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SUMMARY
Assessment of genomic conservation between humans and pigs at the functional level can improve the po-
tential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach
to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and
374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction perfor-
mance comparedwith the previousmethod. In addition, the resulting DeepGCF score captures the functional
conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory
variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene
regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight
the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of
complex phenotypes.
INTRODUCTION

Comparative genomics not only reveals evolutionary changes at

the DNA sequence level1 but also helps with translating genetic

andbiological findings across species. Comparedwithmodel lab-

oratory organisms like mice, pigs (Sus scrofa) are more similar to

humans in terms of anatomy, physiology, and gene-regulatory

mechanisms,2 making them biomedical and genetic models for

humanmedicine and genetic diseases, including studies of drugs,

xenotransplantation, Alzheimer’s disease, breast cancer, and dia-

betes.3–7 To fully recognize the substantial potential of pigs as a

humanbiomedicalmodel, it isessential toconductextensivecom-

parisonsof pig andhumanphysiologyat themolecular level and to

assess the degree to which genetic and biological findings in pigs

can be extrapolated to humans. Methods have been proposed to

infer conservation at the DNA sequence level, such as genomic

evolutionary rate profiling (GERP) and phylogenetic p values (Phy-

loP).8,9 However, conservation at the DNA sequence level does

not necessarily reflect conservation at the functional level.10–12

Theongoingglobal efforts on functional annotationof genomes

in humans and livestock, such as the Encyclopedia of DNA Ele-

ments,13 Roadmap Epigenomics,14 Functional Annotation of An-

imal Genomes (FAANG),15 and Farm Animal Genotype-Tissue
C
This is an open access article under the CC BY-N
Expression (FarmGTEx) projects,16 provide an opportunity to

quantify functional genomic conservation across species. Previ-

ous studies have often relied on a single functional profile in one

tissue/cell type, such as gene expression or a specific epigenetic

mark, to infer the functional conservation of orthologous regions

between humans and pigs.17–19 However, integrative analyses of

multi-omicsmeasurements are needed to unravel how biological

information encoded in the genome is conserved or diverged

during evolution. This is because the functional consequence of

genomic variants is often modulated at multiple levels of gene

regulation across tissues/cells. Artificial neural networks have

been applied to predict and integrate multi-omics data, such

as histone marks, transcription factors, and gene expression,

to investigate transcriptional and biochemical impacts of DNA

sequences and their conservation across species.20,21 For

instance, the neural network model, Learning Evidence of

Conservation from Integrated Functional genomic annotaions

(LECIF), was developed to study human-mouse functional con-

servation based on multi-omics data from the Roadmap and

the Encyclopedia of DNA Elements (ENCODE) databases.21

Here, we developed a deep learning-based approach called

DeepGCF (genomic conservation at the functional level) to sys-

tematically evaluate the functional conservation between humans
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Figure 1. Overview of the DeepGCF model

(A) The learning procedure of the DeepGCF model

consists of two steps. The first step is to train

DeepSEA models in humans and pigs separately to

transform the binary functional features (e.g., peaks

called from ATAC-seq and ChIP-seq and chromatin

states predicted from a multivariate Hidden Markov

Model (ChromHMM)) to continuous values by pre-

dicting the functional effects of single nucleotides

through centering the target nucleotide at a genomic

region of 1,000 bp. The second step is to train a

pseudo-Siamese network to predict whether the

paired human-pig regions are orthologous using

two corresponding vectors of functional effects

predicted from DeepSEA and normalized gene

expression as input. The output, DeepGCF score, is

a value between 0 and 1 quantifying the functional

conservation of the paired human-pig region.

(B) The DeepGCF model can be applied to predict

the effect of genome variants on functional conser-

vation, quantified by changes in DeepGCF scores.
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and pigs. Unlike LECIF, which uses functional genomics data as

input, DeepGCF incorporates DNA sequences and functional ge-

nomics data as input. This enables us to predict the impact of

sequencemutations on the functional conservation between spe-

cies. By integrating 386 epigenome and transcriptome profiles

from 28 tissues in humans and 374 epigenome and transcriptome

profiles from 21 tissues in pigs, DeepGCF captures the functional

conservation of epigenetic features and genes across tissues be-

tween humans and pigs.

Furthermore, we examined expression/splicing quantitative trait

loci (e/sQTLs) from 49 human GTEx tissues and 34 PigGTEx tis-
2 Cell Genomics 3, 100390, October 11, 2023
sues22,23 aswell as integrated cross-species

comparisons of the results from genome-

wide association studies (GWASs) of 80

complex traits/diseases in humans. Deep

GCF provides novel insights into the evolu-

tionary mechanisms underlying molecular

and complex phenotypes. The DeepGCF

model can be expanded to more than two

species to understand the evolution of the

functional genome as large-scale functional

annotation data become available for multi-

ple species in the near future.

RESULTS

Overview of the DeepGCF model
Training of the DeepGCF model consists of

two steps (Figure 1). The first step converts

binary functional features to continuous

values by training a deep convolutional

network implemented in the deep learning-

based sequence analyzer (DeepSEA).24

Binary functional features are commonly

used in functional genomics to represent

whether a genomic base overlapswith func-

tional annotations, such as peaks or chro-
matin states obtained from an assay for transposase-accessible

chromatin sequencing (ATAC-seq) andchromatin immunoprecip-

itation sequencing (ChIP-seq) experiments. DeepSEA takes DNA

sequences and binary functional features as input and predicts

the probabilities of each functional feature at single-nucleotide

resolution. In this study, we collected 309 and 294 genome-wide

binary functional annotations from humans and pigs, respectively

(Tables S1–S4).

