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Network approaches have become pervasive in many research fields. They
allow for a more comprehensive understanding of complex relationships
between entities as well as their group-level properties and dynamics.
Many networks change over time, be it within seconds or millions of
years, depending on the nature of the network. Our focus will be on com-
parative network analyses in life sciences, where deciphering temporal
network changes is a core interest of molecular, ecological, neuropsychologi-
cal and evolutionary biologists. Further, we will take a journey through
different disciplines, such as social sciences, finance and computational gas-
tronomy, to present commonalities and differences in how networks change
and can be analysed. Finally, we envision how borrowing ideas from these
disciplines could enrich the future of life science research.
1. What are networks?
Network science is broadly employed in many fields: from understanding how
friends bond in a party to how animals interact; from how superheroes appear in the
same comic books to how genes can be related to a specific biological process. Network
analysis is especially beneficial for understanding complex systems, indepen-
dent of the research field. Examples of complex biological or medical systems
include gene regulatory, ecological and neuropsychology networks. Social
networks can include collaborations between scientists or actors, sexual
partnerships, or relationships between historic persons, among others. Compu-
tational gastronomy is also employing network tools, for instance, in recipe
building for a better flavour combination. In finance, the interest of the network
analysis often lies in forecasting economic crises or opportunities. Epidemiol-
ogy often applies network science to investigate how diseases spread, how to
avoid pandemics and epidemics [1–3] and for finding the patient ‘zero’ [4–6].
Network dynamics has also been employed to understand how chaos can
spread in a system, during a hurricane, for example [7].

Most networks are not static but can change at different timescales. Those
changes can happen in a short amount of time: (i) within seconds or minutes,
for instance, when the cell reacts to an environmental change or the stock
market to the introduction of a new company asset; or (ii) within years, such
as recipes or phenotypic traits over the course of a lifetime or evolution.
Network changes over a time course can be studied as a dynamic system, a
very new approach [8] used, for instance, in social networks to detect commu-
nity formation [9]. Other research areas have employed comparative and
modelling methods to investigate temporal changes in networks.

A related aspect of interest is how particular properties of networks evolve,
such as modularity, hierarchy or structures like the hourglass shape [10–13].
There are many different measures and characteristics of networks that can
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Box 1. A short dictionary of network terms.

A network is a pair G = (N, L) of a set N of nodes connected by a set L of links.
Two nodes are neighbours if they are connected.
The degree of a node is the number of nodes it interacts with (the neighbours) [14].
The weight is a measure of how strong a particular interaction is [14].
The direction of a link specifies the source (starting point) and a target (endpoint) where the interaction occurs [15].
The strength of a node is the sum of the weights attached to links belonging to a node [16].
Hubs are nodes with a much larger degree compared to the average degree value [16].
A set of highly interconnected nodes is a module or cluster [17].
Two nodes are connected in a network, if a sequence of adjacent nodes, a path, connects them [18].
The shortest path length is the number of links along the shortest path connecting two nodes [18].
The average path length is the average of the shortest paths between all pairs of nodes [18].
The diameter is the maximum distance between two nodes [14].
The modularity index is a measure of the strength of the network division into modules when this measure is maximized; it
can be used for identifying nodes communities [19].
Preferential attachment is the tendency of nodes to form new links preferentially to nodes with a high number of
links [20,21].
The probability that a random node in the network has a particular degree is given by the degree distribution [18].
A bipartide graph is a network in which the nodes can be divided into two disjoint sets of nodes such that links connect
nodes from the two sets to each other, but never inside the same set [22]. In those networks, most of the network measures
are calculated differently than in a unipartide network.
The clustering coefficient describes the degree with which a node is connected to all its neighbours [18].
The global clustering coefficient measures the total number of triangles in a network [22].
The average clustering coefficient is the average of the clustering coefficient of all nodes in a network [18].
Centrality is a set of measures that have been proposed to help to define the most central nodes. It has many interpretations
for autonomy, control, risk, exposure, influence and power [23].
Closeness centrality is defined as the average distance from a single vertex to all other vertices [24].
Betweenness centrality is defined as the total number of shortest paths between pairs of nodes that pass through a particular
node [24].
The topological overlap (TO) is a measure of how interconnected two nodes are based on common neighbours [17,25],
details are given in the Gene (Regulatory) Networks section.
Global measures are measures that describe the whole network, for example, degree distribution; average clustering coeffi-
cient; path length; modularity index.
Local measures are characteristics of individual nodes of a network, such as their degree and centrality.
The global reaching centrality (GRC) is defined as the average difference between the maximum local reaching centrality and
the local reaching centrality [26].
Flow hierarchy measures the heterogeneity of the flow information in a network [26].
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be used to study evolvability. In this review, we will not focus
on the evolution of such properties per se, but rather on how
networks change as a system.

We will start by introducing the basic network terminol-
ogies and then explore how biological networks evolve. We
will then present some classical and some new studies on net-
work changes in other scientific fields with the intention of
comparing across fields how networks change over time
and how that is measured. We aim to make suggestions for
how approaches from other disciplines could support and
improve biological network analyses.
1.1. Terminology
While the nature of each system, i.e. what its entities are and
what kind of interactions they have, is different, there are
common notations. A short dictionary of common network
terms can be found in box 1 (marked in bold throughout
the text). A brief description of biological terms can be
found in box 2 (marked in italics throughout the text).
The set of interactions among a set of entities is, in gen-
eral, called a graph or a network [22,57]. In graph theory,
each entity is called a vertex, while in network notation, it
is called a node [22]. Accordingly, the connections between
two entities are called edges or links, respectively [22]. In
this review, we will always use the network notation,
unless otherwise specified. The total number of nodes in a
network is often denoted as N and the number of links in a
network is denoted as L. While nodes can receive a label,
links in general, are not labelled [22] (although, in many
cases, weights can also be perceived as a label).

A network can be represented mathematically as an adja-
cency matrix (usually denoted as A), an edge-list or visually
as a graph (figure 1). Links of a network can possess a direc-
tion (normally depicted by an arrow), which indicates that
the interaction is asymmetric, e.g. one gene is regulating
another gene, or a person follows somebody else in a social
network. Networks with directed links are called directed net-
works, while networks without directed interactions or in
which the direction is not known are referred to as undirected
networks, e.g. collaboration in the same study or interactions



Box 2. A brief dictionary of biology terms.

DNA is the hereditary material of most organisms; usually all cells of an organism have the same DNA [27].

Genes are the basic physical and functional units of heredity. They are parts of the DNA and contain the information for producing functional

RNAs and proteins. [27].

Orthologous genes are genes in different species that originated by speciation events and represent evolutionary equivalents of each other [28–

31].

Paralogous genes are genes in the same species that originated by gene duplication [28–31].

Horizontal gene transfer describes the transfer of genetic material between organisms rather than from parents to offspring. It is most commonly

observed in prokaryotes and represents a main factor for species evolution [32].

The RNA is synthesized from the DNA but has different properties and functions than the DNA. Some RNAs carry out biological functions in a cell,

while others, messenger RNA (mRNA), are turned into proteins that fulfil biological functions [27].

After the mRNA is produced, it undergoes substantial changes, such as RNA splicing and 50 cap addition, leading to a mature mRNA, or sec-

ondary mRNA, which is exported into the cytoplasm for protein synthesis [27].

A non-coding RNA (ncRNA) is an RNA that does not encode a protein. ncRNAs often play a role in gene regulation [33].

microRNAs (miRNA) are examples of ncRNA; they are involved in post-transcriptional regulation of protein expression [34].

Proteins are large, complex molecules that play many critical roles in the body. Proteins are responsible for most of the work in cells and are

necessary for structure, function and regulation of the cells. They can act as enzymes, antibodies, transporters, transcription factors, etc. [27].

Gene expression is, in short, the coupled process of transcription (from DNA to RNA) and translation (from RNA to proteins) to transform the

stored information inside the DNA into proteins [27].

RNA-Seq is a technique used to sequence the RNAs in a sample. The result is the snapshot abundance of all RNAs expressed in the sample at a

particular time, often called the transcriptome [35].

Sample is a term that is used very context dependently in biology. Here, a sample is a representative part of an organism, e.g. a piece of tissue or

a cell.

Microarrays, or gene chips, are chips with thousands of tiny spots containing a known DNA sequence. It is used to measure the abundance of

mRNAs by eminence of fluorescence [27].

Transcription factors are DNA-binding proteins that activate or repress the transcription of particular target genes [36].

Gene regulatory factors are responsible for controlling the expression of genomic information and include transcription factors, cofactors, epi-

genetic modifiers, miRNAs and others [37].

