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ABSTRACT 7 
 8 
Objective and Background. Epilepsy patients rank memory problems as their most significant 9 
cognitive comorbidity. Current clinical assessments are laborious to administer and score and 10 
may not always detect subtle memory decline. The Famous Faces Task (FF) has robustly 11 
demonstrated that left temporal lobe epilepsy (LTLE) patients remember fewer names and 12 
biographical details compared to right TLE (RTLE) patients and healthy controls (HCs). We 13 
adapted the FF task to capture subjects’ entire spontaneous spoken recall, then scored 14 
responses using manual and natural language processing (NLP) methods. We expected to 15 
replicate previous group level differences using spontaneous speech and semi-automated 16 
analysis. Methods. Seventy-three (N=73) adults (28 LTLE, 18 RTLE, and 27 HCs) were 17 
included in a case-control prospective study design. Twenty FF in politics, sports, and 18 
entertainment (active 2008-2017) were shown to subjects, who were asked if they could 19 
recognize and spontaneously recall as much biographical detail as possible.  We created 20 
human-generated and automatically-generated keyword dictionaries for each celebrity, based 21 
on a randomly selected training set of half of the HC transcripts. To control for speech output, 22 
we measured the speech duration, total word count and content word count for the FF task and 23 
a Cookie Theft Control Task (CTT), in which subjects were merely asked to describe a visual 24 
scene. Subjects’ responses to FF and CTT tasks were recorded, transcribed, and analyzed in a 25 
blinded manner with a combination of manual and automated NLP approaches. Results. 26 
Famous face recognition accuracy was similar between groups. LTLE patients recalled fewer 27 
biographical details compared to HCs and RTLEs using both the gold-standard human-28 
generated dictionary (24%±12% vs. 31%±12% and 30%±12%, p=0.007) and the automated 29 
dictionary (24%±12% vs. 31%±12% and 32%±13%, p=0.007).  There were no group level 30 
differences in speech duration, total word count, or content word count for either the FF and 31 
CTT to explain difference in recall performance.  There was a positive, statistically significant 32 
relationship between MOCA score and FF recall performance as scored by the human-33 
generated (ρ= .327, p= .029) and automatically-generated dictionaries (ρ= .422, p= .004) for 34 
TLE subjects, but not HCs, an effect that was driven by LTLE subjects.  Discussion. LTLE 35 
patients remember fewer details of famous people than HCs or RTLE patients, as discovered by 36 
NLP analysis of spontaneous recall.  Decreased biographical memory was not due to 37 
decreased speech output and correlated with lower MOCA scores. NLP analysis of 38 
spontaneous recall can detect memory dysfunction in clinical populations in a semi-automated, 39 
objective, and sensitive manner. 40 
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INTRODUCTION 48 
 49 
Epilepsy patients rank memory problems as their most significant cognitive comorbidity, 50 
impacting daily function and school and workplace participation 1. Despite rapid gains in the 51 
fields of cognitive and computational neuroscience, clinical neuropsychological testing has 52 
remained largely unchanged 2.  The advantage of standardized testing is its validation on large 53 
populations and normalized performance scores by age and education, However, the test 54 
administration and scoring process is laborious and yields an oversimplified measure of 55 
behavior.   The development of novel, precise, and clinically meaningful approaches is needed 56 
for early and serial memory assessment in epilepsy, Alzheimer’s Disease 2, and other memory 57 
impaired patient populations. 58 
  59 
Memory deficits are commonly observed in patients with Temporal Lobe Epilepsy (TLE) but are 60 
inconsistently captured by standard clinical testing 3.  Due to their extensive connections with 61 
widespread cortical regions, the hippocampus and connected limbic regions, are hijacked by 62 
seizure networks 4. The Rey Auditory Verbal Learning Test (RAVLT), created in 1941, is the 63 
most widely used test of verbal memory function in assessment of TLE patients 5. Poorer 64 
RAVLT performance for left TLE patients, as compared to right TLE patients, has been well 65 
established 6,7. While the test is a useful predictor of seizure laterality, it may be insensitive to 66 