The functional annotations represented chromatin accessibility

measured by ATAC-seq, histone modifications measured by

ChIP-seq, and predicted chromatin states from 26 and 21 tissues



Article
ll

OPEN ACCESS
inhumansandpigs, respectively. ThehumanATAC-seqandChIP-

seq datawere obtained fromENCODE,13 while those of pigs were

from Pan et al.18 and Zhao et al.18,19 The predicted chromatin

states of humans and pigs were obtained from Pan et al.18 We

trained the DeepSEA models and predicted the functional effect

of each nucleotide in humans and pigs separately, which was

subsequently used as input for the DeepGCF model to predict

the functional conservation score between these two species.

The performance of DeepSEAwas evaluatedwith an independent

validation set and showed predictive power for both species

(Figure S1).

The second step of DeepGCF predicts the functional conserva-

tion score of orthologous regions between humans and pigs with

a supervised deep learning approach, similar to LECIF.21 A whole-

genome alignment between humans and pigs was divided into

non-overlapping 50-bp regions within each alignment block, result-

ing in 38,961,848 paired alignments (i.e., orthologous regions),

covering �42% of the entire human genome. The first base of

each 50-bp region was selected to represent the functional annota-

tion of the entire region because bases in such narrow regions are

likely to have similar functions, and this reduces the computational

burden.21 In addition to the predicted functional effects from

DeepSEA, we included gene expression values from 77 and 80

RNA sequencing (RNA-seq) datasets as functional annotations,

representing 11 and 19 tissues in humans and pigs, respectively

(Tables S5 and S6).13,18,19 To train the DeepGCF model, we

randomly shifted the human-pig orthologous regions to obtain an

equal number of non-orthologous pairs. Because there is a lack of

ground truth for predicted functional conservation in the absence

of relevantexperimentaldata,weapproximated thatorthologous re-

gions (coded as 1) are more likely to be functionally conserved than

non-orthologous ones (coded as 0). We then trained a pseudo-Sia-

mese neural network model using functional effects predicted from

DeepSEA and gene expression as input (Figure 1A).25

Duringmodel training, non-orthologous regionswereweighted

50 times more than orthologous ones to emphasize regions with

strong evidence of functional conservation.21 The output of the

model, theDeepGCFscore, is a value between0 and1 that quan-

tifies the functional conservation of the paired human-pig region.

Furthermore, because DeepGCF predicts the functional conser-

vation fromDNAsequences, it allowsus toconduct in silicomuta-

genesis analysis. This analysis assesses the impact of ortholo-

gous variants on functional conservation between species by

investigating changes in theDeepGCF score causedby a genetic

mutation (Figure 1B).

Evaluation of the DeepGCF model
The performance of DeepGCF was evaluated with an indepen-

dent testing set to predict whether paired human-pig regions

are orthologous. DeepGCF showed a better predictive ability

compared with LECIF, with areas under the receiver operating

characteristic curve (AUROC) and precision-recall curve

(AUPRC) of 0.89 and 0.87, respectively, while LECIF had an

AUROC and AUPRC of 0.80 and 0.79, respectively (Figures 2A

and 2B). Among all orthologous regions between humans and

pigs, only a small percentage (1.2%) had a DeepGCF score

greater than 0.8, while more than half had a score of less than

0.1 (Figure 2C). These results indicate that most orthologous re-
gions were not functionally conserved between these two spe-

cies, consistent with previous findings for humans and mice.21

Notably, tomake the number of functional features comparable

betweenpigsandhumans,weonlycollected thehuman functional

profiles at the tissue level. Furthermore,wemergedmultiple binary

functional profiles of the same type from the same tissue into one

profile to reduce the computational load. This resulted in 386 and

374 functional features in humans and pigs, respectively. In addi-

tion, we tested the performance of DeepGCF using all 861 human

profiles and 577 pig profiles without merging the binary functional

profiles. The result showed that a DeepGCF model that used all

functional profiles hadaconsistent predictionaccuracycompared

with a model trained with merged datasets (Figure S2). We also

normalized the gene expression values with a natural logarithm

transformation, which resulted in a better prediction accuracy

compared with one without transformation (Figure S2).

We further explored features that may influence the model’s

performance, including sample size and diversity of functional

annotations regarding array and tissue/cell type. Downsampling

of functional profiles in humans and pigs during model training

indicates that analyses that use approximately 50% (human,

192; pig, 187) or 10% (human, 52; pig, 47) of the currently avail-

able profiles resulted in similar AUROC (50%, 0.88; 10%, 0.85)

and AUPRC (50%, 0.87; 10%, 0.83) values compared with tests

that use all available profiles. However, using only approximately

1% (human, 4; pig, 4) of the profiles resulted in substantially

lower AUROC (0.69) and AUPRC (0.68) values (Figure 2D).

When leaving one type of functional profiles out, the predictive

ability of DeepGCF remained similar (Figure 2E).

Relationship between DNA sequence conservation and
functional conservation
To explore whether DNA sequence conservation indicates func-

tional conservation, we investigated the relationship between the

DeepGCF score and the PhyloP score, a commonly used mea-

sure of the DNA sequence conservation across species.9 We

observed a U-shaped relationship between the PhyloP scores

and the DeepGCF scores (Figure 3A). This suggests that rapidly

and slowly evolving sequences exhibited a higher functional

conservation between species compared with sequences that

are evolutionarily neutral or nearly neutral. This finding is consis-

tent with comparisons of individual epigenetic marks and DNA

sequence conservation.18,26

We defined three groups of orthologous regions from their

PhyloP and DeepGCF scores, representing the two tails and

the bottom of the U curve: (1) regions with high DeepGCF

(>95th percentile) and PhyloP (>95th percentile), referred to as

high D & high P (n = 260,281); (2) regions with high DeepGCF

(>95th percentile) but low PhyloP (<5th percentile), referred to

as high D & low P (n = 152,557); and (3) regions with low

DeepGCF (<5th) and medium PhyloP (between 47.5th and

52.5th), referred to as low D & med P (n = 95,231).