Second messengers are molecules that transmit a signal from a receptor protein on the cell surface to target molecules inside the cell. They are

parts of signalling cascades, in which usually one second messenger activates several target molecules, thus amplifies the signal [38].

Systems biology examines the structures and dynamics of cellular and organismal function, instead of isolated characteristics of a cell or organ-

ism [39].

Operational taxonomic unit (OTU) is used to classify groups of closely related individuals based on sequence similarity (often 16 s or 18 s ribosomal

RNA similarity of microorganisms) [40] and is a helpful concept if species cannot easily be determined.

Drug repositioning (or drug repurposing) is the process of redeveloping a compound for use in a different disease [41].

Yeast-two-hybrid (Y2H) systems are used to measure protein–protein interaction. Two proteins to be tested for interaction are expressed in yeast;

one protein is fused to a DNA-binding domain from a transcription factor while another protein (Y) is fused to a transcription activation domain.

If X and Y interact, there will be a formation of a colony on media used as evidence of the interaction of X and Y [42].

Protein complex immunoprecipitation is an alternative method for measuring protein interactions. It involves immunoprecipitation of the

protein bait, purification of the complex and the identification of the interacting partners [43].

High-throughput mass spectrometry has the ability to detect a characteristic mass to charge ratio of different substances in a sample. It is used to

identify the proteins present in a sample [44,45].

Chromatin immunoprecipitation followed by sequencing (ChiRP-Seq) can be used to identify binding sites of transcription factors in the DNA

or of histone modification in a genome-wide manner [46].

Chromatin isolation by RNA purification followed by sequencing (ChIRP-seq) maps lncRNA interactions to the chromatin [46].

Genome-wide association studies (GWAS) are studies where millions of SNPs are tested for association with a particular phenotype using hun-

dreds or thousands of individuals. Those studies shed light on the genetic basis of complex traits [47–49].

Phenome-wide association studies (PheWAS) are similar to GWAS; however, the association between a number of common genetic variations

and a wide variety and large number of phenotypes are systematically characterized, allowing, for example, to study pleiotropy [50] and improve

drug repurposing methods [51].

Omics is a term that refers to the study of different areas in biology, and indicates the totality of some kind, e.g. genome, transcriptome, pro-

teome … [52].

Connectome is a comprehensive map of neural connections in the brain [53].

Genome is the complete set of genetic material (including all genes and their regulatory units) present in an organism [54].

Transcriptome is the complete set of transcripts present in a sample. Transcripts are RNAs made from active genes, e.g. mRNAs that are turned

into proteins. The transcriptome is the major determinant of a cellular phenotype [54].

Proteome is the complete set of expressed proteins present in a sample [55].

Metabolome is the complete set of small-molecules biochemicals found in a sample [43].

Trophic levels is the position an organism occupies in a food chain [56].

A food chain is a succession of organisms that use nutrition from other organisms [56].

Taxa is a group of one or more populations that forms a unit.
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Figure 1. Graph example: (a) an undirected, unweighted network and (b) a directed, unweighted network. Directionality is visualized by an arrow. (c) An undir-
ected, weighted network. Weights are represented by the width of the links. (d ) A directed, weighted graph. In all panels, the size of the nodes is relative to its
degree or strength.
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between proteins. The links can also have a weight to express
the strength of the interaction, which results in a weighted net-
work [22,57]. Usually, the weight is graphically displayed as
the thickness or the length of the links.

Networks can also have different dimensions. These dimen-
sions can be understood as layers (or different link types) of the
same system [58,59]. For example, in a multi-omics multi-layer
system, each layer can be constructed using different -omics
data (for example, genomics, transcriptomics, proteomics, etc.)
where the ‘whole’ biological system can be understood as a net-
work of networks [60,61]. The topology and the dynamic
properties of the whole network can be changed by simply
transforming the weights of the interactions, or by ignoring
that nodes can interact in many ways [62–65] also ignoring
the node’s importance to the system [62,66–69]. The interactions
and the dependencies among those layers do not always reflect
the real system and are oftentimes more vulnerable to errors
than in a single-layer network [70]. However, this extra layer
of complexity to network science enables understanding how
layers interact and phenomena that cannot be identified using
a single-layer system [71,72].
2. Comparisons and evolution of networks in life
sciences

Recent applications of complex network analysis methods
have provided knowledge of the functions and interactions
of genes and proteins at the systems level [18,73–75], for
example, by analysing protein–protein interaction (PPI) net-
works [76,77], metabolic networks [78,79] and co-expression
networks [80,81]. Moreover, ecological networks investigate
how species interact and how they interact with the environ-
ment and abiotic factors. All those biological networks are
interconnected. Imagine the list of genes and proteins of an
organism as a list of ingredients for a meal. Just by listing
those ingredients without the complete procedure of how
to mix those elements, it is impossible to understand how
they should be combined. Similarly, by only having the
recipe instructions, without the ingredients, it is not clear
what to mix together. In systems biology, the concept is similar:
a list of genes or proteins provides important information
about an organism; however, understanding how those
genes and protein interact makes the layers of information
much more useful for understanding how organisms develop
or react to environmental changes. Systems biology deals
with a careful examination of the structures and dynamics
of cellular and organismal functions, instead of isolated
characteristics of a cell or organism [39]. Biological networks
underlie temporal changes—deciphering them are core inter-
ests of molecular, evolutionary and ecological biologists.

2.1. Protein–protein interaction networks
In PPI networks, the nodes represent proteins and they are
connected by a link if they physically interact with each
other [82] (figure 2a). Typically, these interactions are
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Figure 2. Examples of life science networks. (a) Protein–protein interaction networks. Transient interactions occur in signalling pathways. Shown is the RAS signalling
pathway, which is initiated by a tyrosine kinase located in the cell membrane. Each protein of the pathway activates the next one and eventually causes particular
reactions in the cell; each cascade can lead to a different outcome such as cell survival, apoptosis or membrane trafficking. (b) Metabolic networks. They represent a
series of biochemical reactions within cells. Shown is the citric acid cycle (adapted from [83]), which is important for gaining energy from food (carbohydrates, fat,
proteins), which are metabolized via oxidation of acetyl-CoA into ATP and CO2. (c) Gene regulatory networks. Shown is an abstract example of a TF that is binding to the
promoter of a target gene to turn on its expression. From the genomic information of the target, a messenger RNA (mRNA) is created that gets translated into a protein.
If that protein is another TF, it can turn on the expression of another target gene and so on. (d ) Ecological networks. Shown is a food web with producers (plants), preys,
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measured experimentally, for instance, with the Yeast-
two-hybrid (Y2H) system [84], or by protein complex
immunoprecipitation followed by high-throughput mass spec-
trometry [85,86], or inferred computationally based on
sequence similarity [87]. PPI can be used to infer gene func-
tions and the association of subnetworks to diseases [77].
In this type of network, a highly connected protein tends to
interact with proteins that are less connected, probably to pre-
vent unwanted cross-talk of functional modules [88]. Many
methods in network medicine are based on PPI (see below).
An example of PPI networks that change in relatively short
timescales is signalling cascades in cells (figure 2a). Upon a
change in a cell’s environment, a transmembrane receptor
can form a complex with a primary messenger, which leads
to the release of a secondary messenger that activates further
proteins to generate the cellular response. Such PPIs are
sample dependent, since the set of expressed proteins differs
between cells, and information on cell specific expression
[89] can be embedded into the PPI [90].

On an evolutionary scale, PPIs can change through gene
duplications and sequence divergence. For example, the
best characterized eukaryotic PPI network, which was estab-
lished for the yeast Saccharomyces cerevisiae [91,92], showed
that the evolutionary older a particular protein is, the more
connected over time it is [93]. Interaction networks of some
eukaryotic transcription factors (TF) became more and more
complex due to the duplication of genes encoding for TFs
[94]. Results of both studies can be related to the phenom-
enon known as preferential attachment, which states that
nodes that already have many links will attract more new
links over time than other nodes [20,21]. Duplication of
whole genomes have also been proposed to be a driving
force of gene regulatory network evolution [95,96].
2.2. Metabolic networks
To describe metabolic processes, metabolic networks have
proved to be valuable. In a metabolic network, the nodes rep-
resent the metabolites (biomolecules) and the links a
biochemical reaction [97] that is catalysed by proteins
(enzymes) (figure 2b). These networks contain the stoichi-
ometry of reactions necessary for the synthesis and
degradation of basic metabolites or complex compounds
such as proteins [98,99].