subtle impairment over time and performance is influenced by executive and language ability.  67 
 68 
Cognitive testing in clinical settings could embrace more naturalistic behaviors and utilize 69 
computational methods to measure memory deficits more efficiently and objectively. Cognitive 70 
neuroscience has already embraced more realistic behavioral paradigms, such as spontaneous 71 
speech 8, autobiographical recall 9, film watching 10, and physical navigation 11,12. Similarly, 72 
computational methods including Natural Language Processing (NLP) have been used to 73 
quantify distinct speech components, including lexicon and syntax, to distinguish patients with 74 
Alzheimer’s Disease and Mild Cognitive Impairment 13–17 from healthy controls and to predict 75 
progress to psychosis among at-risk youth.  76 
 77 
We adapted the Famous Faces (FF) Task to capture and analyze the spontaneous recall from 78 
TLE patients and healthy controls, in a case-controlled prospective study design. The Famous 79 
Faces task was designed in the 1970s to assess face recognition and biographical memory for 80 
a set of public figures. While initially developed for assessment of amnestic patients with 81 
Korsakoff’s syndrome, the task has consistently shown that patients with LTLE demonstrate 82 
poorer remote recall for famous names and biographical details compared to healthy controls 83 
and patients with RTLE 18–21.  Previously, RTLE patients have been demonstrated to have 84 
poorer facial recognition 22, although performance on non-verbal memory tasks has been 85 
variable 23. Our goal was to measure memory performance by analyzing subjects’ spontaneous 86 
recall through both human and semi-automated approaches using NLP. We hypothesized that 87 
patients with LTLE, whose seizures likely affect mesial temporal regions involved in episodic 88 
and semantic memory, would spontaneously recall fewer details than healthy controls and 89 
RTLE patients and that this would be distinct from differences in speech output.   90 
 91 
METHODS 92 
 93 
This study was conducted following protocols approved by the New York University Institutional 94 
Review Board. All study activities complied with regulations for human subject research, and all 95 
data was collected during a single study session.  96 
 97 
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Eligibility criteria We recruited Temporal Lobe Epilepsy (TLE) subjects and Healthy Controls 98 
(HCs) ages 18-60 from a single Level 4 Epilepsy Center from 2018-2023. HCs were included if 99 
they were between the ages of 18 and 60, did not have a self-reported history of neurological or 100 
psychiatric disease, and earned a normal score on the Montreal Cognitive Assessment (MOCA 101 
>=26/30 24). The MOCA is a widely used cognitive screening tool assessing multiple cognitive 102 
domains, including memory, attention, executive function, visuo-spatial construction, naming 103 
and orientation 25.  Patients with temporal lobe epilepsy who scored >= 22/30 on the Montreal 104 
Cognitive Assessment were included.  A lower threshold for TLE patients was chosen to include 105 
patients with objective memory impairment and to assess variability in recall performance in our 106 
famous faces task.  Epilepsy localization was determined by seizure semiology, MRI Brain, and 107 
EEG concordance, and adjudicated by a board-certified neurologist and epileptologist. Only 108 
patients with a probable or definite focal epilepsy localized to unilateral temporal lobe were 109 
included (meaning at least two concordant criteria without discordant criteria).  110 
 111 
Sample size estimates.  Sample size estimates were based on previously published result 112 
demonstrating that patients with LTLE have poorer naming of familiar celebrity faces compared 113 
to healthy controls 26.  For two independent study groups (assuming HCs and LTLE as primary 114 
comparison) with a continuous endpoint (percentage of detailed recalled of recognized 115 
celebrities), we calculated that a sample size of 17 subjects per group would be adequate to 116 
detect a large effect size (power 90%, alpha 0.05). 117 
 118 
Famous Faces Task and Cookie Theft Control Task.  The Famous Face Test was adapted 119 
from the Iowa Famous Face Test 18. The test is designed to assess remote memory for face 120 
