
expression (CCL18, CCL3, CCL8, CXCL1, CXCL10, CXCL11,
CXCL12, CXCL2, CXCL5, CXCL9, and PPBP) (Figure 7F). The
newmarker gene,CA4primarily appeared at theCAGstage,whereas
DARC figured in IM, and IGFBP5 was mainly increased at the GC
stage (Figures 7G, H).

Trajectory analysis showed that EndC1 cells had the lowest
pseudotime value, whereas C3 and C4 clusters appeared at each
end of the differentiation trajectory (Figure 7I). From EndC1–
C3 processes, SCENIC analyses indicated the trajectory trend
controlled by PRDM1, HES1 down-regulated expression, finally,
FOXC1 and NR2F2 were up-regulated (Figure 7J). The C4
cluster did not activate the special motif modules.
Frontiers in Immunology | www.frontiersin.org 10
Constructing a TME-Epithelial Regulatory
Network for IM/GC
To further explore interactions between TME and epithelial cells,
we used Cellchat to construct TME-epithelial networks at IM and
GC stages. As shown (Figure 8A), macrophages, fibroblasts, and
endothelial cells exerted the strongest effects onenterocyte epithelial
cells at the IM stage. At GC, macrophages, fibroblasts, endothelial
cells, and pericytes exerted the strongest effects (Figure 8B). In
addition, we selected the 10 strongest L-R interactions in each cell
cluster. At the IM stage (Figure 8C), the three TME cell groups all
highly expressed B2M, which interacted with TFRC andHLA-F in
enterocyte epithelial cells. However, at GC, the molecular
interaction between TME and GC cells was altered, especially in
fibroblasts. Highly-expressed COL1A1, COL1A2, and COL3A1 in
fibroblastsmainly interactedwith ITGA2,DDR1, ITGB1, andCD44
inGCcells (Figure8D).Additionally,macrophages andendothelial
cells secreted elevated cytokine levels at the GC stage, therefore, we
analyzed interactions between these cytokines and GC cells. These
data showed that cytokines primarily interacted with SDC1, SDC4,
and ITGB1 on the surface of GC cells (Figure 8E).
DISCUSSIONS

In this study, we reanalyzed the scRNA-seq data to describe the
characteristics of TME cell clusters and showed the possible
evolutionary trajectories of TME cells during the multistage
process of GC development. And also, we investigated
interactions between TME and epithelial cells. Overall, we
depicted a dynamic transcriptome map of different TME cells
during GC development.