These metabolic reconstructions have been successfully
used in biotechnological applications, mainly targeting the
over-production of metabolites [100,101]. The computational
approach for analysing this kind of networks is, in general,
a constraint-based analysis [102,103]. The usual method for
a constraint-based analysis is the flux balance analysis
(FBA) that originally was concerned about subsets of the
metabolome of a cell. FBA models assume that the system is
in equilibrium, and can accurately predict the growth rate
temporal change [104], interruption in a pathway [105], ident-
ify genes that are essential for certain biological functions
[106], determine important metabolic pathways [107–109]
and aid in synthetic biology studies [110–113]. Another way
to construct a metabolic network is by using robust analysis
of metabolic pathways (RAMP). Unlike the FBA, it does not
assume a steady state for the model and is thus closer to rea-
lity. It controls deviations from the steady state by a
likelihood function. The implication of this deviation is that
it allows computationally study of the functional states of a
cell while it converges to a steady state [101]. With the avail-
ability of annotated genomes, it became possible to construct
genome-scale metabolic networks. They combine inferred or
measured gene–protein–reaction relationships, transport
reactions and an estimated biomass composition [102,114]
and are considered to better comprehend the underlying
metabolism of different life forms [104,115].

The structure of metabolic networks can change in
response to environmental pressures acting on organisms
[116]. Flow hierarchy, which is often used in metabolic net-
works, has also been used to analyse food webs [117] to
investigate the evolutionary benefits of the network structure
[116]. For example, using simulations in Boolean networks, it
has been shown that the cost of keeping a link between two
nodes can regulate the hierarchy [118]. This is because main-
taining the production of an enzyme that is no longer used
comes with certain costs for the individual [119,120]. For
the growth of metabolic networks, preferential attachment
has also been observed, similar to PPI networks [121].
2.3. Gene (regulatory) networks
Biological systems have to regulate when, under which con-
ditions, and how much of a particular protein or RNA is
expressed. Interestingly, the molecules that perform this regu-
lation (gene regulatory factors) by binding to DNA are
themselves encoded in the DNA, thus creating gene regulatory
networks (figure 2c). Genome-wide binding information can
be gained with relatively recently developed methods, such
as ChIP-Seq or ChiRP-Seq, and the effect of the binding can
be deduced from analysing expression changes of target
genes using RNA-Seq. It is important to note that gene inter-
actions cannot be directly measured, but have to be inferred
instead. As an example for network inference, co-expression
networks have received much attention [122,123] because
they can shed light on the molecular mechanisms that underlie
biological processes or on how changes in gene interactions
might lead to an altered phenotype, for instance, a disorder.

In co-expression networks, a pair of nodes is typically
connected by a link if the genes they represent show a signifi-
cantly correlated expression pattern across a set of biological
samples of interest. They are best built from genome-wide
expression data measured by RNA-Seq [124] or microarrays
[125,126]. Often, the links have a weight, which can be calcu-
lated from the correlation strength and represent the strength
of a gene-pair relationship. The sign of the link can be indicative
of whether a gene pair is regulated in the same direction
or oppositely controlled [125,126]. Most of the methods for
building co-expression networks are based on a similarity
measure, such as mutual information or correlation [127–129].
To reduce noise, one can choose to represent the topological
overlap (TO) of nodes instead of each interaction. The TO
expresses how similar two nodes are in their set of neighbours,
such that a link is drawn between two nodes if they share
many interactions [17,25]. TO methods, their differences and
technical details have been extensively discussed elsewhere
[126,130–133]. One needs to be aware that the inference of the
links in a co-expression network is a data-driven procedure.
Thus, each dataset, even from similar samples, will lead to an
independent and different network. Correction approaches
are hence needed to reduce noise. Calculating a consensus
network from multiple independent networks measured for
the same system can serve this purpose [126,134].



Table 1. Methods for comparing networks: the columns inform about the statistical methodology used; whether the focus of comparison is on nodes or links;
types of networks that are recommended to be compared; and availability of the method.

methods
nodes/
links can be used for available

CoDiNA geometrical transformation, normalized scores for links and

classification of nodes

links and

nodes

protein–protein interaction, co-

expression network, co-occurrence

network

R package

CompNet Jaccard similarities from the union, intersections and

exclusive links

links protein–protein interaction, co-

expression network

GUIa

CoXpress hierarchical cluster analysis on the expression values nodes co-expression network R package

CSD score the links to construct a unified differential co-

expression network

links protein–protein interaction, co-

expression network, co-occurrence

network

in-house

softwareb

DiffCorr Fisher’s z-test links co-expression network R package

gain calculates the Jaccard, Simpson, geometric, hypergeometric

and cosine indexes and Pearson correlation for links

links co-expression network Web-based

MIMO subgraph matching nodes protein–protein interaction, metabolic

network

in-house

softwareb

NetAlign identifies conserved structures from topology and sequence

similarity

nodes protein–protein interaction Web-based

QNet computes graph similarities from trees for the nodes based

on colouring graph theory

nodes protein–protein interaction in-house

softwareb

SAGA computes graph similarities for the nodes nodes protein–protein interaction, metabolic

network

Web-based

aGUI: has a graphical user interface.
bIn-house software: command line program can be downloaded or requested from authors.
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Co-expression networks are constantly changing. Biol-
ogists are often interested in differences between samples
from a healthy and a diseased state or in comprehending
changes in gene co-expression during development or evol-
ution. For example, co-expression network analysis has
provided insights into neurogenesis [135] and tissue-specific
regulatory processes [136–138], into how expression patterns
in primate brains have changed over the course of evolution
[134,139,140] and how soil treatments can affect rice pro-
duction [141]. In many studies, theoretical network features,
such as the degree of a node, degree distribution, centrality,
modules and hubs are compared. However, theoretical
measures might not have a biological meaning. Instead, bio-
logical insight could be gained from the analysis of changes
in the topology of the co-expression networks (rewiring),
including pinpointing nodes with altered interactions and
changed neighbours. Consequently, a method that classifies
nodes and links according to the concepts of being present,
different or absent in some of the compared networks is ben-
eficial for understanding how different phenotypes are
affected by the gene regulatory processes [142]. For a sys-
tematic comparison of links or nodes, several methods can
be considered: CoDiNA [143], CompNet [144], CoXpress
[145], CSD [142], DiffCorr [146,147], Gain [148], MIMO
[149], NetAlign [150], SAGA [151] and QNet [152]. While
most of these methods allow only pairwise network compari-
sons [125,142,153,154], CoDiNA and CompNet were
developed for the comparison of multiple networks. Table 1
gives a brief overview of the main methods for co-expression
network comparisons. However, it is difficult to quantitat-
ively evaluate the accuracy of any of these approaches,
since a set of gold standard experimentally validated
networks does not exist [153]. Evolutionary analyses of
co-expression networks are still rare because comparable tran-
scriptome datasets from different species are still sparse [155–
157]. Nevertheless, evolutionary differences have been
described for the co-expression networks of human, chim-
panzee and rhesus macaque pre-frontal cortices [158–160]
and plants [161].
2.4. Ecological food networks
Network applications in ecology were born in 1942, when the
trophic levels were defined [162]. They are the basis for the eco-
logical food networks, also called food webs [163]. Nodes in
these networks represent species and their links indicate
species interactions (figure 2d). Simple food webs have well-
defined relationships and topology with, for example, larger
predators on the top and a more diverse group of smaller
food sources at the bottom [164–166]. However, they are
only a small subset of all interactions in an ecosystem [167].
Supplementary and complementary information can be incor-
porated in the ecological network analysis (ENA) to analyse
and model the functions, structures and evolution of complex
ecosystems [56,168]. ENA differs from other network models
in ecology, in that it assumes an energy and nutrient flow
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that is modelled through networks [167]. This flux is rep-
resented as links, that frequently are directed [167]. As for
co-expression networks, plenty of ENA methods are available.
They have extensively been discussed in the literature [167–
171]. Those methods are generally divided into six categories,
of which one is focused on the network topology and pathway
types (structure) and five are economy-based with different
input/output foci: flow (information diversity framework);
storage; environ; control and impact. With the current focus
on sustainability and environmental preservation, most of
the ENA models use economic models features [172,173].
The model to be chosen depends on the researcher’s questions
and interests. ENA has been used to better define complex
food webs [164,174,175], to understand the effects of external
factors in those [164,170,176], to identify taxa specificity and
subcommunities in a food network [177], and to uncover inter-
ferences of the political sector in sustainability [178–182],
among others.