naming and face recognition abilities. (Fig 1). The test includes two phases: (1) the familiarity, 121 
naming, and spoken recall of 20 famous faces (Fig 1a), and (2) the recognition of famous faces 122 
in a multiple-choice format (Fig 1b), similar to prior famous face studies 21,26.   All subjects were 123 
exposed to the same 20 celebrity faces in the same order and shown the same multiple-choice 124 
tests.  125 
 126 
To create the set of celebrities, we used the MIT Media Lab’s Pantheon Dataset of Historical 127 
Popularity that ranked famous individuals by year 27. We first selected 98 famous individuals 128 
from entertainment, politics, sports, and music who were born in the U.S. between 1960s-2000s 129 
and were well-known in the decade prior to the initiation of the study (2008-2017). An online 130 
Qualtrics questionnaire containing these names was sent out to 44 healthy participants (ages 131 
18-50) with the question, “Which of these famous individuals can you identify based on their 132 
photos?” We excluded famous individuals that were recognized by less than 60% of healthy 133 
participants.  We then selected a list of 45 individuals to be used in the Famous Face Test, with 134 
20 celebrities used for free recall, and the remainder of faces were used in the multiple--choice 135 
component of the task.  136 
 137 
To address the potential bias of uneven exposure to popular culture, only celebrities that were 138 
recognized by each subject were included in analysis.  To control for potential speech and 139 
language impairment in TLE patients 28, we added the Cookie Theft Task from the Boston 140 
Diagnostic Aphasia Examination (BDAE) 29 after the study was initiated. Subjects’ responses 141 
were recorded and stored on the local HIPAA-compliant servers. Subjects were tested in one of 142 
two settings: (1) on-site at the NYU Comprehensive Epilepsy Center or (2) remotely via WebEx, 143 
a HIPAA compliant desktop conference call application.  Webex was added as a testing 144 
platform during the COVID-19 pandemic when all research was conducted remotely.  145 
 146 
Speech Transcription. Subjects spontaneous recall responses to each of the 20 celebrity 147 
faces were recorded and transcribed in two ways: (1) human transcription and (2) WebEx 148 
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transcripts generated after a recording session with manual review. For subjects participating 149 
on-site, WebEx transcriptions were retroactively generated using the original audio files.  150 
WebEx automatically transcribes audio of meetings recorded in the MP4 format. The WebEx-151 
generated transcripts included time stamps and were verified for accuracy by a human reviewer. 152 
Subject and interviewer speech were manually separated by the human rater to ensure that 153 
transcripts only contained transcribed speech from the subject.  154 
 155 
Speech Analysis. Subjects’ transcripts were analyzed using computer code written in the 156 
Python language using spaCy, an open-source library for Natural Language Processing 30.  The 157 
spaCy library takes unstructured text as input and returns structured output with extensive 158 
linguistic information. In particular, the library divides the text into tokens, which consist of 159 
words, numbers, punctuation and other symbols, and identifies the part of speech.  Total word 160 
count and content word count were obtained for both sets of transcripts collected from FF and 161 
CTT, where total word count is defined as the number of tokens in a piece of text, and content 162 
word count is defined as the number of words containing the following parts of speech: noun, 163 
verb, adjective or adverb. 164 
 165 
Creation of Human-Generated and Automated Keyword Dictionaries and Subject Scoring. 166 
Two unique keyword dictionaries (human-generated and automated) were created for each 167 
celebrity. To avoid overfitting, we randomly selected half of the sample of the transcripts of the 168 
healthy controls (N=14). The human-generated keyword dictionary was created by two 169 
independent raters (ET and AM) who extracted key biographical details about each celebrity 170 
from the transcripts. The two human dictionaries were merged by including: (1) keywords 171 
present on both dictionaries included (2) keywords on either dictionary mentioned by two or 172 
more subjects and (3) keywords of similar meanings found on both lists (simplest derivative 173 
