
derived cells were unlikely to be involved in spontaneous skin

wound healing.

Sustained systemic and local clodronate depletion affected both

circulating monocytes and WAM. While the clodronate treatment

resulted mainly in a defect of Ly6clow circulating monocytes

regardless of their level of MHCII (Fig. S1), it affected more dras-

tically the MHCIIhi WAM populations, regardless of Ly6c level of

expression. This dichotomy between circulating and infiltrating

populations could be explained by the fact that recruited mono-

cytes (especially Ly6chi) may significantly change their phenotype

once exposed to the wound’s complex environment (10,16). The

fact that the clodronate depletion reduced collagen transcription

and affects to a larger extent the MHCIIhi WAM may suggest that

MHCIIhi macrophages have a more prominent role in controlling

collagen transcription during the early stages of healing, although

this remains to be more specifically tested. (10). The molecular

mechanism of the control by macrophages of Col 1 a2 transcrip-

tion in wounds needs to be further investigated. The direct or

indirect production or promotion of TGF-beta could be incrimi-

nated for Col 1a2 transcription by competent cells (17). However,

other factors that may induce profibrotic mediators by intermedi-

ate cell types could also be considered (5,18–20). Naturally,

because of the central role of macrophages in wound healing biol-

ogy, these hypotheses are not mutually exclusive.

In conclusion, our data reveal that Col 1a2 transcription starts

early during the healing process, only 2 days after wounding.

Moreover, our data indicate that this early transcription of Col

1a2 can be controlled by macrophage depletion and more specifi-

cally by targeting MHCIIhi macrophages. Further studies need to

elucidate the underlying molecular mechanisms driving the mac-

rophage–mesenchyme crosstalk.
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Abstract: Studies on bimatoprost were performed with two

objectives: (i) to determine whether bimatoprost possesses hair

growth-stimulating properties beyond eyelash hypertrichosis

and (ii) to investigate the biodisposition of bimatoprost in
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skin for the first time. Bimatoprost, at the dose used clinically

for eyelash growth (0.03%) and given once daily for 14 days,

increased pelage hair growth in C57/black 6 mice. This

occurred as a much earlier onset of new hair growth in

shaved mice and the time taken to achieve complete hair

regrowth, according to photographic documentation and visual

assessment. Bimatoprost biodisposition in the skin was

determined at three concentrations: 0.01%, 0.03% and 0.06%.

Dose-dependent Cmax values were obtained (3.41, 6.74,

12.3 lg/g tissue), and cutaneous bimatoprost was well

maintained for 24 h following a single dose. Bimatoprost was

recovered from the skin only as the intact molecule, with no

detectable levels of metabolites. Thus, bimatoprost produces

hypertrichosis as the intact molecule.

Key words: bimatoprost – hair – metabolism – prostanoid – skin
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Background
Bimatoprost was originally designed as an ocular hypotensive and

has been extensively used for treating glaucoma (1,2). Eyelash

hypertrichosis was observed as a side effect, and bimatoprost

effects on eyelash growth have now been studied in detail (3–5).
Because bimatoprost effects on other hair types have not been

reported, we conducted studies on mouse pelage skin (6,7). The

cutaneous biodisposition of bimatoprost was also investigated

because the presence of substantially intact bimatoprost would be

indicative of prostamide receptor involvement (8–13).
Questions addressed

1. Do the hypertrichotic properties of bimatoprost extend

beyond eyelashes, for example mouse pelage hair (6,7)?

2. Is bimatoprost metabolically converted in skin? Substantial

levels of intact bimatoprost would indicate prostamide

receptor mediation (8–13).
Experimental design
Pelage hair growth was studied in C57/black 6 mice. The animals

were shaved, and hair growth was evaluated by photographic doc-

umentation and visual assessment as (1) the time for onset of hair

regrowth and (2) the time taken to completely cover the shaved

area with new hair. Bimatoprost, at the dose used clinically to

treat eyelash hypotrichosis, was given once daily for 14 days. The

duration of the experiment was 42 days.