We then examined sequence classes and Gene Ontology

(GO) terms for these three groups of regions. We determined

sequence classes frompredicted regulatory activities of DNA se-

quences in the human genome using a deep learning model, Sei,

trained on a compendium of 21,907 epigenome profiles.27 We

found that high D & high P regions were enriched in sequences
Cell Genomics 3, 100390, October 11, 2023 3
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Figure 2. The performance of DeepGCF under different scenarios

(A) Receiver operating characteristic (ROC) curves comparing the performance of DeepGCF (this study) and LECIF21 methods. The ROC curve of eachmethod is

generated by predicting whether 200,000 pairs randomly selected from the testing set, which included equal numbers of orthologous and non-orthologous pairs,

were orthologous.

(B) Precision-recall (PR) curves generated by similar procedures as the ROC curves.

(C) The distribution of DeepGCF scores across all 38,961,848 human-pig ortholog pairs.

(D) The areas under the ROC curve (AUROC) and PR curve (AUPRC) of DeepGCF using all (human, 386; pig, 374),�50% (human, 192; pig, 187),�10% (human,

52; pig: 47), and �1% (human, 4; pig: 4) of human and pig functional features. The subsets of the human and pig features were randomly and proportionally

selected from each of the ChIP-seq/ATAC-seq, ChromHMM, and RNA-seq profiles.

(E) The AUROC and AUPRC of DeepGCF using all functional features (human, 386; pig, 374), features without ChIP-seq/ATAC-seq (human, 129; pig, 84), features

without ChromHMM (human, 180; pig, 210), and features without RNA-seq (human, 77; pig, 80).
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with a predicted promoter, CTCF binding sites, and transcrip-

tional effects but depleted in enhancer regions relative to the

whole genome (binomial test, p < 2.2 3 10�16; Figure 3B). High

D & high P regions showed more enrichment in transcription

compared with other regions (binomial test, p < 2.23 10�16; Fig-

ure 3B) and were significantly associated with RNA-related regu-

lation processes (binomial test, false discovery rate [FDR] < 0.05;

hypergeometric test, FDR<0.05; Table S7), indicating similarities

in transcriptional networks between pigs and humans.17,28 High

D & low P regions were significantly enriched in Polycomb (bino-

mial test, p < 2.23 10�16; Figure 3B), which is consistent with the

fact that some core subunits of Polycomb protein complexes

with similar biological functions have shown weak evolutionary

conservation in DNA sequence across species.29 Low D & me-

dium P regions had similar sequence class compositions as

the whole genome, with the exception of promoter regions,

which were enriched, but to a lesser extent than high D & high

P and high D & low P (binomial test, p < 2.2 3 10�16; Figure 3B).

Low D & med P regions were also enriched in fewer GO terms

than regions with high DeepGCF scores (Tables S7–S9). In addi-

tion, we examined six different sequence ontologies and found
4 Cell Genomics 3, 100390, October 11, 2023
that the 50 UTR is the most functionally conserved element, fol-

lowed by the start codon, 30 UTR, stop codon, exon, and finally

intron. This finding is consistent between humans and pigs

(Figure 3C).

To investigate the impact of orthologous variants on functional

conservation, we examined 35,575,835 human SNPs that are

located in orthologous regions between humans and pigs as

ascertained in the 1000 Genomes Project.30 We used the

DeepGCFmodel, which was trained exclusively on the predicted

probabilities of binary features from DeepSEA (i.e., leaving RNA-

seq out) because the DeepSEA model does not predict contin-

uous functional features. The new score predicted from

DeepGCF without RNA-seq data showed a relatively good

agreement with the original DeepGCF score, with a Pearson’s

correlation coefficient (PCC) of 0.74 (Figure S3).

To measure the effect of each human SNP on functional con-

servation, we recomputed the probabilities of binary features

for the corresponding orthologous human region because of

the SNP mutation while keeping the pig probabilities the same

and then used the new probabilities to calculate the updated

DeepGCF score. The effect on functional conservation is
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Figure 3. Comparison of functional and sequence conservations

(A) Relationship between DeepGCF scores and PhyloP scores of 20,000 randomly selected human regions. The PhyloP score is based on multiple alignments of

99 vertebrate genomes to the human genome.9 The blue line is the fitted loess regression. The red crosses represent 50 equally divided percentiles of the PhyloP

score and corresponding mean DeepGCF score.

(B) Enrichment fold of 8 sequence class categories27 for regions with high DeepGCF (>95th percentile) and high PhyloP (>95th percentile, high D & high P, n =

260,281) and regions with high DeepGCF (<5th percentile) and medium PhyloP (between 47.5th and 52.5th percentile, low D &med P, n = 77,848). Enrichment is

equal to the proportion of a sequence class category for a type of orthologous region divided by that for the whole genome. The dashed line (= 1) represents no

enrichment.