listed ex: pass listed to represent passed away & passing).  174 
 175 
The automated keyword dictionary was generated by pooling the randomly selected half of the 176 
HC transcripts for each famous person, creating 20 documents. Potential keywords for each 177 
celebrity were scored using Term Frequency- Inverse Document Frequency (TF-IDF), which 178 
measures the importance of a term within a document relative to the collection of documents 31. 179 
Word sequences (n-grams) were generated from the documents and filtered using orthography 180 
and part of speech. N-grams up to length 5 were selected when words were capitalized, and up 181 
to length 2 for lowercase words. Both sets required the presence of content words. The n-grams 182 
were scored using term frequency (the number of occurrences of a term within the document 183 
about a particular famous person) and inverse document frequency (the reciprocal of the 184 
number of famous people that share the term). The top 10% of the highest scoring n-grams 185 
were selected. When terms overlapped, the longer term was retained. ex: if “George” and 186 
“George Clooney” were identified as potential terms, only the latter was kept. The algorithm 187 
selected 3-13 keywords for each famous person, with an average of 8.  Examples of human 188 
generated and automated keyword dictionaries are shown in Table S1.  189 
 190 
Subjects were scored in by two reviewers on the percentage of keywords recalled for each 191 
recognized celebrity from both the human generated dictionary (gold standard) and automated 192 
dictionary. Scorers were blinded to the subject diagnosis and adjudicated when there was 193 
disagreement.   194 
 195 
Neuropsychological Testing.  To screen for initial eligibility, all subjects were administered the 196 
Montreal Cognitive Assessment (MOCA) 25. Scores from a comprehensive neuropsychological 197 
test battery were available for a subset of TLE patients undergoing pre-surgical evaluation 198 
(n=18). Full Scale IQ was evaluated through the Test of Premorbid Functioning (TOPF) and the 199 
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Verbal Comprehension Index (VCI) from the Wechsler Adult Intelligence Scale (WAIS-IV) 32,33. 200 
Verbal memory was evaluated through the Rey Auditory Verbal Learning Test (RAVLT) long 201 
delayed free recall score 5.  202 
 203 
Statistical Analysis.  We performed descriptive statistics on the demographics and 204 
neuropsychological metrics for the 3 subject groups (LTLE, RTLE, HC), by calculating means 205 
and standard deviations for continuous measures (age, MOCA, TOPF, IQ, and RVLT) and 206 
counts for categorical measures (sex, handedness, and educational level).  The Shapiro-Wilk 207 
test was used to test for normality of distribution for continuous data. Group level differences 208 
were calculated by the Kruskal-Wallis tests for continuous data and chi-square for categorical 209 
data.  Descriptive statistics were calculated separately for subjects participating in the Famous 210 
Face Task (LTLE 28, RTLE 18, HC 27) and the subgroup of subjects who completed the control 211 
Cookie Theft Task (LTLE 17, RTLE 13, HC 23).   212 
 213 
For famous face results, means and SDs were calculated for all continuous data, including 214 
famous face recognition, recalled biographical details from human dictionary recalled 215 
biographical details from automated dictionary, total word count, content word count, and 216 
speech duration.  Only FF identified as familiar by subjects were included to obtain a keyword 217 
performance score. The primary outcome for this study was the percentage of details recalled 218 
for selected 20 celebrities as scored by the human-generated keyword dictionary.  Percentage 219 
recalled was calculated for each subject, then averaged across diagnostic category (HC, LTLE, 220 
RTLE).  Secondary outcomes included percentage of details recalled by group as scored by the 221 
automated keyword dictionary.   In control analyses, speech output was measured by the total 222 
number of spoken words, content words, and speech duration during the FF and Cookie Theft 223 
Task. For all continuous data, we assessed the distribution of the data with the Shapiro-Wilk test 224 
and performed descriptive statistics (mean, SD).  To compare group differences in recall 225 
performance between 3 independent groups, we used the Kruskal-Wallis tests, then the 226 
