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Abstract
Background: Tandem olefin metathesis sequences are known to be versatile for the generation
of natural product scaffolds and have also been used for ring opening of strained carbo- and
heterocycles. In this paper we demonstrate the potential of these reactions for the
desymmetrization of 7-azabicycloalkenes.

Results: We have established efficient protocols for the desymmetrization of different 7-
azabicycloalkenes by intra- and intermolecular tandem metathesis sequences with ruthenium based
catalysts.

Conclusion: Desymmetrization of 7-azabicycloalkenes by olefin metathesis is an efficient process
for the preparation of common natural product scaffolds such as pyrrolidines, indolizidines and
isoindoles.

Background
Azabicyclo [x.y.0]alkane scaffolds are ubiquitous struc-
tural elements in pharmaceutically important peptide
mimetics [1-3] and several important classes of natural
products such as indolizidine and quinolizidine alkaloids
and azasugars. [4-6] In consequence, a number of groups
have developed efficient syntheses of these bicyclic hete-
rocycles. [7-9] Challenges for the synthesis of these struc-
tures are the introduction of chirality and of several
functional groups into the scaffolds. In particular the lat-
ter point is often a problem, leading to multistep
sequences.

In this context, ring closing metathesis (RCM) and tan-
dem metatheses [10-13] have been particularly successful
strategies for the assembly of common natural product
scaffolds. [14-22] A general advantage of these approaches

is that ring closure and/or scaffold-rearrangements can be
accomplished while generating a double bond as a valua-
ble functional group for further manipulations. In addi-
tion, the common ruthenium (Figure 1) and
molybdenum based catalysts for olefin metathesis are
well known for their broad functional group tolerance.

The application of RCM to the synthesis of azabicycloal-
kane scaffolds was first described by Grubbs[23] for the
synthesis of peptide mimetics and later extended by sev-
eral other groups. [24-31] Key intermediates in these
approaches are often alkenyl substituted pyrrolidines,
which are N-acylated with an unsaturated carboxylic acid
and submitted to a ring closing metathesis (RCM).

As a part of a general synthetic concept using azabicy-
cloalkenes as masked analogs of functionalized pyrrolid-
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ines or piperidines [32-39] we have previously applied the
concept of intramolecular ring-opening/ring-closing
metathesis (RORCM) [40-54] to N-acylated 2-azabicy-
cloalkenes 4 as precursors for azabicyclo [X.3.0]alkanes
like 6 (Scheme 1).[55] Various other strained heterocycles
have also been used for ring opening metathesis or other
tandem metathesis sequences. [56-61]

Scheme 1: RORCM of 2-azabicycloalkenes 5 to bicyclic scaffolds 6.

In this paper, we describe the extension of this work and
show that desymmetrization of 7-azabicycloalkenes via
RORCM leads to valuable natural product scaffolds. In
this context, symmetrical derivatives of 7-azabicy-
cloalkenes like 7 and 12 are extremely interesting sub-
strates for RORCM conversions, because they may be
desymmetrized either by diastereoselective or enantiose-
lective metathesis.

Results and Discussion
In a first attempt to transfer the RORCM-strategy to 7-
azabicycloalkenes, we chose 7 as a precursor for domino
metathesis reactions. Our choice was due to the following
two reasons: 1. Azabicycloalkene 7 is easy to synthesize via
Diels-Alder reaction.[62] 2. It was assumed to be a good
substrate for RORCM because it is strained and has been
shown to be susceptible to other desymmetrizing ring
opening reactions in the past.[63,64]

To generate appropriate precursors for the tandem conver-
sions, 7 was deprotected and acylated with butenoic acid
and pentenoyl chloride to give 8 and 10. However, first
attempts to convert the bis-olefin 8 via RORCM to the
bicyclic target structure failed and only pyridone deriva-
tive 9 was isolated in small quantities along with large
amounts of unreacted starting material. With turnover
numbers of only three, the ruthenium based catalysts 1
and 2 were both quite ineffective in this metathesis reac-
tion.