(C) Distribution of DeepGCF score for different sequence ontologies. The red and green dashed lines represent the mean and median DeepGCF score of the

whole genome, respectively. The dots in each box represent the mean DeepGCF score. In each box, the center line represents themedian, the dot represents the

mean, box limits represent the upper and lower quartiles, whiskers represent 1.5 3 interquartile range, and individual points are outliers.

(D)DDeepGCF (DeepGCF after mutation – original DeepGCF) caused by 1,000,000 randomly selected orthologous variants, which are classified into 8 sequence

class categories annotated by Sei.27.

(E) The effect of orthologous variants (n = 35,575,835) on the DeepGCF score of regions in 40 sequence classes annotated by Sei,27 which are classified into 8

categories. The effect was measured by DDeepGCF for variants in each sequence class. The SD of DDeepGCF for each sequence class quantifies the sensitivity

of the sequence class to variants. The dashed line is the fitted regression line.
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measured by DDeepGCF = DeepGCF after SNP mutation – orig-

inal DeepGCF. By classifying all orthologous variants into eight

sequence class categories,27 we found that most variants had a

limited effect on functional conservation (Figure 3D). We further
grouped them into 40 sequence classes27 and found that genetic

mutations in sequence classes with higher DeepGCF scores

(more functionally conserved) are more likely to have larger im-

pacts (SD of DDeepGCF) on functional conservation between
Cell Genomics 3, 100390, October 11, 2023 5
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Figure 4. DeepGCF scores of genomic regions overlapping with regulatory elements

(A) Distribution of average DeepGCF scores across human tissues (n = 12) and pig tissues (n = 14) for each chromatin state. The red and green dashed lines

represent the mean and median DeepGCF score of the whole genome. In each box, the center line represents the median, box limits represent the upper and

lower quartiles, whiskers represent 1.5 3 interquartile range, and individual points are outliers.

(B) DeepGCF scores of genomic regions overlappingwith tissue-specific strongly active promoters and enhancers for human and pig.18 ‘‘All common’’ represents

promoters/enhancers shared across all tissues. Asterisks denote two-sided Mann-Whitney U test: ****p < 2.2 3 10�16.

(C) Number of significantly enriched GO terms for human of genes related to promoters annotated by Sei.27 Significance was calculated using FDR < 0.05 for

the binomial and hypergeometric tests. The genes were binned by DeepGCF into 10 equal-width bins, and a functional enrichment analysis was conducted on

each bin.

(D) Similar to (C) but showing the results of enhancers annotated by Sei.27.

Article
ll

OPEN ACCESS
species (Figure 3E). Notably, the average DeepGCF score of

CTCF binding sites is lower than that of promoters but more sen-

sitive to genetic mutations, indicating that genetic disruption of

CTCF binding sites had a pronounced impact on functional

genome evolution between species by altering genome topology

and gene expression.31,32

DeepGCF captures the evolutionary characteristics of
regulatory elements
To investigate the functional conservation of distinct regulatory el-

ements between pigs and humans, we examined the DeepGCF

scoreof 15 chromatin statespredicted in 14pig tissues and12hu-

man tissues.18 We found that strongly active promoters had the

highest DeepGCF scores, indicating the strongest functional con-

servation, followedby a poised transcription start site (TSS), chro-

matin states proximal to the TSS, enhancers, and, finally,

repressed Polycomb (Figure 4A).This conservation pattern was

consistent between humans and pigs, which aligns with previous

studieson theconservationpropertiesof regulatoryelements.18,33
6 Cell Genomics 3, 100390, October 11, 2023
Because tissues may have specific chromatin states that play

crucial roles in determining cellular functions, we identified

strongly active promoters and enhancers that were tissue specific

in each of 12 human tissues and 14 pig tissues. Compared with

promoters and enhancers shared by all tissues, tissue-specific

ones showed significantly lower DeepGCF scores in both species

(Mann-WhitneyU test, p < 2.23 10�16), suggesting a faster evolu-

tionary rate for tissue-specific regulatory elements (Figure 4B).

Among the eight tissues we examined in humans and pigs, we

found that adipose tissue exhibited the strongest conservation

of promoters in human and pig, followed by spleen, lung, cortex,

liver, and stomach tissue (Figure S4A). However, the conservation

patterns of enhancers were not consistent between species and

varied among tissues (Figure S4B).

We further investigated the DeepGCF score on human pro-

moters and enhancers annotated by Sei.27 We linked a promoter

to its potential target gene and then ranked genes based on the

DeepGCF scores of their promoters, from highest to lowest. We

observed that the top 5% ranked genes were significantly
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Figure 5. Relationship of DeepGCF scores to genetic variants

(A) The distribution of DeepGCF scores for eQTLs and sQTLs. The red and green dashed lines represent the mean and median DeepGCF score of the whole

genome, respectively. Asterisks denote two-sided Mann-Whitney U test: ****p < 10�8. In each box, the center line represents the median, the dot represents the

mean, box limits represent the upper and lower quartiles, whiskers represent 1.5 3 interquartile range, and individual points are outliers.

(B) Relationship between the absolute value of eQTL effect sizemeasured by log allelic fold change (|log2(aFC)|) and DeepGCF score for eGenes. The genes were

binned by DeepGCF into 10 equal-width bins for human and pig, respectively. Asterisks denote that the group is different from all other groups: ****p < 10�8 based

on Tukey’s multiple comparisons.

(C) DeepGCF scores of tissue-sharing e/sGenes from human at local false sign rate (LFSR) < 5% obtained by MashR.36 Each solid line represents ± standard

deviation.