Bimatoprost studies on skin biodisposition were conducted at

0.01%, 0.03% and 0.06% doses. Blood samples were also collected

for analysis. Two biodisposition studies were performed, one for

24-h duration and the other for 21-day duration.

Results
The effects of once-daily bimatoprost on pelage hair growth are

summarised in Fig 1. The time of onset of hair regrowth was

essentially halved (Fig. 1a). More importantly, the time taken to

cover the shaved back with regrown hair was dramatically and

highly significantly reduced (Fig. 1b). Interestingly, bimatoprost

appeared to produce a uniform regrowth of hair over the shaved

area, rather than radiating out from a central locus as was

observed for the control group.

The cutaneous drug levels of graded doses of bimatoprost are

depicted in Fig. 2. High concentrations of bimatoprost were rap-

idly achieved in the skin, and these remained relatively well main-

tained for 24 hr at about 1 lg/g tissue. In a subchronic 21-day

study, no substantial drug accumulation was apparent, but a clear

dose–skin concentration relationship was apparent. Supplementary

tables provide the Cmax values, areas under curve and absolute

concentrations for both blood and skin. Bimatoprost was found

only as the intact molecule in both skin and blood, with no

evidence of hydrolytic conversion to 17-phenyl PGF2a.

Conclusions
These studies show, for the first time, the biodisposition of

bimatoprost in skin together with its effects on hair growth. The

effects of bimatoprost on mouse pelage hair growth were investi-

gated at the same dose as that employed for treating eyelashes

(3,4). Cutaneous levels of bimatoprost achieved were dose

dependent and were well maintained over a 1-day period. Results

from a 21-day study provided no evidence for bimatoprost

accumulation on repeated dosing with a 0.01% dose, but some

accumulation was apparent for the 0.03% and 0.06% doses.

Bimatoprost remained as the intact molecule, indicating that it

exerts its effects on hair growth by stimulating prostamide

receptors (8–13).
Bimatoprost essentially remained as the intact molecule in

mouse skin; the putative enzymatic hydrolysis product (17-phe-

nyl PGF2a) was only detected twice in a total of 270 separate

analyses of different skin and blood samples. Previously, in

mouse eyes, it was shown that bimatoprost remains intact (14).

Similarly, PGF2a-ethanolamide (prostamide F2a) remains without

significant hydrolytic degradation in mouse blood (15). On

comparing mouse skin and monkey ocular tissue bioavailability

(8), it appears that bimatoprost accesses cutaneous tissue more

readily and the tissue levels are better maintained than in ocu-

lar tissues. These data suggest that once-daily administration to

the skin should be adequate to obtain optimal hair growth.

This contention presumes that there is a relatively homogeneous

distribution of bimatoprost between the hair follicle and the

skin layers. A further consideration is that bimatoprost was

applied once daily for only 14 days in the hair growth experi-

ment, as an expedient based on limited and overextended man-

power resources. It follows that the dosing regimen used in

these present studies may have underestimated the effect of bi-

matoprost on hair growth.

Bimatoprost has long been established as potently effective as

the intact molecule, with a pharmacological profile distinct from

prostanoid FP receptor agonists and their ester prodrugs

(8,9,12,16). The pharmacology of bimatoprost closely resembles

that of prostamide F2a (9–11). Further pharmacological characteri-

sation has been achieved by designing selective prostamide antago-

nists (17–19) and structural elucidation of the prostamide

receptor (13). The results herein indicate hair growth as a further

prostamide-mediated effect that may be mimicked by bimato-

prost.
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Bimatoprost was almost invariably found in blood samples

from mice that received topical bimatoprost on shaved skin.

Blood levels were about one-thousandth of those present in skin.

Although bimatoprost was detected in pharmacologically active

levels in mouse blood, this would be greatly ‘diluted’ in the

blood by humans as they are about 5000 times heavier/larger.