Macrophages are a heterogeneous cell group with distinctive
phenotypes and functions in complex microenvironments (26).
Traditionally, these cells are divided into M1 (classically activated
macrophage) and M2 types (alternatively activated macrophages)
(27). However, the expression of M1/M2 genes did not distinguish
clusters in our study, and these geneswere co-expressed in the same
cluster. This suggested that macrophage transcriptional
heterogeneity was independent of the M1/M2 classification
during GC. Our results also revealed four different macrophage
types in TME, with each cluster showing dynamic changes at
different stages. The MacC2 cluster showed an increasing trend
towards GC progression and mainly participated in apoptotic
signaling pathways. In addition, CXCL5 expression in MacC2
also specifically increased with disease development. Roca et al.
observed that CXCL5 was transcriptionally unregulated in
macrophages interacting with apoptotic cancer cells in contrast
with noncancer cells during macrophage-driven efferocytosis,
which accelerates inflammation and growth of prostate tumor
metastases in bone (28). Some literature showed CXCL5-CXCR2-
dominated cross-talk between cancer cells and macrophages could
promote tumor metastases in gastric, hepatocellular, and prostate
cancers (29, 30). This implied a critical role of macrophage-derived
CXCL5 as a novel mechanism underlying tumor development and
may be a viable target for cancer therapeutics. The MacC4 cluster
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FIGURE 6 | Identification of fibroblast clusters and expression features at different stages. (A) tSNE plot of five fibroblast cell subclusters. (B) Line chart displaying
changing trend of the proportion of the five cell types across the four stages. (C) Stacked histogram showing fibroblast composition across the four stages.
(D) Bubble plot of the top five markers of each cell cluster; dot sizes represent abundance while colors represent expression levels. (E) Bubble plot showing the
biological functions of different cell clusters using GO; dot sizes represent abundance while colors represent q values. (G) Violin plots of marker genes in the five
subclusters. (F) Bubble plot showing scale normalized expression of representative genes involved in chemokine, cytokine, and growth factor processes.
(H) Histograms of scale normalized expression levels of three marker genes at each stage. (I) Fibroblast cell differentiation trajectory with each color coded for
pseudotime (right) and clusters (left). (J) AUC scores of transcription factor expression regulation using SCENIC. Results converted to binary data were visualized as
heatmap plots constructed using the pheatmap function of R. (K) Immunofluorescence staining of RBP4 (green) and ACTA2 (red) in different stages of stomach
disease. Scale bars, 50 mm. (L) Immunofluorescence staining of ABCA8 (green) and ACTA2 (red) in different stages of stomach disease. Scale bars, 50 mm.
(M) Immunofluorescence staining of CST1 (green) and ACTA2 (red) in different stages of stomach disease. Scale bars, 50 mm. (N) Immunofluorescence staining of
NPY (green) and ACTA2 (red) in different stages of stomach disease. Scale bars, 50 mm.
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FIGURE 7 | Identification of endothelial cell clusters and expression features at different stages. (A) tSNE plot of the four endothelial cell subclusters. (B) Line chart
displaying changing trend of the proportion of the four cell types across the four stages. (C) Stacked histogram showing endothelium composition across the four
stages. (D) Bubble plot of the top five markers of each cell cluster; dot sizes represent abundance while colors represent expression levels. (E) Heatmap showing
activity differences in 50 hallmark pathways scored by GSVA. T values are calculated using a linear model. (F) Bubble plot showing scale normalized expression of
representative genes involved in chemokine processes. (G) Violin plots of marker genes for the five subclusters. (H) Histograms of scale normalized expression levels
of three marker genes at each stage. (I) Endothelial cell differentiation trajectory, with each color coded for pseudotime (right) and clusters (left). (J) AUC scores of TF
expression regulation using SCENIC. Results converted to binary data were visualized as heatmap plots constructed using the pheatmap function of R.
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only appeared at theGCstage and featuredwith the high expression
of CHI3L1 and PLA2G7. Chen et al. indicated that macrophage-
secreted CHI3L1 promoted GCmetastasis in vitro and in vivo (28).
In addition, Heng et al. showed that macrophage-derived PLA2G7
was a novel tumor-promoting factor and was crucial in regulating
tumor cell migration (31). The main function of the MacC4 cluster
was related to oxidative phosphorylation and ATP biosynthetic
processes. This character may fulfill the high energy and
biosynthetic demands of tumor progression (32).

In addition, immune checkpoints like CD48, CD44, TNFSF14,
and TNFRSF18 et al. were up-regulated inMacC2 clusters. Current
studies have shown thatCD44,TNFRSF18, andTNFSF14, whichare
highly expressed in macrophages, mainly promote the
inflammatory response by activating the expression of the
downstream pro-inflammatory cytokines (33–35). Meanwhile,
VSIR LAIR1 and HAVCR2 were up-regulated in the MacC4
cluster. Some literature has indicated that the expression of the
Frontiers in Immunology | www.frontiersin.org 13
above immunosuppressive checkpoints in macrophages is mainly
related to the induction of immune tolerance, promotion of
macrophage polarization to furtherly improved tumor metastasis
(36–38). Therefore, new therapies can be designed based on the
above-mentioned immunosuppressive checkpoints targets to
effectively prevent and inhibit tumor occurrence and metastasis.