Wilcoxon rank-sum for post-hoc pairwise comparisons. We used a Spearman’s correlation test 227 
to compare remote biographical memory as measured by our keyword dictionaries and 228 
measures from validated neuropsychological tests (including MOCA and RVLT scores). Post-229 
hoc effect sizes were calculated based on the primary and secondary outcome and reported as 230 
Cohen’s d.   231 
 232 
RESULTS 233 
 234 
Subjects. Seventy-three (73) adults completed the Famous Face Task: 28 LTLE, 18 RTLE, and 235 
27 HC (Table 1). There were no group-level differences in sex (60% F), handedness (85% RH), 236 
education status (70% college or above). Compared to TLE patients, HCs were younger (p= 237 
.018) and scored slightly better on the MOCA (p=.0001), which may be an artifact of the higher 238 
MOCA cutoff scores for HC eligibility.  Within TLE patients, there were no group-level 239 
differences between LTLE and RTLE patients in MOCA, WAIS-IV FSIQ, or TOPF scores.  240 
However, LTLE patients had poorer performance on the RAVLT than RTLE patients (8.36±3.0 241 
vs 11.50 vs 2.51, p=.023). All subjects spoke for an average of 766.7 seconds (SD 502.05 242 
seconds).  Fifty-three of the subjects who completed the FF task also completed the Cookie 243 
Theft Task (17 LTLE, 13 RTLE, and 23 HC) (Table 2). There were no group-level differences in 244 
sex (68% F), handedness (85% RH), or education status in this subset of subjects. Compared 245 
to TLE patients, HCs were younger (p= .037) and had higher MOCA scores (p=.0001). There 246 
were no differences in MOCA scores between LTLE and RTLE patients.  247 
 248 
LTLE subjects recalled fewer details for familiar FF compared to HCs and RTLE subjects.  249 
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There were no group-level differences in FF recognition in the forced choice recognition portion 250 
of the FF task ((χ² (2, N = 73) = 1.98, p = .780) (Table 2, Fig S2), suggesting that exposure to 251 
famous faces could not account for differences in recall performance across groups.  Recall 252 
performance differed between groups when scored against the human generated keyword 253 
dictionary (χ² (2, N = 73) = 9.94, p = .007, Table 2). Post-hoc pairwise comparisons showed that 254 
LTLE subjects recall fewer human-generated keywords than HCs (24±12% vs. 31±12%, d 255 
=0.58, p=.003) and RTLE subjects (30±10%, p= .005) for familiar FF (Fig 3a). Group-level 256 
differences in memory performance were also observed when scored by automatically 257 
generated keywords, (χ² (2, N = 73) = 9.850, p = .007, Table 2). Post-hoc pairwise comparisons 258 
showed that LTLE subjects recall fewer automatically-generated keywords than HCs (24±12% 259 
vs 32±13%, d=0.64, p=.002, Fig 3b). 260 
 261 
No group-level differences in speech output or FF exposure. There were no group level 262 
differences in speech duration for the Famous Face task (p=.175, Table 2) or the Cookie Theft 263 
task (p=.8063, Table 3). For the Famous Face task, there were no group level differences in 264 
total word count (χ² (2, N = 73) = 1.98, p = .372) or content word count (χ² (2, N = 73) = 2.16, p 265 
= .340, Table 2) A similar pattern was also observed for the Cookie Theft task.  There were no 266 
group level differences in total word count (χ² (2, N = 73) = 5.32, p = .070) or content word count 267 
(χ² (2, N = 73) = 3.79, p = .150, Table 3).  Total word count and content word count correlated 268 
between the Famous Face Task and the Cookie Theft Tasks for patients, but not HCs (Figure 269 
S1A and B) Together, these findings suggest that patients had similar speech output compared 270 
to healthy controls on both tasks, and that poorer recall of famous faces seen in LTLE patients 271 
could not be explained by decreased overall speech output.  272 
 273 
Famous Face recall performance correlated with MOCA and RVLT scores for TLE 274 
subjects.  There was a positive significant relationship between FF recall performance and 275 
MOCA scores as scored by the human-generated (ρ= .327, p= .029) and automatically-276 
generated dictionaries (ρ= .422, p= .004) for TLE subjects, but not HCs (Fig 4A, B).  For TLE 277 
subjects with neuropsychological testing (n=18), there was a positive, statistically significant 278 
relationship between RVLT score and FF recall performance as scored by the human generated 279 
(r=0.501, p=0.018) and automatically-generated dictionary (ρ= .538, p= .001) (Fig 4C, D). 280 