A common interest in ecology is to understand differences
between systems, for instance, how species interactions might
change depending on the environments [183,184] or climate
change. In contrast with co-expression networks, ENA is
usually concerned with comparing the network topologies
[185], such as degree distribution of the networks and
the hubs of each network [183,186]. This renders the com-
parison of those networks a mostly theoretical framework.
Many methodologies have been developed to allow such
comparisons [171,185,187–189].
2.5. Co-occurrence networks
A complementary method for studying species interactions is
co-occurrence networks [183,186,190–192]. Those networks
are assembled from the species abundance data of metage-
nomics studies and can also incorporate other biotic and
abiotic information [193,194]. In co-occurrence networks,
groups of species identified in the same operational taxonomic
unity (OTU) correspond to the nodes, and the strength of their
interactions with other OTUs are represented by the links
[195]. The patterns of co-occurrence can help define the identity
ofOTUs and how they interact, the biogeographyof an environ-
ment and functional spatial distribution of the species.
Moreover, it also provides information on the spatial effects of
environmental conditions and trophic and non-trophic inter-
actions [196]. Those networks are generally built with
similarity measures-based methods, such as Spearman or Pear-
son correlations [186,191,195,197–199], dissimilarity measures,
for example, Bray–Curtis [200], probabilistic models, for
instance, co-occur [201,202] or other methods, such as the
wTO [126] and EcoSim [203].

Similar to co-expression networks, researchers often ask
questions such as: is a specific set of OTUs interacting more
(or less) in different environments? The first attempt to
answer such a question was for a microbiota community by
calculating the dissimilarity matrix (1 – correlation). Permu-
tation was applied to remove interactions that could be
false positives [199]. Subsequently, different clustering
methods such as co-occur [201] and a probabilistic model
for co-occurrence [204] were employed to describe microbiota
community modules. Those modules were later compared
across different environments. It is now common to first clus-
ter OTUs to define communities and subsequently compare
this cluster structure to identify differences in community
composition. However, this does not allow deciphering
which OTUs are essential for each condition [167,205,206].
This could be solved by using the wTO method [126] for con-
structing the networks and using CoDiNA [143] afterward to
pinpoint particular OTUs with many condition specific links.

Understanding how ecosystems evolve is of central
importance for projecting the effects of environmental or cli-
mate change. When time-series data are available, alterations
of an ecosystem throughout time can be investigated [207–
210]. These analyses focus on the distinction of indirect and
direct relationships among the different components and
the environments. For example, with NEA (network environ
analysis), each compartment in a system has an incoming net-
work and an outgoing network that contains the energy/
matter flux [207] similar to the previously described flow
hierarchy in a metabolic network.
2.6. Network medicine
In order to uncover links between diseases, syndromes and
comorbidities, network medicine uses a multitude of omics
information often combined into a multi-layer network. Two
diseases are considered to be linked if they have a common
genetic or functional origin [211,212] (figure 2e). Those connec-
tions allow us to understand the interactions between the
molecular, symptomatic and social networks that are part of
network medicine; allowing the intertwined factors that con-
tribute to individual diseases to be quantified [211]. In
general, disease-associated genes or their proteins, respectively,
are closely connected with each other, e.g. by being in the same
pathway or biological module [77,213–217]. Diseases that are
highly phenotypically similar tend to have similar sets of
genes associated with them. And genes associated with the
same disorder often share cellular localization, functions
[214] and are highly co-expressed [218]. Therefore, a subnet-
work—called disease module—that can define a disease or a
phenotype can be uncovered [214,215,217,219–222].

Network medicine studies, for instance, how a disease pro-
gresses. A disease can go through different states, which can
cause new diseases, including diseases that, at a first glance,
might seem to be unrelated, such as colitis and respiratory
insufficiency [223]. Better understanding such progression
through states can prevent disease complications and the
emergence of other diseases [223–225]. A way to define the
Disease–Disease progression network is by integrating dis-
ease–protein relations, biological pathways, clinical history
and biomedical literature into a single network and later calcu-
lating the shortest path from any two diseases in that
integrated network [223]. The dynamics of cancer metastasis
was studied under the light of disease progression by consid-
ering the sites where metastasis can arise (given a tumour
type) as nodes, defining node size as its hazard and calculating
the dynamics of the tumours co-occurrence in every time point
[226].

Perturbations of disease modules by drugs can be ana-
lysed and related to the drug efficacy and side effects
[227,228]. Those disease modules can also be used for drug
repurposing, i.e. predicting whether an already approved
drug could be used for treating other diseases [229]. To that
end, multiple methodologies can be used [230–237]. One
example is the signature-based approach, which compares
the gene expression profiles under disease and drug-induced
states for identifying genes (i.e. the signature) with gene
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expression reversion [230,238]. For this analysis, the CoDiNA
approach described above can also be used. For identification
of candidate signatures, one can use a combination of two
complementary techniques, such as genome-wide association
studies (GWAS) and phenome-wide association studies
(PheWAS). This approach showed that psychiatric drugs can
be repositioned to inhibit the TGF-β pathway [51,239,240], an
important pathway that regulates multiple biological pro-
cesses, such as embryonic development, adult stem cell
differentiation, immune regulation, wound healing and
inflammation [241]. Genome-scalemetabolic network analysis
was used to identify drug targets that led to cancer-related
drug resistance for cancer therapy [242,243].Moreover, an inte-
grative method including the protein–protein interactome
identified correctly drugs that are already prescribed and
also repurpose others [244].
Interface
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2.7. Psychometrics and neuropsychiatry
It is common in psychometrics to explain a set of correlated
measures, such as correct responses in cognitive and intelli-
gence tests, or joint occurrence of psychological symptoms,
as caused by an unobservable (latent) variable, e.g. general
intelligence or depression. The imputation of a value for
said variable is the central objective of common psychometric
techniques [245,246]. However, the causation structure
assumed by these models implies that the latent variable is
the unique cause of correlations between observations. This
assumption might not be reasonable in clinical and psychia-
tric settings [247] in which symptoms might cause and
modify other symptoms. As an example, lack of sleep and
fatigue are associated with depression, and both are items
in the Beck Depression Inventory II [248], a 21-question mul-
tiple choice self-report inventory, widely used to measure the
severity of depression. Yet, it is reasonable to assume that
sleep problems might cause some fatigue for physiological
reasons not necessarily related to the presence of depression.
Therefore, network approaches to investigate the interaction
of symptoms have been proposed in the literature. Networks
are assembled considering each symptom as a node and the
association strength as the link weight [249].

One of the first publications that used network theory in
psychometrics (figure 2f ) investigated the comorbidity of
major depression and generalized anxiety disorder and the
interplay of their symptoms [249,250]. The symptoms infor-
mation was taken from the Diagnostic Statistical Manual IV
(DSM-IV), a comprehensive manual of 439 symptoms, criteria
and language for the classification of mental disorders. This
resulted in two well-defined clusters, one associated with
each disease. Interestingly, the authors also discovered
‘bridge symptoms’ between both diseases, such as sleep pro-
blems, restlessness and concentration problems, which give a
possible explanation for the comorbidity of both diseases. In
addition, the strength of each node provided insights into
which symptoms are more dominant to each separate diag-
nosis. Similar explorations have been performed in
networks linking autism and obsessive–compulsive disorder
[251] and the structure of post-traumatic stress disorder
(PTSD) symptoms [252]. Also, the entire disease structure of
the DSM-IV catalogue has been investigated [250]. Two
symptoms were connected if they are used as diagnostic cri-
teria for the same disease. This network revealed one large
component comprising almost half (47.4%) of the symptoms,
a high degree of clustering and high connectivity. These
properties give the network a small world nature, predicting
the observed pattern of multiple symptoms interacting in
multiple disorders and the observed prevalence rate for
comorbidity.

Structural and functional connectivity between brain
regions, i.e. the connectome, has also been investigated using
network methods with the goal to understand the brain
[253–259]. A variety of methods exists for investigating the
relationship of brains regions with diseases (for a complete
review on the topic, refer to [260,261]). For instance, the
analysis of functional magnetic resonance imaging (fMRI)
can be used for characterization and classification of brain
structures and disorders such as Alzheimer’s disease, schizo-
phrenia, or bipolar disorder [262]. In connectome networks,
nodes can represent the brain regions and links the tracts of
white matter that connect these brain regions. The links can
also indicate correlations in functional activity [258,263]. Con-
nectomes can be compared between two groups of
individuals aiming to identify topological biomarkers
[264,265], such as for Alzheimer’s disease [266], multiple
sclerosis [267], schizophrenia [268], stroke [269] and major
depression [270]. An fMRI study of 16 Alzheimer’s patients
found that increased resting state connectivity 1 day after
using a psychedelic was predictive of clinical response
[271]. Other patients showed increased amygdala response,
suggesting potential for therapeutic efficacy in depression
treatment [272]. The comparison of connectomes has been
done using network-based statistics (NBS), by which the con-
nectivity between a pair of regions is tested using univariate
statistics for functional [273] and anatomical [274] disturb-
ances. Machine learning techniques, such as support vector
machine (SVM) and multilink analysis (MLA), which com-
prise a series of ML algorithms with reduction of
dimensionality [275] can also be used for defining the differ-
ences between connectomes. Topological information can
also be included [276], or groups of networks can be com-
pared with each individual topology [277].
3. Evolutionary principles across life sciences
Network approaches are ubiquitous in biological and medi-
cal research. However, as seen above, the kind of data
researchers deal with and the methods they apply vary
across disciplines. Despite the differences, it is common to
compare network features, such as degree, degree distri-
bution, centrality and modularity [278–280]. However, it
would often be interesting to also compare local features to
point out the particular nodes and links that have changed,
to identify the key differences between biological or medical
conditions, cells or species, and potential master regulators of
biological states and pathway. To gain more specific insights
about the impacts of changed local features, other types of
information can be integrated, such as functional classifi-
cation or the phylogenetic age of nodes.