S100A8 and TFDP2 were identified as new gene markers of
macrophages and were significantly different between cancer and
precancerous stages. Research has shown that S100A8 is
produced by tumor-infiltrated inflammatory cells (39) that
decorate the microenvironment and produce “pre-metastatic
niches”, which benefit metastatic cell adhesion and growth
(40). In addition, macrophages also secrete S100A8 to
potentially promote tumor immune escape mechanisms (41).
TFDP2 is a member of the dimerization partner (DP) family of
TFs, which are primarily related to cell cycle regulation (42).
Previous research showed that TFDP2 knock-down led to a
A B C

D E

FIGURE 8 | TME interacts with intestinal epithelial and cancer cells via L-R. (A) The TME interacts with intestinal epithelium cells via L-R interactions. Circle size
represents cell counts, line and arrow size represents interaction counts; larger sizes reflect more counts and interactions with each other. (B) The TME interacts with
cancer cells via L-Rs. Circle size represents cell counts and line size represents interaction counts. A larger size means more counts and interactions with each other.
(C) The strongest 10 L-R pairs showing interactions between fibroblasts, macrophages, and endothelial cells with intestinal epithelial cells. Line and arrow size
represents interaction counts. (D) The strongest 10 L-R pairs showing interactions between fibroblasts, macrophages, and endothelial cells with cancer cells. Line
and arrow size represents interaction counts. (E) Macrophages and endothelial cells interact with cancer cells via cytokines. Line and arrow size represents
interaction counts.
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significant reduction in the proliferation rate of erythropoiesis
(43), but research into other cell processes is limited. Therefore,
identifying specific macrophage subclusters using these marker
genes may significantly benefit GC treatment strategies.
However, the expression and functional roles of these genes in
GC progression remain unknown and warrant further study.
Trajectory analysis indicated that MacC2 cells had the highest
pseudotime value with up-regulated TF of MECP2, BCL11A, and
ETS2. Previous research showed that BCL11A regulates the
development of lymphoid, erythroid, and dendritic cell lineages
(44). ETS2 directly binds to regulatory sequences of CCL3,
CXCL5, CXCL10, and immune cell recruitment mediators (45).
How these TFs driving macrophage transformation and function
require further study.

Four T cell subclusters were identified. CD8+C4 had a sharp
upward trend from IM to GC. This cluster exhibited higher
expression of CXCL13 and LAYN, the marker of T cell
exhaustion, which indicated a state of T cell dysfunction.
Research has indicated T cell exhaustion is characterized by poor
effector function, sustained expressionof inhibitory receptors, anda
transcriptional state distinct from that of functional effector or
memoryTcells (46),whichmayprovide insights for immune-based
cancer interventions (47).

Most Treg cells were expressed in tumor patients, including
TreC1 (FOXP3-IL2RA+) and TreC2 (FOXP3+IL2RA+). Compared
with the TreC1 cluster, TreC2 was primarily related to oxidative
phosphorylation. Angelin et al. showed that Foxp3+Treg
reprogramed T cell metabolism by inhibiting glycolysis and myc
expression and enhancing oxidative phosphorylation. These
adaptations permitted a metabolic advantage for Tregs in low
glucose and lactic acid environments, thus they could resist the
lactate-mediated inhibition ofT cell function andproliferation (48).
Also, thismetabolic phenotype could explainhowcancer cells evade
immune destruction in the TME. Interestingly, we observed that
SH2D1A was highly elevated in the TreC2. SH2D1A is one kind of
X-linked lymphoproliferative (XLP) disease gene, whose loss-of-
function mutations correlated with XLP. SH2D1A encodes the
intracellular adaptor molecule SAP and interacts with signaling
lymphocytic activation molecule (SLAM) family receptors by
phosphorylating tyrosine residues (47). The SH2D1A gene
mutation affects the production or expression of SAP, so that SAP
cannot normally mediate the interaction between T/B cells. Thus,
understanding the effects of Foxp3 and Sh2D1Amay shed light on
themetabolism and immunity regulation ofTreg cell, which in turn
have the potential to the translated into novel treatments for
GC patients.