(D) Similar to (C) but showing the results for pigs.
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enriched in basic biological processes, such as anatomical

structure development and organ morphogenesis (binomial

test, FDR < 0.05; hypergeometric test, FDR <0.05), whereas

the bottom 5% of genes were significantly enriched in biosyn-

thetic and metabolic processes (binomial test, FDR < 0.05;

hypergeometric test, FDR < 0.05; Tables S10 and S11). Addition-

ally, we ranked enhancers with DeepGCF scores and investi-

gated the function of the top 5% and bottom 5% enhancers. Un-

like promoters, the top 5% of enhancers exhibited the most

significant enrichment in metabolic processes (binomial test,

FDR < 0.05; hypergeometric test, FDR < 0.05), while the bottom

5%of enhancers were significantly enriched in organ growth and

development (binomial test, FDR < 0.05; hypergeometric test,

FDR < 0.05; Tables S12 and S13). Overall, we found that pro-

moters and enhancers with higher DeepGCF scores were en-

riched in a greater number of biological processes compared

with those with lower DeepGCF scores (Figures 4C and 4D),

which indicates that functionally conserved regions tend to be

hotspots of regulatory activities.
DeepGCF provides insight into the functional
conservation of regulatory variants
To explore the functional conservation of regulatory variants, we

systematically examined eQTLs and sQTLs in orthologous re-

gions of 49 human tissues and 34 pig tissues, respectively.22,23

DeepGCF scores of eQTLs and sQTLs were significantly higher

(Mann-Whitney U test, p < 2.2 3 10�16) than the genome back-

ground across all tissues in humans and pigs (Figures 5A, S5,

and S6), which suggests that regulatory variants are functionally

conserved between species.34,35 Notably, sQTLs exhibited

higher DeepGCF scores than eQTLs in both species (Mann-

Whitney U test, p < 10�8), consistent with studies that showed

that sQTLs were more enriched in the 50 UTR than eQTLs22

and that the 50 UTR is the most functionally conserved genomic

feature (Figure 3C).

Genes with eQTLs or sQTLs were called eGenes and sGenes,

respectively. We observed that eGenes that have a larger abso-

lute effect on gene expression had lower DeepGCF scores in

bothspecies (Tukey’smultiple comparisons, p<10�8; Figure5B).
Cell Genomics 3, 100390, October 11, 2023 7
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Figure 6. Relationship of conservation score

to pathogenic variants

(A) The distribution of DeepGCF scores for patho-

genic and likely pathogenic SNPs (n = 104,033)

obtained from ClinVar,38 compared with the distri-

bution of DeepGCF scores across the whole

genome. Asterisks denote two-sidedMann-Whitney

U test: ****p < 5 3 10�8. In each box, the center line

represents the median, box limits represent the

upper and lower quartiles, whiskers represent 1.53

interquartile range, and individual points are outliers.

(B) SD of DDeepGCF (DeepGCF after mutation –

original DeepGCF) caused by ClinVar SNPs. The

SNPs were binned by their original DeepGCF into 10

equal-width bins.

(C) ClinVar SNPs classified by Sei.27 A polar coor-

dinate systemwas used, where the radial coordinate

indicates the SNP effect on DeepGCF score. The red

solid circle represents zero DeepGCF change, and

two dashed circles represent ±0.03 of DeepGCF

encompassing 95% of SNPs. Each dot represents

a SNP, and SNPs in the red circle were predicted to

have positive effects (increased DeepGCF), while

SNPs outside of the red circle were predicted to

have negative effects (decreased DeepGCF). Dot

size indicates the original DeepGCF. Within each

sequence class, SNPs were ordered by chromo-

somal coordinates. Diseases and gene names

associated with the top 10 SNPs with the largest

impact on DeepGCF were annotated.
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This observation suggests that orthologous regions with smaller

regulatory effects aremore likely to be functionally conserved be-

tween species, possibly because of stronger purifying selec-

tion.37 Furthermore, regulatory variants influencing more tissues

had higher DeepGCF scores, consistent in humans and pigs

(Figures 5C and 5D). In addition, the tissue-sharing pattern of or-

thologous eGenes (PCC = 0.38, p < 2.2 3 10�16) and sGenes

(PCC = 0.45, p < 2.23 10�16) were positively correlated between

humans and pigs. Taken together, these results suggest that reg-

ulatory variants controlling transcriptome function in multiple tis-

sues tend to be more functionally conserved between species.

We then investigated the DeepGCF scores of 105,461 patho-

logical and likely pathological SNPs obtained from the ClinVar

database.38 98.6% of these SNPs were located in the human-

pig orthologous regions, consistent with findings that reported

more than 98% of pathological variants of Mendelian diseases

located in human-mouse orthologous regions.39 Compared

with random orthologous regions, these pathological SNPs

were significantly more functionally conserved (Mann-Whitney

U test, p < 2.2 3 10�16; Figure 6A).

Similar to orthologous SNPs, we classified the ClinVar SNPs

into eight sequence class categories27 and conducted an in sil-

ico mutagenesis analysis to predict their impact on functional

conservation. The average magnitude of variant effect (mea

sured by |DDeepGCF|) for pathological and likely pathological

mutations is 1.5 times larger than that for random orthologous
8 Cell Genomics 3, 100390, October 11, 2023
SNPs (0.0088 versus 0.0058; Mann-

Whitney U test, p < 2.2 3 10�16). The

DeepGCF score did not change signifi-
cantly with specific geneticmutations inmost cases, but the vari-

ance of DDeepGCF showed a bell-shaped curve with respect to

the original DeepGCF score. SNPs with medium-high DeepGCF

scores (50th–80th percentile) were more sensitive to patholog-

ical mutations than those with lower or higher DeepGCF scores

(Figure 6B). This suggests that the most functionally conserved

regions (>90th percentile) tolerate more mutations than less

conserved ones (50th–80th percentile).