It has been proposed that the evolvability of an organism is
related to the hierarchy of the modularity of its molecular net-
works [115]. This hierarchy of the modularity allows for a
better adaptation of organisms to a new environment, may it
be by changing the structure of its PPI, metabolic or gene net-
work [281,282]. In particular, links or nodes in one module
could be changed without causing too much negative impact
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Figure 3. Network evolution. (a) An imaginary original network. (b) Hierarchical and modular organization. Imagine the network of a as a directed network with
the yellow node as a key gene initiating a signalling or developmental pathway. Its change or loss would have severe effects on the whole set of functions of the
network and hence the organism. Also, a change or loss in the purple node would likely be detrimental, because it regulates most nodes of the network. On the
other hand, changes or loss of the green node is expected to cause only little impact on the functions of the network. (c) Gene duplication, often following the
principle of preferential attachment: a new node (salmon) was created by duplication and attaches to the same neighbours as the original salmon node. It will
attach with a higher probability to nodes that already have many links ( purple, degree 4, hub in this example). Note: this is not because the genes/proteins with
many interactions are more likely to duplicate. The gene duplication process is random. However, it is more likely that one of a hub’s neighbours duplicates (because
it has more neighbours) [18]. (d ) Diversification after gene duplication. The new node needs to acquire new functions (or split functions with the node it was copied
from) to stay in the genome. Here, it loses the link with the green node but gains a link with the yellow node. This means that the salmon and blue gene now have
different functions (albeit overlapping functions to some extend), such that the selection pressure to keep both nodes is high enough. If this is the case, the gene
represented by the blue node will be maintained in the genome.
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on other modules, giving evolution the chance to ‘tinker’
around [283]. The hierarchical and modular organization
also allows making predictions on which nodes are more
likely to change during evolution [284]. For instance, nodes
with fewer links and lower in the hierarchy would cause less
severe structural and function impacts on the whole network
and thus be more likely to change (figure 3a,b). On the other
hand, nodes that are high in the hierarchy and are highly con-
nected would be expected to change much less frequently,
because their change might often be detrimental to the organ-
ism. Moreover, differences in the modularity seem to be
correlated to the phylogenetic divergence of organisms.
Often, the addition of peripheral pathways results in a loss
of modularity during evolution [13].

Evolutionary changes have classically been investigated
using the preferential attachment model. Networks with
scale-free topology tend to evolve using preferential attachment
[15,93]. In molecular networks, this typically means that new
nodes are created by gene duplication and are preferentially
attached to nodes that already have many links (figure 3c).
This allows the networks to be more robust during evolution
[285],maintaining the samenodes andpart of their connections.
The topology of a network partly determines how evolvable a
network is. A network that is evolvable has the ability to
create or allow an adaptive change in a system [286,287], for
example, create a potentially phenotypical variation [288]. The
particular faith of a new node, i.e. whether it will survive in
the genome after duplication, depends on the evolutionary
pressures. A new node will originally have exactly the same
links as the node it was created from by gene duplication
(figure 3c). During evolution, most duplicated genes are lost
[289]. To escape extinction, nodes need to acquire new functions
or split their functions with the original node so that there is
enough selective pressure to keep both copies in the genome
(figure 3d). In this sense, networks do not only grow, but also
undergo phases of diversification [10,284].

While scale-free topology can be found in biology
[15,18,290–292], gene co-expression networks and some PPI
networks are not scale-free [291,293]. These kinds of molecular
networks hence require other methods for assessing their
evolvability, for which comparative methods or genotype–
phenotype networks could be considered. In genotype–
phenotype maps [294,295], the nodes represent sequences,
e.g. genes or binding sites, and they are linked if they only
differ in one position of their sequence. It can then be analysed
whether neighbouring sequences encode for the same pheno-
type, e.g. the same gene function or binding of the same factor.
These analyses revealed that such gene networks show a cer-
tain level of evolvability and robustness: while changed
sequences can still lead to the same phenotype (robustness),
it is also possible that evolutionary changes of single sequence
positions can create new phenotypes. For these networks,
genotype and phenotype information must be available.

Because of the costs and effort involved in generating bio-
logical datasets, biologists do not always have enough finely
grained data to follow network changes with high temporal
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resolution. Co-expression networks have sometimes been
inferred only for a few time points. With such a low resol-
ution, comparative methods seem to work better than
preferential attachment or degree distribution analysis.

Important insights on the evolutionary history of a net-
work can also be gained by using phylogenetic approaches.
Here, the evolution of a network created from, let us say,
human data, can be traced back by investigating which
other species harbour orthologous genes to the genes included
in the human network. Given a reasonable phylogenetic
depth, which is now possible because the genomes of hun-
dreds of species are available, this allows determining at
which time in evolution the nodes of the network arose,
and in which order they were added to the network. This
approach has been applied to, for example, PPI [94] and
metabolic networks [116,296–300]. Also, the evolutionary
age of links can be inferred using phylogenetic approaches,
if comparable networks from multiple species are available.
This idea was used when co-expression networks between
humans, chimpanzees and rhesus macaques were compared
[134]: links present in the human and chimpanzee network
were likely also present in the ancestor of humans and chim-
panzees about 6 million years ago, while links present in all
three species likely existed already in the ancestor of great
apes and old world monkeys. Note, that with more species,
the loss of nodes or links can also be investigated.

A fundamental mechanism for species evolution is also
horizontal gene transfer, during which genetic material is
exchanged between organisms. Consequently, the evolution-
ary history of the respective species cannot be accurately
displayed in a tree [301]. In such cases, networks have been
used to better represent their phylogenetic relationships. A
plethora of models for the analysis of such imbricated
relationships has been developed [32,302], including identify-
ing differences between gene and species trees and inferring
likely sequences of horizontal gene transfer events [303].
4. Networks in non-life science and exchange of
ideas and approaches

Temporal changes in networks are also investigated in scien-
tific fields other than biology. While we cannot cover all non-
biological disciplines in this review, we want to present
examples from other disciplines to provide impulses of how
ideas developed in one scientific field could be borrowed
by other fields to gain new knowledge.

4.1. Food-pairing, food-bridging and computational
gastronomy

Food-pairing is the concept that ingredients containing
similar flavour constitution improve the good taste of a
dish [304–306]. Flavour pairing has often been described for
the combination of wines with food products [307], but can
also be applied to ingredients within the same recipe. Not
only the emotion, motivation and craving influence the
flavour perception of food [308], it also differs according to
culture, climate, geography and genetics. These alterations
lead to the development of different cuisines [306,309].
Understanding how compounds inside each ingredient can
be paired in a recipe using data science is called computational
gastronomy [309]. Food-pairing networks can be analysed by
treating ingredients as nodes and their co-occurrence in
recipes as weighted links [310]. More specifically, the link’s
weight is given by the number of flavour compounds two
nodes (e.g. two ingredients) share in Fenaroli’s Flavour Com-
pounds Handbook [311] or The Flavour Bible [312], a chef-
curated database. In food-bridging networks, a link is
drawn using the shortest path weight of two ingredients.
This means that if an ingredient is connected to two other
ingredients that do not directly share any flavour compound,
they share at least one ingredient that connects both. Another
approach is to build bipartite networks, where one set of
nodes is composed of the ingredients and the other of the fla-
vour compounds. A link then exists if a particular ingredient
contains that flavour [305]. Flavour networks are networks
that consider flavour compounds shared by culinary ingredi-
ents. They are constructed by testing the distribution of recipe
sizes, frequency of ingredients, the authenticity of ingredients
and if ingredient pairs are different than in a random recipe.
The authenticity of a single ingredient is measured by how
frequently it occurs in different recipes. Likewise, the authen-
ticity of an ingredient pair is expressed by how frequently
that pair appears together in different recipes.