Additionally, we found most immune checkpoints are co-
expressed in Treg and NKT cells, such as TNFRSF9, TIGIT,
TNFRSF18, TMIGD2, HAVCR2, and CD48. The co-expression of
these immune checkpoints may affect the occurrence and
development of tumors. For example, Fourcade et al. reported
that TIGIT+ Tregs were highly suppressive, stable, and enriched in
tumors, whereas blockaded TIGIT counteracted Treg suppression
in patients with melanoma (49). In addition, blockaded TIGIT
preventedNKTcell exhaustion, andpromotedNKTcell-dependent
tumor immunity in several tumors (50, 51). However, the co-
Frontiers in Immunology | www.frontiersin.org 14
expression of other immune checkpointshas not been reported.We
proposed select immunecheckpoint inhibitorswithdual expression
of Treg and NKT cells may provide a new strategy for
cancer therapy.

Four B cell subclusters were identified in this study. The C2
cluster mainly appeared at the IM stage and was related to
glycosphingolipid catabolic processes and negative regulation of
the ERAD pathway. But the relationship between this function of B
cells and IMhasnot yet been reported.TheC4cluster onlyappeared
at the GC stage and tended to positively regulate the intrinsic
apoptotic signaling pathway via p53 and the negative regulation of
ubiquitin ligase activity. Therefore, this cluster of B cell may exert
anti-cancer effects by apoptosis in cancer cells. Trajectory data
showed that C2 cells were starting points as they had the lowest
pseudotime value, whereas C3 and C4 appeared at each end of the
differentiation trajectory. SCENIC analyses showed that up-
regulated STAT3, FOXP1, RUNX3, and REL may be responsible
for functional changes and the terminal differentiation of B clusters.
A previous study showed that STAT3 expression promoted B cell
proliferation and differentiation (52). FOXP1 and RUNX3 also
control mature B cell survival and maturation (53, 54) and Rel is
expressed in B cells and reticulocytes and is essential for
proliferation, survival, and antibody production (55). Activation
of these TFs suggested B cell differentiation and maturation,
however, further exploration of these TF regulatory roles will help
clarify C4 cluster mechanisms in GC.

Mast cells were divided into two clusters. During dynamic
disease processes, MasC2 cells gradually increased in the
function of production and release of histamine and other
transmitters. The effect of histamine released by mast cells in
promoting the conversion of malignant tumor capillaries was
comprehensively analyzed (56). Therefore, this cluster of mast
cells may be crucial for GC progression.

Similar to immune cells, non-immune-related TME cells also
promoted GC progression. We examined transcriptomic
alterations of fibroblast, endothelial, and pericyte cells.
Fibroblasts were divided into five clusters. FibC4 mainly
appeared at the IM stage, and its main functions were related
to secretion, the regulation of apoptotic processes, and peptidase
activity. FibC4 was characterized by the high expression of
IGFBP3 which promoted both fibroblasts into myofibroblasts,
and also matrix remodeling (57). Xu et al. showed that
myofibroblasts metabolized proteoglycans containing laminin
and induced hepatocyte-to-ductal metaplasia based on avb6
integrin-induced (58). Thus, we propose that inhibiting
IGFBP3 expression and reducing myofibroblast transformation
may be key to preventing IM. As tumor-related fibroblasts,
FibC3 cells exhibited cell adhesion, vasculature development,
and actin cytoskeleton organization functions, indicating a close
relationship with tumor metastasis. These cells also displayed
high CTHRC1 levels, which were shown to promote
tumorigenesis, proliferation, invasion, and metastasis in several
malignant tumors via different signaling pathways (59). We also
found several new fibroblast marker genes and verify their
expression in fibroblasts at different stages of gastric disease.
CST1, as a cystatin superfamily that encompasses proteins that
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contain multiple cystatin-like sequences, may have correlations
with fibroblasts cell activation (60). NPY encodes a neuropeptide,
inhibiting its expression leads to increased cancer cell apoptosis,
decreased exercise capacity, and changes in energy metabolism
pathways (61). In addition, ABCA8 and RBP4 are mainly related
to lipid metabolism and transportation (62, 63). However, the
expression and function of these mark gene in fibroblasts during
the multi-step development of GC has not been comprehensively
reported. The dynamic changes in fibroblast clusters observed
here suggested that at IM and GC stages, fibroblasts reshaped the
immune microenvironment and promoted GC metaplasia
and development.