Themajority of the ClinVar SNPswere classified as transcription

(51.2%), followed by enhancer (16.4%), Polycomb (14.8%), pr-

omoter (8.8%), transcription factor (3.3%), and CTCF (2.2%; Fig-

ure 6C). Among the ClinVar SNPs with top 5% of |DDeepGCF|

(>0.03), there were more SNPs relevant to a decreased

DeepGCF (54.4%) than an increased one (45.6%). Moreover, 9 of

10 ClinVar SNPswith the largest effect onDeepGCFwere relevant

to a decreased DeepGCF (Figure 6C). In summary, pathological

and likely pathological SNPs tend to be located in functionally

more conserved regions, and their impact on functional conserva-

tion is often related to decreased functional conservation between

humans and pigs.

Application of DeepGCF on explaining human complex
traits
To investigate whether DeepGCF scores could advance our un-

derstanding of the evolutionary basis of complex traits/diseases

in humans, we conducted a heritability partitioning analysis using
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Figure 7. Application of DeepGCF on com-

plex traits/diseases in human

(A) Heritability enrichment calculated by LDSC for 80

human traits using functionally conserved regions

(top 5% DeepGCF). The regions were divided into 5

equal equal-width bins, and the heritability enrich-

ment of all traits was calculated for each bin. The red

dashed line is the fitted regression line between

heritability enrichment and DeepGCF percentile,

and the gray area is the 95% confidence interval. In

each box, the center line represents themedian, box

limits represent the upper and lower quartiles,

whiskers represent 1.5 3 interquartile range, and

individual points are outliers.

(B) Significant heritability enrichment (FDR < 0.05)

explained by functionally conserved regions for 8

human traits. The error bar is the estimated standard

error of heritability enrichment.

(C) The number of putative causal SNPs (PIP > 0.95

and GWAS p < 5 3 10�8) identified by PolyFun +

SuSiE42 with functionally conserved regions as a

prior and SuSiE44 without priors for 7 human traits

(the results for coxarthrosis are not shown because

no causal SNPs were found using either method).

(D) The relative prediction accuracy of polygenic

scores for 20 human complex traits using function-

ally conserved regions as a prior in SBayesRC.43

Relative prediction accuracy is equal to (prediction

accuracy using the prior – prediction accuracy

without priors) / prediction accuracy without priors.

Relative prediction accuracy > 0 (dashed line) in-

dicates a higher accuracy than without priors.
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the functionally conserved genomic regions (top 5% DeepGCF

scores) as a functional annotation to analyze the GWAS

summary statistics of 80 human complex traits/diseases

(Table S14). This analysis, along with 97 existing annotations

from the baseline model of linkage disequilibrium score regres-

sion (LDSC),40,41 indicated that regions with higher DeepGCF

scores explained more heritability of complex traits/diseases

than those with lower DeepGCF scores (Figure 7A). Specifically,

eight complex traits showed a significant heritability enrichment

in functionally conserved regions, with the greatest enrichment

observed for coxarthrosis (enrichment = 3.5, FDR = 0.032), fol-

lowed by varicose veins, height, hypertension, primary hyperten-

sion, waist-hip ratio, weight, and BMI (Figure 7B; Table S15).

Furthermore, we used these eight traits as examples to explore

whether DeepCGF could aid fine-mapping of causal variants.

We used functionally conserved regions (top 5% of DeepCGF)

as a biological prior in the PolyFun + the sum of single effect

(SuSiE) model42 to detect putative causal variants. We found

that, compared with the SuSiE model only without any priors,

incorporating the functional conservation as a prior led to

detection of 33, 22, and 17 additional putative causal variants

(posterior inclusion probability (PIP) > 0.95 and p < 5 3 10�8) in

height, BMI, and weight, respectively (Figure 7C; Table S16).

Additionally, we incorporated functional conservation as a prior

in the SBayesRC model43 to conduct polygenic score prediction

for 20 human complex traits (Table S17). On average, the relative

prediction accuracy increased by 0.56% (Figure 7D; Table S18),

and the largest increase was observed for waist-hip ratio (3.5%),
followed by body weight (1.7%). Altogether, our results showed

that DeepGCF provides additional insights into the genetic and

evolutionary basis of complex phenotypes.

DISCUSSION

In this study, we developed a two-step neural network approach,

DeepGCF, to evaluate the genomic conservation at the func-

tional level between humans and pigs. DeepGCF shares a similar

model structure as LECIF21 in evaluation of functional conserva-

tion by comparing the epigenome and gene expression profiles

of orthologous regions between two species. But instead of us-

ing binary epigenome profiles as the direct inputs, DeepGCF first

predicts their functional effects (i.e., the continuous probability

score of each epigenome binary feature) using DeepSEA24 and

then uses these effects as input to predict the functional conser-

vation between species. Compared with the LECIF approach,

DeepSEA showed better performance in ortholog prediction,

possibly because of a higher resolution of the model input.

Similar to LECIF, we found that the performance of DeepGCF

was not sensitive to the number of functional features, indicating

that DeepGCF could be applied to other species with fewer func-

tional profiles available. We demonstrated that functional con-

servation is different from DNA sequence conservation. The

relationship between DeepGCF and PhyloP scores confirms a

U-shaped relationship between functional and DNA sequence

conservation. By examining DeepGCF on chromatin states,

sequence ontologies, and regulatory variants, we verified that
Cell Genomics 3, 100390, October 11, 2023 9
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DeepGCF captures the functional conservation of the genome

and that regions with higher DeepGCF are likely to have more

important roles in regulatory activities.