The human scalp area of coverage would be about 10–50 times

greater than that of the shaved mouse skin. Presuming similar

penetration characteristics for bimatoprost in mouse and human

skin, the likely blood concentration in humans would be in the

range of 50 pg/ml. Anticipated human blood levels of

10–100 pg/ml are beneath the pharmacologically active levels for

bimatoprost (20).

In summary, bimatoprost stimulates the growth of mouse pel-

age hair. Bimatoprost was found as the intact molecule in mouse

skin and blood, indicating that it stimulates hair growth by

interacting with prostamide-sensitive receptors (8–13). These

studies indicate that the ability of bimatoprost to stimulate hair

growth may extend beyond eyelashes, but effects on human scalp

hair growth, for example, cannot necessarily be predicted from

mouse pelage hair experiments. The human hair follicle

expresses the prostanoid FP receptor (21), but expression of

altFP4 (13) is required to predict a positive outcome with

bimatoprost.
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Abstract: Studies integrating clinicopathological and genetic

features have revealed distinct patterns of genomic aberrations in

Melanoma. Distributions of BRAF or NRAS mutations and gains

of several oncogenes differ among melanoma subgroups, while

9p21 deletions are found in all melanoma subtypes. In the study,

status of genes involved in cell cycle progression and apoptosis

was evaluated in a panel of 17 frozen primary acral melanomas.

NRAS mutations were found in 17% of the tumors. In contrast,

BRAF mutations were not found. Gains of AURKA gene (20q13.3)

were detected in 37.5% of samples, gains of CCND1 gene (11q13)

or TERT gene (5p15.33) in 31.2% and gains of NRAS gene

(1p13.2) in 25%. Alterations in 9p21 were identified in 69% of

tumors. Gains of 11q13 and 20q13 were mutually exclusive, and

1p13.2 gain was associated with 5p15.33. Our findings showed

that alterations in RAS-related pathways are present in 87.5% of

acral lentiginous melanomas.

Key words: acral lentiginous melanoma – AURKA – melanoma – MLPA

– NRAS
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Introduction
Molecular studies have revealed the existence of different biologi-

cal subsets of melanomas based on the patterns of alterations

identified (1–3), some of which correlated with degree of chronic

sun-induced damage and site of origin (3). Furthermore, such

molecular differences could result in clinical and histopathological

differences among lesions (4,5).

Melanomas classified as acral lentiginous melanomas (ALM)

develop on volar skin, usually unexposed to UV radiation and are

characterized by the presence of an atypical lentiginous proliferation.

ALM carry a high number of genomic alterations compared with

other melanoma subtypes and most of them account for a smaller

proportion of genome (1,3). The molecular hallmarks of ALM are

CCND1 amplifications (1,6,7) or somatic mutations in c-KIT (8).

Deletions in the 9p21 region where the CDKN2A gene is

located are widely detected (9–11). However, other genes from

this region could be implicated in melanoma because retention of

the CDKN2A locus has been found in tumors with deletions at

one or both sides of CDKN2A (10). Other reported aberrations

include large amplifications of 12q (1,3), 7q or 20q and gains

localized at 5p15, 11q13, 11q14 (3) and 22q11-13 (1).

Questions addressed
To characterize acquired molecular genomic alterations in a set of

ALM from Spanish patients. The study was focused on specific

chromosomal regions where genes involved in signalling pathways,

cell cycle progression and apoptosis are located.

Experimental design
Seventeen fresh-frozen histopathologically confirmed primary ALMs

based on Clark’s classification were included. Sampling was guided

by ex vivo dermoscopy (12) and documented by photography with-

out altering the specimen, immediately fixed in formalin and

embedded in paraffin (FFPE) for conventional histopathological

diagnosis following the step-sectioning protocol for melanoma.

Clinical data are described in Table S1. Genomic characterization of

the BRAF, NRAS, CDKN2A and MC1R genes was performed by

PCR-direct sequencing. Deletions of the 9p21 region and gains of
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