 281 
DISCUSSION 282 
 283 
In summary, patients with left temporal lobe epilepsy generated fewer biographical details of 284 
celebrity faces compared to healthy controls or right temporal lobe epilepsy patients, as 285 
measured by human and automated analysis of spontaneous spoken recall.  Poorer memory 286 
recall was not merely an artifact of decreased speech output in the LTLE group, as there were 287 
no group differences in speech duration, total word count or content word count during FF recall 288 
or the control CTT task.   289 
 290 
Our novel approach replicates previous Famous Face recall findings20,21,26 and extends them by 291 
demonstrating how automated approaches applied to naturalistic behavior can generate a 292 
meaningful and quantifiable cognitive measurement. We illustrate how complex human behavior 293 
can be scored in a precise, quantitative, and efficient manner. Additionally, we demonstrate how 294 
memory can be disambiguated from language. Importantly, FF memory scores derived from 295 
spontaneous recall correlate with standardize cognitive and memory tests (i.e., MOCA and 296 
RVLT) scores, but display a much wider range of memory performance, and therefore could 297 
measure more subtle memory decline.  Indeed, cognitive heterogeneity has been well-described 298 
in the epilepsy neuropsychological literature as demonstrated in recent studies confirming the 299 
presence of multiple cognitive phenotypes in patients with TLE 34. 300 
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 301 
We envision that these methods could eventually be applied to other patient populations at risk 302 
for memory decline.  Recording and analyzing samples of patient speech during the clinical 303 
interview could provide a snapshot of memory and language performance.   NLP metrics 304 
applied to spoken recall, and extemporaneous speech, could complement existing 305 
neuropsychological methods that provide normative data.  Furthermore, these methods could 306 
provide serial measurements of memory and language with less concern of practice effect.  307 
 308 
Prior machine learning methods have been applied to patients with psychiatric disorders and 309 
probable Alzheimer’s disease.  Acoustic, lexical, and syntactic features can distinguish patients 310 
from healthy controls. In psychiatry, patients with PTSD can be distinguished from HCs from 311 
acoustic features of speech (e.g., monotony) with high accuracy 35. Linguistic features of 312 
speech, including semantic density and talk about voices and sounds can predict conversion to 313 
psychosis in a high-risk youth cohort with >90% accuracy 36.  Lexical features such as word 314 
repetition, revisions, filler words, utterances, word replacement, and phonemic paraphasias 315 
distinguish AD speech from healthy speech 15,37. Automatic speech analysis has been applied to 316 
identify subtypes of AD, such as primary progressive aphasia 38. While these studies show the 317 
enormous potential of NLP to extract speech-based features to aid neuropsychiatric diagnosis, 318 
we are unaware of any studies that have demonstrated how to assess accuracy and depth of 319 
memory through a top-down (human-generated) and bottom-up (automatically-generated, text-320 
driven from healthy subjects) method.  321 
 322 
Moreover, to our knowledge, ours is the first application of NLP methods to study speech in 323 
epilepsy patients and demonstrates how speech output can be disambiguated from verbal 324 
recall. Prior work in epilepsy has focused on extracting textual information from the electronic 325 
medical record (EMR). These analyses have demonstrated high accuracy to classify non-326 
epileptic events vs. seizures, presence, or absence of epilepsy, focal versus generalized 327 
epilepsy, surgical candidacy, or presence or absence of risk for Sudden Death in Epilepsy 328 
(SUDEP) risk 39–44.   329 
 330 
Limitations. Limitations of our study include demographic differences between our HC control 331 
group and our LTLE patients. HC patients were younger than LTLE patients and had higher 332 
MOCA scores (by eligibility criteria).  However, we do not think that LTLE memory differences 333 
are due primarily to these differences, as the RTLE group which was matched to LTLE group in 334 
age and MOCA score also demonstrated superior remote memory.  We also acknowledge 335 
limitations generalizing the Famous Faces task for clinical purposes.  We found that recognition 336 