In summary, the DeepGCF approach shows promise as an

application for cross-species comparison of functional genomes.

We anticipate that the model framework described here can be

easily adapted to other species, including humans, mice, pigs,

cattle, andother livestock.Generating functional conservation in-

formation among different species should provide additional

insight into the genetic and evolutionary mechanisms behind

complex traits and diseases, analogous to the DNA sequence

conservation among vertebrates.

Limitations of the study
Although we expected the DeepGCF to explain genetics of com-

plex traits, the heritability enrichment and polygenic prediction

accuracy attributed to functionally conserved regions were

limited. This may be because we only considered functional

conservation between two species (i.e., humans and pigs) as

opposed to multiple species.45 Because epigenome and gene

expression data are generated in other species, we predict an

ability to identify the core functionally conserved regions among

different evolutionary lineages by expanding the DeepGCF

model structure to integrate functional profiles from multiple

species. Another limitation is that the functional conservation

of the same sequence segment should be conceptually different

across different tissues and cell types, which cannot be distin-

guished by the current DeepGCF score. One ideal way to obtain

tissue- and cell-type-specific DeepGCF scores is to train a sepa-

rate model for each tissue and cell type using the respective

data. However, the current volume of functional profiles, partic-

ularly in pigs but also for many other vertebrate species, does not

support development of tissue- or cell-type-specific DeepGCF

models.
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Data and code availability
The DeepGCF scores of humans and pigs, and original codes are available at GitHub: https://github.com/liangend/DeepGCF. The

version used in the preparation of the manuscript has been deposited at Zenodo: https://doi.org/10.5281/zenodo.8087963. Any

additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Genome alignment
We used the chained and netted alignments of human (GRCh38) and pig (susScr11) genome assemblies from the UCSC genome

browser.46 The assemblies were aligned by the lastz alignment program52 using human as the reference.
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Model inputs
We divided the whole-genome alignment between human and pig into non-overlapping 50-bp regions within each alignment block,

resulting in 38,961,848 orthologous pairs. If an alignment block ended shorter than a 50-bpwindow, the windowwas truncated to the

end of the block, which resulted in some regions smaller than 50 bp. For each orthologous pair, we collected the corresponding func-

tional features, including chromatin accessibility measured by Assay for Transposase-Accessible Chromatin (ATAC-seq), histone

modifications measured by Chromatin Immunoprecipitation sequencing (ChIP-seq), chromatin state annotations (ChromHMM),

and gene expression measured by RNA-seq for human and pig from public resources, including ENCODE13 and public litera-

tures.18,19 We only collected the functional data at the tissue level in humans to make the number of functional features comparable

between pigs and humans. We merged binary functional data of the same type from the same tissue into one feature to reduce the

computational load. For human, there were 604 ChIP-seq and ATAC-seq files merged into 129 features, 12 ChromHMM files of 15

chromatin states (123 15 = 180 features), and 77 RNA-Seq features, which resulted in 386 functional annotations. For pig, there were

287 ChIP-Seq and ATAC-Seq files merged into 84 features, 14 ChromHMM files of 15 chromatin states (143 15 = 210 features), and

80 RNA-seq features, which resulted in 374 functional annotations. Details of each data type are reported in Tables S1–S6.

Prediction of binary functional features based on DeepSEA
We trained two DeepSEA models to predict the binary functional features, including ATAC-Seq, ChIP-Seq and chromatin state an-

notations, of human and pig using the Selene package in Python.47 We used the peak calls of ATAC-seq and ChIP-seq, and one-hot

encoded chromatin state annotations as the training input. We then trained the model based on a sequence region of 1,000 bp, and

the feature must take up 50% of the center bin (200 bp) for it to be considered a feature annotated to that sequence. All the hyper-

parameters were set as default (Table S19). We created a validation set using the data from chromosomes 6 and 7 for early stopping

during training, a test set using the data from chromosomes 8 and 9 for the generation of the receiver operating characteristic (ROC)

and precision-recall (PR) curves, and a training set using the rest data. We then predicted the probability of each binary feature using

the trained model for the first base of all the paired regions that were at most 50 bp.

Data subsets for training and evaluation
We divided the entire data into the training, validation, testing, and prediction sets based on the chromosome number. To predict the

DeepGCF score of human regions from even and X chromosomes and the corresponding paired pig regions (prediction set), we

trained a DeepGCF model based on paired regions from a subset of odd chromosomes of human and pig. We created a validation

set from another subset of odd chromosomes (not overlapping with the training set) for the hyper-parameter tuning and early stop-

ping during training. A testing set based on paired regions from even chromosomeswas used to generate the ROCand PR curves. To

predict the DeepGCF score of human regions from odd chromosomes and the corresponding paired pig regions, we created training

and validation sets similarly as above, except from even chromosomes, and a testing set from odd chromosomes. We excluded Y

and mitochondrial chromosomes in this study. Detailed division of each set is shown in Table S20.

DeepGCF training
Before training the DeepGCF model, we first randomly paired up the human-pig orthologous regions to get an equal number of non-

orthologous pairs in the training set. We then trained the DeepGCF model with a pseudo-Siamese architecture similar to the LECIF

model.21 In the pseudo-Siamese neural network, for each orthologous/non-orthologous pair, two input vectors containing the human

and pig binary features (probabilities between 0 and 1) predicted fromDeepSEA and normalized RNA-seq data (also between 0 and 1)

were connected to the human andpig subnetworks, respectively (Figure 1).Weperformed a natural logarithm transformation onRNA-

seq data before normalizing. The two subnetworks were then fully connected to a final subnetwork, which generated the output pre-

diction. We weighted non-orthologous pairs 50 times more than orthologous ones during the training process.