Comparative analyses on the degree distribution of food
networks of different cultures revealed that western culture,
such as people from North America, Latin America and
Southern Europe [305,310], pair their foods according to the
food-pairing theory, that is, ingredients with similar flavour
go well in the same dish. On the other hand, eastern cultures,
such as Indian, Korean and Eastern European prefer to mix
different ingredients with different flavours [305,306,310].
Studies are also ongoing for the Arab cuisine [313]. For
these cultures, the food-bridging hypothesis applies, which
assumes that if two ingredients do not share strong flavour
compounds, they can become pleasant in combination
through a chain of pairwise affinities [310].

Recipes are also constantly evolving. Similar to many bio-
logical studies, e.g. analysing co-expression networks,
culinary science has also only few time points that can be com-
pared. Kinouchi et al. [314] analysed four cookbooks from
different cultures: Dona Benta (three editions, from Brazil)
[315–317], Larousse Gastronomique (France) [318], New Penguin
Cookery Book (British) [319] and Pleyn Delit (medieval) [320].
This allowed them to describe differences among modern
recipes, but also to uncover how recipes changed since medie-
val times and within the modern era, by comparing the three
editions of the Brazilian cookbook. Those food-pairing net-
works were compared based on degree distribution and
average recipe size. It is interesting to see that the number of
recipes varied from 380 to 1894 recipes and that the average
recipe size varied from 6.7 to 10.8 ingredients. In analogy to
biological systems, the authors also proposed a copy–mutate
algorithm (figure 3c,d ) to model culinary evolution as a
branching process. Thismodel considers the time until the pro-
cess is fixed, e.g. the number of ingredients per recipe, the
number of recipes to be mutated, the initial number of recipes
in the cuisine and the ratio between the pool of ingredients and
pool of recipes. They also included the fitness of each ingredi-
ent into their model, which is defined in this context as
inherent ingredient properties, such as nutritional value,
aspect, flavour, cost and availability. The authors detected stat-
istical patterns in culinary data that are independent of culture
and time. For example, in all cookery books, they found that
there are ingredients that are not frequently used and could
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define a hierarchy of ingredients for each culinary. Even
though the statistical pattern is quite similar in all the cultures
they researched, each one has specific ingredients or recipes
that define their uniqueness.

Another study investigated how the late medieval Euro-
pean gastronomy evolved [308]. This is the period before
the exploration of the Americas, hence, before the introduc-
tion of many ingredients that are common in the European
cuisine today, such as potatoes and tomatoes. For the medie-
val recipes, they grouped recipes from 25 different cookery
books from England, France, Germany and Italy from the
years 1300 to 1615, from which they manually curated the
recipes. They compared the average shared compounds of
the medieval recipes with the modern European cuisine
and concluded that medieval recipes used food-pairing;
interestingly with the pairing having been stronger in that
period than nowadays. It is fascinating how the European
gastronomy has been evolving in the sense of pairing similar
ingredients since the medieval times.

Understanding food composition can also improve health
or prevent diseases [321] as shown within a new field of study
called foodome. For instance, when investigating the effect of a
specific polyphenol (EGCG) that is abundant in green tea on
type 2 diabetes [322,323] using network measures, it was
found that 52 proteins are targets of this polyphenol, out of
83 proteins that are associated with diabetes [321].
4.2. Social interaction networks
Many social phenomena can be studied using networks, for
example, how scientists collaborate [324,325], how composers
write songs [326,327], how people used to get married in the
fifteenth century [328], how criminals are associated [329],
how friends interact [330,331] and which languages people
speak [332]. Compared to biological networks, social net-
works are in general larger and individuals tend to cluster
in communities [333]. The nodes (individuals, groups, organ-
izations) in a social network are linked if they share, for
example, values, visions, ideas, contacts, kinship, conflict,
financial exchanges, trade, group participation in events,
sexual partners, friendships or scientific collaborations
[334]. Each one of those social networks can have different
properties [335]. In contrast with biological networks, the
number of clusters in social networks is often higher than
expected by chance [333,336,337]. Links can be measured
based on surveys, historical records or otherwise.

In 1929, the Hungarian Frigyes Karinthy hypothesized
that only six degrees separate any two people [338]. Later,
this hypothesis was tested by asking people to send postcards
to acquaintances, which revealed an average degree of separ-
ation in a range of 4.4 and 5.7 [339]. In the classical paper
[340], three examples are discussed with an average of six
degrees of separation. In another classic example, represent-
ing one of the biggest Milgram’s experiment, a social
network was constructed using information collected by
Facebook. The Facebook network had, at the time of the
experiment, around 721 million active users and 69 billion
friendship links [341]. They found that on average the
degree of separation of any two people in Facebook is 3.74.
To set this in perspective, in a food web, the average degree
of separation of any two species is 2 [342], indicating that
species are more highly connected to each other creating a
higher level of dependency than people.
Changes in popularity among teenagers over time were
studied with subjects from the 6th to the 12th grade [343].
Each year, the students’ network was created based on a
survey asking them to list their best friends. The highest cen-
trality measures can be found in the 6th grade, meaning that
an individuals’ number of peers (or popularity) decreases as
they get older. Moreover, the older the teenagers get, the
more they tend to group in closed clusters that do not share
many connections with other clusters.

The movie industry offers many complex systems that can
be analysed using network methods. One example is the Hol-
lywoodnetworks. Here, nodes are actors, and they are linked if
they appear in the same movie or TV show [344]. Similar to
biological networks, the Hollywood network also evolves by
adding new nodes via new links to existing nodes
[285,335,345]. The Marvel Universe also had its network ana-
lysed. Two characters in this network share an interaction if
they appeared in the same comic [346]. This network is a
fully invented network: characters and their interactions
depend mostly on the writer’s team and the public critic.
Because it does not resemble the real life, it might be expected
that this network behaves more closely to a random network
than a real-life network. To test this hypothesis, the Marvel
Chronology database that includes a catalogue of all signifi-
cant characters and their appearances after November 1961
[347] was assessed. The most central character turned out to
beCaptainAmerica. Remarkably, themaximumdegree of sep-
aration in this network is 5, which is not much different from
real-life networks, in which this number is, as previously
discussed, somewhere between 3.74 and 6 [22,339–341].

The prostitution network in Brazil was studied using Web
forums to understand how this network evolves [348]. They
followed the sexual encounter forum from September 2002
to October 2008. The customers’ network grew at a rate of
six new customers a day, while the sex-seller increased at a
smaller rate, five new prostitutes a day. They suggested that
the prostitution career length is shorter than the sampling
timeframe they followed, mainly because the node degrees
reached a saturation towards the end, but the customers
stayed in the network, indicating that customers use these
services for longer than the career length of the sex-seller.
The channel they used to gather the data also scores the
sex-sellers as ‘bad’, ‘neutral’ or ‘good’, and they showed
that professionals with higher average scores attract more cli-
ents over time, while there was no difference between mid or
bad sex-sellers. The prostitution network also has a preferen-
tial attachment [348,349]. Network studies like this one can
help to understand how diseases spread through sexual net-
works [56,350] or social interactions [351] by incorporating
more robust epidemiological models. For a discussion on
epidemiological models please refer to [352].