We assumed that the structure of the starting material 8
(location of the exocyclic double bond) and the following
aromatization to 9 was the reason for the low catalytic
efficiency of this conversion and tested this hypothesis
with the conversion of the corresponding pentenoyl
derivative 10 under RORCM conditions. As outline in
Scheme 2, this reaction gave the expected metathesis
product, which was hydrogenated to the isoindole deriva-
tive 11 in good yield, verifying our previous assumptions.

Scheme 2: RORCM of 7-azabicycloalkenes 8 and 10 to pyridone 9 
and isoindole scaffold 11.

As a general trend, it turned out that benzannelated azabi-
cycloalkene derivatives like 8 and 10 give relatively unsta-
ble products. In consequence, products can only be
isolated as pyridones 9, derived from spontaneous aroma-
tization or have to be hydrogenated to their saturated ana-
logues 11.

This unique reactivity of benzannelated metathesis pre-
cursors like 8 and 10 is not observed with other 7-azabi-
cycloalkenes like 13 and 16 as depicted in Scheme 3.
Starting from the known Boc-protected heterocycle
12,[65,66] RORCM precursors 13 and 16 were generated
after deprotection under standard acylation conditions in
good yields. Treatment of these bis-olefins with Grubbs
catalyst 1 gave the expected bicyclic compounds 14 and
17 in good yield along with some byproducts 15 and 18,
respectively. These byproducts are often observed, if the
generated exocyclic double bond in the RORCM product
is susceptible to olefin cross metathesis with the small
amount of styrene that is derived from the precatalyst 1.
These types of products are favored, if additional olefins
are added as CM partners. With addition of 3 equivalents
styrene (condition A in Scheme 3), for example, the sty-
rene adduct 15 becomes the main product.
Having established suitable protocols for conversions of
7-azabicycloalkenes to racemic products, we tried next to
develop stereoselective variants and started our studies
again with Boc-protected 7-azabicycloalkenes 7 and 12. A
sequence of ring opening and cross metathesis is
extremely efficient for desymmetrization of 7 and 12 as
depicted in Scheme 4 for the synthesis of isoindole 19 and
the disubstituted pyrrolidine 20. In these cases, catalyst
loadings can be low and yields are excellent.
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Scheme 3: RORCM of 7-azabicycloalkenes 13 and 16 to bicyclic 
scaffolds 14, 15, 17 and 18. Conditions A: 10 mol % 1, C2H4, 3 equiv 
styrene, CH2Cl2, rt, 12 h; B: 10 mol % 1, C2H4, CH2Cl2, rt, 12 h.

Scheme 4: ROCM of 7-azabicycloalkenes 7 and 12 to isoindole and 
pyrrolidine scaffolds 19 and 20.

Unfortunately the ROCM of 7-azabicycloalkenes
appeared to be quite sensitive with respect to the olefin
cross metathesis partner [67] and we have not been able
to transfer this reaction to α-substituted olefins like 21 yet.

A more successful attempt to introduce selectivity, was the
enantioselective catalytic desymmetrization of bis-olefin
10 with the known chiral ruthenium catalyst 3.[67] This
reaction gave enantioenriched 11 in good yield (Scheme
5). However, the enantioselectivity of this reaction is only
moderate compared to similar reactions using molybde-
num based precatalysts and different azabicycloalkene
starting materials that have been recently reported by
Hoveyda and Schrock for the enantioselective preparation
of piperidines.[68,69]

Scheme 5: Catalytic enantioselective desymmetrization of 7-
azabicycloalkene 10 to scaffold 23.

Conclusion
In this paper we have described efficient tandem metath-
esis protocols for the desymmetrization of 7-azabicy-
cloalkenes. Desymmetrization is accomplished by
intramolecular RORCM or intermolecular ROCM
sequences to give a range of common natural product
scaffolds such as pyrrolidines, indolizidines and isoin-
doles. The protocols use readily available starting materi-
als, are simple and give densely functionalized metathesis
products ready for further manipulations.
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