We then used Python packages torch and sklearn to train the DeepGCFmodel.48,49 We conducted a random grid search for hyper-

parameters, including number of layers in each subnetwork and the final subnetwork, number of neurons in each layer, learning rate,

batch size, and dropout rate.We generated 100 combinations of hyper-parameters randomly selected from the candidate parameter

pool (TableS21), usingeachcombination to train aDeepGCFmodel basedon the same randomsubsetof 1millionalignedand1million

unaligned human-pig pairs from the training set. We then selected the combination of hyper-parameters that maximized the AUROC

on the validation set to train the finalmodel based on thewhole training set.Model trainingwas stopped if therewas no improvement in

AUROC over three epochs, otherwise it was stopped when reaching the maximum number of epochs, which was set to be 100.

Human-pig orthologous SNPs
In total 73,257,633 human biallelic SNPs (GRCh38) were obtained from 1,000 Genome Project.30 Their positions were lifted to cor-

responding orthologous positions in the pig genomes (SusScr11) using the UCSC LiftOver utility,46 which resulted in 35,575,835 or-

thologous SNPs.

Function enrichment
To explore the Gene Ontology terms of genomic regions (e.g., enhancers), we used the GREAT tool50 from with default parameters

and a cut-off of FDR <0.05 for both the binomial and the hypergeometric distribution-based tests.
e2 Cell Genomics 3, 100390, October 11, 2023
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Tissue specific chromatin state
To investigate the tissue specificity of strongly active enhancer and promoter in humans and pigs, we followed the same procedure as

described in Pan et al. and Kern et al.18,53 For each chromatin state, we first used themerge function of BEDtools (version 2.29.1)51 to

merge any regulatory regions between two tissues overlapped by 1 bp and obtained a regulatory reference across all tissues. We

then used the intersect function of BEDtools to find the overlap between regions in the regulatory reference and regulatory file of

each tissue. If a region in the reference overlaps with regions in only one tissue, we define the region as tissue-specific regulatory

element. If a region overlaps across all tissues, we define the region as ‘‘all common’’ regulatory element.

Tissue-sharing of e/sGene
To explore how e/sGenes (geneswith significant e/sQTLs) are shared across all tissues, we performed themeta-analysis of e/sGenes

using MashR (v0.2.57).36 We used the slope and the standard error of slope of top e/sQTL of genes (missing slopes were set to be

0with standard error of 1) across 49 tissues fromGTEx (v8)22 for human and 34 tissues fromPigGTEx databases23 for pig as the input.

We then obtained the estimate of effect size and the corresponding significance (local false sign rate, LFSR) from the mash function.

An e/sGene was considered active in a tissue if LFSR <0.05.

DeepGCF score for genes
Weobtained the gene boundaries of human and pig genes from Ensembl release 107 (GRCh38 for human and Sscrofa11 for pig), and

extended them by 35 kb upstream and 10 kb downstream to include probable cis-regulatory regions.54 We then compute the

DeepGCF score for genes based on the average score of all orthologous regions overlappingwith the gene and the extended regions.

For human genes linked to promoter sequence class, we identified a promoter’s potential target gene if the distance between the

promoter and the TSS of a gene is less than 2 kb, yielding a total of 12,044 promoter-gene pairs.

Heritability partitioning analysis
We collected the GWAS summary statistics of 80 human complex traits from the UK Biobank and public literatures (Table S14). We

ran the LD-score regression software LDSC41 to partition the heritability based on two sets of annotations: 1) one binary annotation of

functionally conserved regions (top 5% of DeepGCF) and 2) five binary annotations dividing the top 5%DeepGCF into 5 equal-width

bins based on percentiles. Both sets of annotations were analyzed with a baseline including 97 annotations.40 Heritability enrichment

was calculated as the proportion of trait heritability contributed by SNPs in the annotation over the proportion of SNPs in that

annotation.

Fine-mapping analysis
We first used PolyFun42 to compute SNP prior causal probabilities based on the annotation of functional conservation (top 5%

DeepGCF). These probabilities were then used as priors in SuSiE44 for the fine-mapping analysis. To compare to fine-mapping

without using functional conservation as a prior, we also performed a fine-mapping analysis using SuSiE alone, which only took

LD information into account. An SNP is identified to be putative causal if the posterior causal probability (PIP) is greater than 0.95

and the p value in GWAS is smaller than 5 3 10�8.

Polygenic score prediction
We incorporated functional conservation as a prior in polygenic prediction using the software SBayesRC.43 The GWAS summary sta-

tistics of 20 complex traits from UK Biobank (Table S17) were analyzed using �7 million common SNPs. To compare the prediction

accuracy, we partitioned the total sample into ten equal-sized disjoint subsamples. For each fold, we retained one subsample as the

validation set and other remaining nine subsamples as the training set. We calculated the polygenic score using genotypes from an

independent validation set in each fold and obtained the prediction R2 from linear regression of the true phenotype on the polygenic

score. We then calculated the relative prediction accuracy by (R0
2 – RD

2)/R0
2, where R0

2 is the prediction R2 without any priors, and

RD
2 is the prediction R2 using functional conservation as a prior.

QUANTIFICATION AND STATISTICAL ANALYSIS

The quantitative and statistical analyses are described in the relevant sections of the method details.
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