How the scientific community collaborates and evolves
has also been investigated using a network approach. In
these networks, nodes are scientists and a link exists if two
scientists co-authored a paper. Scientists collaborate within
their own country or internationally. Within the same net-
work, scientists share ideas, techniques and influences
[324]. It has been shown that scientists who collaborate
more internationally are cited more frequently [353]. Those
international collaborations begin more often face-to-face
[354], while the following contact and collaborations can be
through the Internet. As many biological networks, collabor-
ation networks also evolve by preferential attachment:
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Figure 4. Network analysis methods: depicted are selected methods for network analyses that have been used by different disciplines and can be applied to
investigate temporal changes in networks from life sciences data. (a) Multilayer networks are used when networks interact or evolve together. Networks can
have multiple types of links (the types making up for the layers). A node in one layer can be connected to any node in the same layer (intra-layer links, straight
lines) or in any other layer (inter-layer links, curvy lines). Layers could be, e.g. interactions between humans with humans and interactions between humans and
bots, or co-expression information and binding site information for TFs (interlayer links would arise when TFs that are co-expressed have binding sites in the same
promoter). (b) Dynamic network analysis investigates temporal changes in networks that can consist of different types of links and nodes and integrate data from
multiple networks. Networks take uncertainties into account by representing the probability that a link exists. Temporal changes are investigated by simulations and
modelling approaches. It can be explored with which probabilities new nodes and links are added and hence how likely it is that the network structure changes in a
particular way over time. This analysis can be applied to social networks, for instance if it is known, what types of personalities prefer to collaborate. It could also
predict probabilities of, e.g. interactions in PPI, if the interactions of a paralogous gene and the sequence differences of the paralogs are known, and considering if
the paralog was created by single gene duplication or whole gene duplication. (c) Birth and death of nodes considers interactions at a series of time points. Nodes
can appear and disappear. Some interactions might be very short-lived and represent no real/strong interactions (e.g. the interaction with the salmon triangle). This
can be applied to the analysis of changes in social networks over decades/centuries but also to the evolution of molecular networks, in which genes can be created,
e.g. by duplication, and disappear, e.g. by mutations leading to a pseudogene. (d) Future developments can be predicted from observing patterns of one-way (green
links), two-way (red links), three-way, … , n-way connections, for instance, in financial networks to predict financial crises. The same strategy could be used for
species interactions in ecosystems to forecast consequences of environmental changes. (e) VAR models (vector autoregressive models) are used for analysing multi-
variate time series. At least two variables that influence each other and change over time are investigated. Each variable is a linear function of past lags of itself and
past lags of the other variables. It has been used, e.g. to estimate economic relationships and to understand the interferences of developing symptoms in psycho-
metrics. It could also be used to discover how subsequent mutations in multiple genes influence each other to, e.g. create cancer or neurodegenerative phenotypes.
VAR models could be used in co-occurrence networks in ecology for improved comprehension of how species interact over time.
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scientists that have more citations tend to increase their cita-
tions over time [20,335,355–358]. The emerging networks
behave similarly to a theoretical preferential attachment
system. This phenomenon can also be interpreted as a popu-
larity effect among scientists and this behaviour is
independent of the field of research. In sociology, Moody fol-
lowed the behaviour of scientists from 1975 to 1999 [324].
Over time, a decrease in authors who published only one
paper and an increase in authors who published more than
11 papers in a lifetime was observed. Unlike in the original
preferential attachment model [20,21], the degree distribution
in this kind of network shows preferential attachment mostly
in the middle of the distribution. The beginning of the distri-
bution (low degree nodes) contains mainly newcomers to the
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area, while the end of the distribution (high degree nodes)
represents the prestigious scientists [357,359,360]. There was
also a decrease in the number of papers with only one
author, showing that indeed, collaborating in science
becomes the norm. Moreover, the average degree increases
(people publish more over time) and the average separation
degree of the authors decreases over time [335].

More information about the complex social behaviour
could be gathered by using a multi-layer network approach
(figure 4a), which integrates multiple networks. For scientific
interactions, author–author, author–journal and author–
paper interaction networks were combined such way. Ana-
lysing publication patterns across the last 100 years, it was
revealed that over the last decade, many authors tend to
diversify by publishing in more journals [361]. This might
indicate that science is becoming more cross-disciplinary
and that there is a need to share knowledge across fields.
Humans can also interact with bots and vice-versa using
social media. This kind of interaction can be either good or
bad, depending on how bots are used. A recent example of
misuse was detected with twitter data from 22 September
to 3 October 2017 [362], the time period when Catalonians
voted for or against their independence. A multi-layer
approach was used to integrate a human–human interaction
network with a human–bot interaction network. It revealed
that bots had generated specific content that was mostly
negative and targeted the most influential individuals
among the group of Independentists in Catalonia [362].

Multi-layer networks start to be used in biology, for
instance, by aiming to integrate different types of omics
data into one network [363]. For gene regulatory networks,
it would be beneficial to more tightly integrate co-expression
data with data on TF binding sites, taken from CHIP-Seq data
or databases, such as Jasper, Transfac and Encode. CHIP-Seq
has been combined with TF expression data to predict the
activation status of regulatory elements. This integration is
normally studied using a statistical paired expression and
chromatin accessibility (PECA) model [364] that can be later
experimentally validated [365]. Additionally, non-coding
RNA molecules, such as microRNAs, are important regula-
tors of gene expression by binding to DNA, RNA or
proteins [366] and their binding site information could be
included as well. In this sense, a multi-layer network can
be used, where each omics is a layer of the system. Such inte-
grated networks allow for better prediction of diseases
[60,61,367], have been used to better understand the regulat-
ory mechanisms in cancer [368], differences in cancer [369]
and metabolic perturbation in Escherichia coli [370]. Below
we will envision some ideas on how to enrich the analysis
of biological networks by including information from
non-biological sciences.

Social networks have also been studied in animal societies,
e.g. monkeys [356,371], apes [372,373], zebras [374,375], dol-
phins [376,377], social insects [378,379] and even in slime
moulds [380,381] as well as in other species. For example,
ants [382] and bees [383] have specific job assignments inside
their communities and change their jobs as they age. In an
ant colony, individuals assign themselves to a new job through
social interactions with co-workers or through the perception
of environmental stimuli [378,382,384–387]. The network
interactions in those insect communities are shaped by how
the tasks are distributed across individuals [378]. A dynamic
network analysis (DNA) (figure 4b) approach has been
employed to investigate trophallaxis, a common social inter-
action in highly social insects, during which two individuals
orally exchange food [379]. DNA is powerful for investigating
temporal social network changes and differs from traditional
social network analysis by taking into account different
kinds of interactions and levels of uncertainty. Simulations
and permutations are used to assess network dynamics. The
authors [379] recorded more than 1.2 million social inter-
actions between honeybees to understand the structure and
dynamics of information flow in trophallaxis networks and
discovered that information flow is faster than expected by
chance. While so far mainly used in the context of social net-
works, DNA should be considered more frequently also for
the analysis of molecular networks, for instance, for a better
temporal investigation of signal transductions, gene regu-
lation, metabolic networks and co-occurrence networks,
which are similarly complex and for which it makes sense to
represent probabilities of interactions.

Importantly, social networks can be understood as snap-
shots at a given time point, and their changes can be
studied as differences between those snapshots. Interactions
seen only for a short period might be less relevant or even
spurious. A crucial aspect to consider is that nodes have a
date of birth and death [388] (figure 4c). Thus, when the
time between the snapshots is long, not all networks would
consist of the same nodes, for instance, when there are
legal, behavioural and other cultural changes in the society
that might reflect in the interactions, making the network
comparisons more challenging [388]. Lemercier [388] dis-
cusses this problem for cases such as connections between
people who live(d) in different time frames, or companies
that open or close at different times. Further, the rules can
change over time, making connections across nodes easier
or not. She suggests that those cases should be studied care-
fully, and offers three main options to overcome this issue:
(i) code for ties and group interactions; (ii) be aware of the
boundaries; and (iii) do not differentiate long-lasting attri-
butes from the ones that are steady. The problem of ‘lost
nodes’ is also common for biological networks, for instance,
when investigating molecular networks that underwent
gene deletions, ecological networks with extinct species or
in which individuals die, or networks in which a particular
gene is not expressed in a certain condition. The suggestions
of Lemercier could be applied to the evolutionary analysis of
such networks as well.
4.3. Finance
Financial markets are deeply and strongly interconnected and
hierarchical. From the matching of sellers and buyers over an
exchange to the worldwide bank networks, the financial
system has all characteristics of a complex network-based
system. However, classical economic theory disregarded
these properties, relying on agent-based models instead
[389,390]. This paradigm was challenged by the subprime
credit crisis of 2007–2009. Traditional economic models
based on classical economic theory were unable to explain,
much less predict, its wide-reaching and systemic conse-
quences, demanding novel approaches to be developed.
Network theory stood out as an approach to better monitor
and manage financial systems and help anticipate and
manage future events [390]. However, this endeavour is
easier said than done. While a massive number of
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transactions occurs daily in every level of the financial
system, these data are not readily accessible and rarely sensi-
tive to the information, which led to two main strands of
method development. The first strand gathers whatever
data are accessible (usually interbank or similar data [391–
394]) to model the system as a network and study its proper-
ties. The second strand also uses such incomplete data, but
tries to infer the missing information to get the full picture
of the network and thus derive systemic conclusions [395].

The financial system can be represented as a network
with banks being considered as nodes and payments are
modelled as directed and weighted links. One study explored
the topology of the network of interbank payments done over
the United States Fedwire Funds Service prior to the sub-
prime crisis [394]. In this study, data covered the first
quarter of 2004, modelling each day as a separate network
and resulting in a final combined network of 62 daily net-
works. This network consisted of 6600 banks and more
than 70 000 links. It became apparent that not all nodes are
created equally, resulting in an asymmetry with preferential
attachment to central banks. The network contained a core
of very big and interconnected banks dealing with high-
value transactions. Indeed, 75% of all daily values are trans-
ferred through an inner network of 66 nodes and 181 links
with an even more internal clique composed of just 25
banks to which the remainder of the network connects. If
this central clique was disrupted, 78% of all banks would
be directly impacted [396]. This illustrates the highly intercon-
nected nature of the financial system and how its connectivity
would amplify the impact of the collapse of the mortgage-
based securities in the following years. This hierarchical
organization is similar to many biological systems, in which
a few hub proteins orchestrate many important functions,
for instance, RNA polymerases [397], which are important
to start transcription of all genes, or the tumour suppressor
p53 [398], which prevents mutations in the genome.
Mutations in such hubs lead to severe outcomes (as discussed
above), for example, individuals that are not viable at all or
the development of cancer.