Endothelial cells were divided into four clusters. The EndC3
cluster was the major component of IM and exhibited mainly
negative correlations with TGF-b signaling, angiogenesis, and
EMT. Previous studies suggested that decrease TGF-b signaling
was related to atrophic gastritis (64, 65). In addition, EndC3 was
characterized by the specific expression ofDARC.DARC is a seven-
transmembraneGprotein-coupled reactive protein kinase found in
blood cells and the surface layer of endothelial cells lining venules
behind capillaries (66). Itwas recently confirmed as being expressed
on lymphnodefibroblasts (66).DARC functions as adecoy receptor
for a variety of CXC andCC chemokines, including those with pro-
malignant and pro-inflammatory roles (67). Therefore, EndC3
appears under inflammatory stimulation conditions, its main role
may be to physically remove inflammatory factors in the
extracellular environment to reduce the inflammatory response.
However, its mechanistic role in IM requires further investigation.
EndC4 ismainly expressed in the tumors stage themain function of
MYC targeting and EMT protein secretion signatures, suggesting
this cluster exhibited a high proliferationphenotype andwas crucial
to GC genesis and progression. IGFBP5 is a new marker gene
identified in this cluster; it is a secreted protein related to cell
adhesion, proliferation, migration, inflammatory mediators, and
fibrosis (68). A recent study reported that IGFBP5 was highly
expressed in a variety of cancers, promoted cancer occurrence
and development, and was implicated in radiotherapy and
chemotherapy resistance (69), but its significance in endothelial
cells warrants further research. These data indicated that functional
changes in endothelial cells were strongly correlated with
GC progression.

Pericytes are parietal cells in blood capillaries and were
recently identified as regulating the production and function of
capillary shape during development (70). When compared with
other TME cells, little is known about pericyte identification,
recruitment, and interactions with tumor or other stromal cells.
Thus, they may have the potential to be underlying stromal
targets for cancer treatment. While we classified pericytes and
analyzed their functions, their precise role in GC genesis and
progression requires further investigation.

The CellChat analysis indicated that macrophages, fibroblasts,
and endothelial cells were crucial for the genesis and progression of
the IMandGC stages. At the IM stage, highB2M expression levels in
TME cells interacted with intestinal epithelial cells via TFRC and
HLA-F. Wang et al. reported that TFRC is a major inducer of
ferroptosis, the expression of which indicates iron uptake and
Frontiers in Immunology | www.frontiersin.org 15
storage dysfunction (70). The ferroptosis process is iron-dependent
and is characterized by increased lipid active oxygen (71). A recent
study showed that a high-lard diet induced IM (72). Therefore, the
accumulation of lipid active oxygen induced by ferroptosismaybe an
important IM mechanism at the gastric epithelium, hence,
preventing ferroptosis in epithelial cells may be effective in
preventing gastric epithelial IM. At the GC stage, interactions
between the TME and epithelial cells changed significantly,
especially for fibrocytes. COL1A1, COL1A2, and COL3A1
expressed by fibroblasts interacted with cancer cells by ITGA2,
DDR1, and ITGB1. Studies have shown that ITGA2, DDR1, and
ITGB1 were strongly correlated with GC genesis, development, and
metastasis (73–76). Therefore, fibroblasts may be crucial for these
processes. However, the molecular mechanisms underpinning their
interactions require greater elucidation. In addition, macrophages
and endothelial cells secreted large numbers of cytokines which
interacted with SDC1, SDC4, and ITGB1 in cancer cells. Studies
have shown that SDC1 and SDC4 led to EMT activation and further
promoted GC metastasis (77, 78), therefore, preventing these
interactions could inhibit GC metastasis.