of the twenty celebrity faces was near ceiling for all groups, suggesting a high degree of 337 
exposure.  Yet, several of the celebrities who were considered prominent in the decade prior to 338 
task inception (2018) were not recognizable by the majority of participants. These results 339 
suggest a very high degree of exposure to celebrity personalities, that can shift quickly over the 340 
span of years.  Future adaptations of task stimuli could start with description of a commonly 341 
experienced event, such as a film or a news summary, then test for recall after serial delays.  342 
Approaches utilizing high performing language and AI models that assimilate the vast amount of 343 
information into cohort-specific test stimuli are another possibility.  344 
 345 
Future Directions and Summary.  The application of NLP to cognitive testing in epilepsy 346 
mirrors the shift in cognitive neuroscience to embrace more naturalistic memory paradigms.  347 
Task stimuli are moving away from presentation of words and objects to richer, continuous 348 
experiences such as film watching 10,45, story listening 8, and physical exploration 11. The study 349 
of complex behavior requires computational analysis to efficiently distill large amounts of data 350 
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into interpretable and quantifiable measurements. With the rise of artificial intelligence, the 351 
detection of subtle memory impairments that may be invisible to conventional testing is possible.   352 
 353 
Future work can employ more sophisticated models of language analysis, such as BERT, that 354 
have been pre-trained on large datasets of text gleaned from the internet. Larger sample sizes 355 
of healthy controls are required to create more robust automated data dictionaries. Additionally, 356 
a more detailed analysis of chronological or semantic features of memory could be possible. 357 
Finally, to grade memory accurately and on a larger scale, testing would require comparison to 358 
a verifiable data source. While famous faces, historical events, and media events are publicly 359 
experienced events that can be verified, but their recall is expected to be highly subject to the 360 
cultural and educational background of the subject. The accuracy of the patient medical 361 
interview could be confirmed by a family member and scored by the number of details 362 
remembered.  363 
 364 
In summary, NLP methods can be applied to study complex behavior in humans, as in 365 
spontaneous recall of famous faces. NLP approaches could be applied in an efficient manner to 366 
detect cognitive impairment at the earliest, actionable stage in patients with temporal lobe 367 
epilepsy and subjective cognitive impairment.  368 
 369 
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Figures
Natural Language Processing Applied to Spontaneous Recall of Famous Faces Reveals 
Memory Dysfunction in Temporal Lobe Epilepsy Patients

Eden Tefera, Helen Borges Delfino de Souza, Charlotte Blewitt, Aaqib Mansoor, Haley Peters, Peem 
Teerawanichpol, Simon Henin, William B. Barr, Stephen B. Johnson, Anli Liu 
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Fig 1. Famous Face Task
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Fig 2. Dictionary Generation
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Fig 3.  Famous Face Recall Performance
3a. Human-generated Dictionary
3b. Automated Dictionary

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.23.609193doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609193
http://creativecommons.org/licenses/by-nc-nd/4.0/


Famous Face Recall Performance (Human Dictionary) 
across MOCA scores

TLE (r=0.326, p=0.028)

HC (r=-0.032, p=0.899)

Figure 4. Famous Face Recall Performance correlates with MOCA scores for TLE patients (N=45), but not HCs (N=27)

A B Famous Face Recall Performance (Automated Dictionary) 
across MOCA scores

HC (r=-0.025, p=0.899)

TLE (r=0.423, p=0.004)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.23.609193doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609193
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Famous Face Recall Performance across RVLT score (TLE only)  

C DFamous Face Recall Performance (Human Dictionary) 
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across RVLT scores (TLE only)
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