A dream of many scientists is to be able to predict the onset
of diseases such as Alzheimer’s, Parkinson’s or cancer. Poten-
tially, analysis approaches of financial systems might aid with
making this dream to become true. By observing the financial
system over some time period, it is possible to predict future
developments (forecasting) (figure 4d). Squartini and col-
leagues [391] used networks, in which institutions are
represented as nodes and payments as links, to study the quar-
terly intra-bank exposures between Dutch banks between 1998
and 2008, aiming to derive early signs of an upcoming financial
crisis. Some signals can be derived by analysing how the
number of dyadic (two-way), one-way and absent connections
varies over time, especiallywhen correcting for the extreme het-
erogeneity between bank connections. The authors discovered
that there was a marked increase in one-way connections with
a notable increase of two- and three-node connection patterns
during the pre-2008 crisis period. By contrast, during the
crisis, an absence of two-node connections and a decrease in
dyadic connections were observed. Another study applied net-
work methods to a bank-firm bipartite credit network from
Japanese companies [392]. Credit offers from a financial insti-
tution (one set of nodes) to a firm receiving the credit (the
second set of nodes) were represented as directed weighted
links. Data of a 6-year time period (2000–2005) of around 2600
firms and 200 banks each year were analysed, leading to the
conclusion that Japanese firms tend to cluster most of their
credit operations into a ‘main bank’, leading to smaller diversi-
fication. Similar patterns of clustering were found when
analysing the returns from the US publicly traded institutions
[399]. In that study, firms are nodes and directed weighted
links represent the influence of a given firm into another’s liabil-
ities (more specifically, their value at risk). The resulting risk
network found threemain clusters: a first groupof large risk dri-
vers that should be closelymonitored by regulatory authorities,
a second group of risk takers that provoke little systemic risk but
would behurt by spill over effects, and a third and largest group
of companies on the intermediate situation of both risk takers
and transmitters that can disseminate and amplify risk into
other channels and, as such, should be properly monitored
and regulated. The idea of a bank-firm bipartide network pro-
posed in the financial sciences could be transferred to biology
by representing gene expression and protein levels as two sets
of nodes of a bipartide network. The correlation between a
gene’s expression and protein levels could be the weight of
the links. Using this approach, it is expected that genes and pro-
teinswith similar functions and the ones that are disease-related
would form separated clusters.

Another powerful approach for forecasting future develop-
ments in economy are vector autoregressive (VAR) models
[400] (figure 4e). They allow capturing the linear interdepen-
dencies among multiple time series to study temporal
aspects. VAR models can be applied to psychometrics studies,
for instance, to investigate how symptoms develop or interfere.
The associations between dynamical emotion networks and
neuroticism have already been explored using a VAR model
[401]. The authors modelled the time series of network data,
in which symptoms are nodes and weighted links represent
the association between symptoms under the VAR model, pro-
ducing an overall network for the observed period. This model
shows some flexibility, allowing for self-loops representing the
feedback loop caused by, for instance, anxiety, in which being
anxious might elevate one’s anxiety even more. Indeed, results
in denser networks for more neurotic individuals revealed a
higher occurrence of feedback loops and chain effects on the
manifestation of symptoms, leading to distinct emotion
dynamics. Applying VAR models to the analysis of molecular
networks, they could help with better understanding how sub-
sequent mutations in multiple genes influence each other to,
e.g. create cancer or neurodegenerative phenotypes. The same
approach could be used in co-occurrence networks in ecology
for improved comprehension of how species interact over time.
5. Integrating networks across scientific
disciplines

In addition to borrowing methods, we also think that the
integration of different types of data and networks will
allow for completely new biological insights. We already
mentioned the potential of integrating co-expression data
and TF or non-coding RNA binding site information using
multi-layer networks. However, it is still challenging to inte-
grate multiple omics data into one network [363]. With the
following additional devised examples, we want to underline
that we foresee large potential for multi-layer network
approaches (figure 4a) to achieve such data integration.
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For instance, improvement in understanding how the
brain achieves its functionality and of mental disorders
could be achieved by combining information from co-
expression networks of different brain regions with fMRI
and psychometrics networks to better link symptoms to
brain regions. Moreover, the symptoms network can also be
layered with the co-expression network of patients to better
improve diagnostics and treatment. Insights from such
multi-layer networks would be valuable for developing
better treatments and higher life quality for those who
suffer from complex mental disorders. Disease–disease pro-
gression networks are integrating networks on disease–
protein relations, biological pathways, clinical history, along
with biomedical literature for better predicting the future of
phenotypes [223]. Being able to predict disease progression
would aid precision medicine immensely.

Using a multi-layer approach could also be beneficial to the
study of ecological systems, where each layer can represent a
different type of interaction among species [402–404]. For
instance, understanding how different pathogens, such as
viruses or pesticides, interact with their hosts, environment
and other organisms could be beneficial for deciphering infec-
tion mechanisms [405]. Further, for a more comprehensive
view on how insect societies respond to pathogens, ecological
networks could be integrated with social interaction networks,
molecular information and economic factors. As an example,
bees are an important component of ecosystems as pollinators
but suffer tremendously from pesticides, virus infection or cli-
mate change. It would be instrumental to investigate how such
changes in the ecosystem disturb the bee’s social network.
Further, alterations in the bee’s social network could be corre-
lated with molecular network analyses in the same individuals
to inform about its health. Together, information from these
three types of networks could provide more effective measures
for protecting bees.

Finally, to learn more about human natural history, food
networks could be combined with social networks of
humans, to study how domestication and trading of goods
might have affected human societies or the spread of diseases.
6. Conclusion
We have reviewed examples of how networks are studied in
the life sciences and other fields in a comparative and evol-
utionary or temporal set-up. In general, a network that is not
derived from biological data can often be observed or
measured directly and its weights and interactions can be
experimentally validated. Hence, noise is a smaller confound-
ing issue and confidence is usually higher in such networks.
While some biological interactions can be detected and directly
measured, this is not the case for many molecular networks.
Hence, they contain a higher level of uncertainty. For example,
in a co-expression network, interactions are inferred based on
estimating the correlation of gene expression levels. This infer-
ence carries more noise than direct measurements in other
fields. The reasons for that noise are manifold and include bio-
logical differences among individuals, such as gender, age or
ethnic group, and technical differences such as sequencing or
array platform, data quality and facilities that processed the
samples. Therefore, co-expression networks need to be vali-
dated by independent studies, and correction approaches
should be applied to reduce the noise. Molecular networks
are also usually sample specific and require filtering methods
[89,90]. These and other reasons probably explain why there
are more and other methods for constructing and comparing
networks in molecular biology than in other disciplines.

In terms of topology, nodes of psychometrics and financial
networks tend to cluster in large components, while social and
biological networks have, in general, smaller components. This
might mean that the financial market is much more well con-
nected, and its nodes are more highly dependent on each
other. The degree of separation is much smaller in species
interaction networks than in social networks of people. In psy-
chometrics, many symptoms of mental disorders overlap, and
therefore give rise to components that do not distinguish dis-
orders. Financial networks or social networks can benefit
from zillions of transactions over several years or frommillions
of interactions automatically measured every second for a
longer time period, respectively.

Currently, a huge drawback for many disciplines for
understanding network changes over time is that very few
models are using time-series or dynamic network
approaches. Most research fields that can draw from a plural-
ity of sequential data, still measure network evolution as if
the networks were independent of each other or use a prefer-
ential attachment model. This is probably a reflection of the
complexity of time-series data and the lack of ready-to-use
tools. A way to overcome this paucity would be to build
more user-friendly tools that could be more easily applied
to unravel network dynamics. Another powerful contribution
can be expected to come from the field of data visualization
by developing new ways of visualizing complex network
data, including the integration of multiple networks and
changes over time.

To compare networks more comprehensively, we advocate
a stronger usage of multi-layer networks, also including non-
biological data. However, to make efficient use of multi-layer
networks in biology, it is still necessary to establish better plat-
forms, software and models that can integrate the different
layers on the networks or are optimized to include more
data. One interesting avenue for dealing with those vast infor-
mation layers could be to use knowledge graphs [406].

Ideas from evolutionary biology have already inspired at
least one network study of the culinary science [314], in
which ‘mutations’ of recipes were investigated and ingredi-
ents were assigned a ‘fitness’. We argue that, despite the
topological and temporal differences between networks, a
stronger influx of methods and data from non-life sciences
into bio-medicine should advance network analyses in the
life science.
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