Although several importantfindingswere generated in this study,
we acknowledge some limitations. Firstly, while we attempted to
identifymostTMEcells, somecell typeswerenot found, therefore,we
must increase patient sample numbers to solve this issue. Secondly,
although we identified the transformation of the TME as the key
element in the development of gastric diseases, the underlying
molecular mechanisms require further investigation.

In conclusion, our comprehensive characterization of the TME
at different cellular stages revealed dynamic changes in TME cells,
from inflammation to cancer. We observed a set of key transition
markers which were related to the carcinogenic evolution of TME
cells, and we delineated landmark dynamic carcinogenic
trajectories of TME cells. We identified three TME cell groups
whichwere strongly correlatedwith IMandGCoccurrence via cell-
cell interactions. Our results also indicated the phenotypic
convergence of various TME cell types in whole tumor formation
processes during GC. Equally, we have invaluable molecular
evidence forGCearly detection, diagnosis, and treatment strategies.
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Supplementary Figure 1 | Distribution of gene numbers and gene expression
profiles of all single-cell sequencing data, dimensionality reduction, and elimination
of batch effects. (A) The relationship between the percentage of mitochondrial
genes and mRNA reads, and the relationship between mRNA levels. (B) Scatterplot
illustrating UMI, number of genes, and the percentage of mitochondrial genes in
each cell at the four stages. (C) Before removing batch effect between batches;
Frontiers in Immunology | www.frontiersin.org 16
2000 variable features (left), 3000 variable features (middle), and 4000 variable
features (right) were used, respectively. Batch effects were evaluated by calculating
ARI. (D) After removing batch effects between batches; 2000 variable features (left),
3000 variable features (middle), and 4000 variable features (right) were used,
respectively. Batch effects were evaluated by calculating ARI. (E) The t-SNE plot of
45,336 high-quality cells to 24 clusters. (F) tSNE plot of all the single cells, with each
color coded for 15 major cell types. (G) tSNE plot of the source of the 24
subclusters of cells.

Supplementary Figure 2 | Macrophage changes in gene expression in different
gastric diseases. (A) Histograms of scale normalized expression levels of four marker
genes at each stage. (B) Differentiation trajectory analysis of CXCL5 expression.
The abscissa represents pseudotime, the ordinate represents gene expression, and
dots with different colors represent different macrophage clusters. (C) Bubble plot
showing scale normalized expression of representative genes involved in chemokine,
interleukin, and growth factor processes. (D)Heatmap of immune checkpoints altered
in the differentiation process ofmacrophages, whichwas clustered into four clusters. A
row Z score was used to represent expression levels. (E) Heatmap showing
expression of M1/M2 genes from each macrophage cluster.

Supplementary Figure 3 | Clusters of CD4+T cells in different gastric diseases.
(A) tSNE plot of three CD4+T cell subclusters. (B) Bubble plot of the top five markers
of each cell cluster; dot sizes represent abundance while colors represent
expression levels. (C) Bubble plot showing scale normalized expression of
representative genes involved in cytokine and growth factor processes. Dot sizes
represent a percentage of cells expressing corresponding genes, while
colors represent gene expression levels in clusters. (D) Stacked histogram showing
CD4+T composition across the four stages. (E) Line chart displaying changing trend
of the proportion of the three cell clusters across the four stages.

Supplementary Figure 4 | Identification of mast and pericyte cell clusters and
expression features. (A) tSNE plot of the two mast cell subclusters. (B) Line chart
displaying changing trend of the proportion of the two cell clusters across the four
stages. (C) Violin plots of genes featured in the C2 cluster. (D) tSNE plot of the two
pericyte subclusters. (E) Line chart displaying changing trend of the proportion of
the two cell clusters across the four stages. (F) Bubble plot of the top five markers of
each cell cluster; dot sizes represent abundance while colors represent expression
levels. (G) Bubble plot showing the biological functions of different cell clusters using
GO, dot sizes represent abundance while colors represent q values.

Supplementary Table 1 | The clinical features of patient cohort used in the study.
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