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Individual patient biomarkers have an important role in personalized treatment. 
Although various high-throughput sequencing technologies are widely used in biological 
experiments, these are usually conducted only once or a few times for each patient, 
which makes it a challenging problem to identify biomarkers in individual patients. At 
present, there is a lack of effective methods to identify biomarkers in individual sample 
data. Here, we propose a novel method, IBI, to identify biomarkers in individual tumor 
samples. Experimental results from several tumor data sets showed that the proposed 
method could effectively find biomarker genes for individual patients, including common 
biomarkers related to the mechanisms of the development of cancer, which can be used 
to predict survival and drug response in patients. In summary, these results demonstrate 
that the proposed method offers a new perspective for analyzing individual samples.
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INTRODUCTION
Biomarker discovery is critical for cancer diagnostics, prognosis, and monitoring of therapy 
in clinical trials. With the development of high-throughput biochip technologies such as next-
generation sequencing, massive quantities of cancer genomic data are being generated in the 
healthcare field, which offers an opportunity to identify high-quality cancer biomarkers for use in 
personalized medicine. Therefore, various computational methods have been proposed to identify 
cancer biomarkers. At present, the most commonly used methods are statistical tests, such as t-test, 
KS-test, and Wilcoxon’s rank sum test (Li et al., 2007; Dembélé and Kastner, 2014; Love et al., 2014; 
Moore et al., 2016; Wang et al., 2018), which identify differentially expressed genes (DEGs) from 
two types of samples and choose the group of genes with the lower p-value as potential biomarkers. 
However, the method often ignores and misses information between genes (Lewis-Wambi et al., 
2008). Machine learning algorithms and statistical models also are widely used to identify cancer 
biomarkers. For example, the 70-gene biomarkers (Van’t Veer et al., 2002), wound-response gene 
biomarkers (Chang et al., 2005), and several of our gene biomarkers (Li et al., 2008; Li et al., 2010; 
Zhang et al., 2017) are all identified using machine learning algorithms. The 21-gene biomarkers 
(Van’t Veer and Bernards, 2008) and immunotherapy response biomarkers (Ock et al., 2017; Jiang 
et al., 2018) are based on statistical models.

However, the above methods are only able to identify biomarkers in two groups of samples, not 
in an individual sample. As cancer is a complex and heterogeneous disease, different patients have 
differences in pathogenesis and need different treatments. Thus, there is a need for biomarkers 
for individual patients that reflect their status. Currently, high-throughput biological experiments 
are usually conducted once or a few times for a single patient, which makes it a challenging 
problem to analyze single samples and, in particular, to identify biomarkers in individual patients. 
Some algorithms have been developed to analyze single samples. Rezwan et al. (2015) used the 
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Crawford-Howell t-test to analyze methylation data of single 
samples and identified hypomethylation at different sites. 
However, this method could only detect differences in a single 
molecular element among different samples and may ignore the 
relationships of different molecular elements in the same sample. 
Liu et al. (2017) proposed the sDNB (single-sample dynamic 
network biomarkers) method to detect early-warning signals or 
critical states in individual patients using gene expression data. 
sDNB detects changes in gene expression levels of a pair of genes 
relative to reference samples and considers the local information 
of a gene in network. Drier et al. (2013) proposed an algorithm 
to analyze single tumor samples using pathway-level information 
instead of gene-level information. Pathways were detected that 
were significantly associated with survival of glioblastoma and 
colorectal cancer patients. However, a set of genes in the same 
pathway have similar functions; this means that models based 
on redundant features (biomarkers) are usually more complex.

Here, we propose a novel method, IBI (identification of 
biomarker genes in individual tumor samples), to identify 
biomarker genes in individual tumor samples using gene 
expression data. An overview of the IBI method is given 

in Figure  1. First, DEGs in tumor and normal samples are 
identified. Then, regression models are constructed using the 
selected DEGs, and residuals of each gene in different samples 
are analyzed using the kernel density estimation (KDE). Finally, 
we assess the degree of change of each gene according to the 
credibility interval (CI) of its residuals to decide which genes are 
biomarkers of the individual sample.

MATeRIALS AND MeThODS

Data Collection and Preprocessing
The proposed method was used to analyze three gene expression 
data sets: TCGA-BRCA (Tomczak et al., 2015), GSE63557 
(Lesterhuis et al., 2015), and GSE35640 (Ulloa-Montoya et al., 
2013). TCGA-BRCA consists of 1,090 breast cancer samples and 
113 normal tissue samples. GSE63557 contains AB1-HA tumor 
data from mice during immunotherapy with 10 anti-CTLA-4 
immunotherapeutic response samples and 10 non-response 
samples, and GSE35640 consists of advanced melanoma data 
with 22 MAGE−A3 immunotherapeutic response and 34 

FIGURe 1 | Overview of IBI method.
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non-response samples. The first data set contains RNA-seq data, 
which was preprocessed using DESeq2 (Love et al., 2014), and 
the latter two data sets were preprocessed using the z-score.

Identification of Differentially  
expression Genes
Assuming we have gene expression data with two types of 
samples and genes, let each sample be labeled with either “+” 
or “−”; n1 and n2 are the number of samples with label “+” and 
“−”, respectively (n = n1+ n2). yji is the expression value of the 
jth gene of the ith sample with label “+”, and xji is the expression 
value of the jth gene of the ith sample with label “−”. q DEGs 
are obtained using the robust algorithm (Love et al., 2014) or 
GEO2R (Smyth, 2004).

Average Sample
Let average samples with label “+” and “−” be
u u u u and u u u uq q
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Regression Model Based on Average and 
Single Samples
Let   'y ji  be the expression value of the jth DEG of the ith sample 
with label “+” and   'x ji  the expression value of the jth DEG of 
the ith sample with label “−.” For the ith sample with label “+,”
S y y yi i i qi

+ = ′ ′ ′ 1 2, ... , ,   ′y ji  can be predicted using the following 
regression model according to u j

+ :

 
   ,  ′ = + ≥ ≥+ + +y u q jji j
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where β0
+  and β1

+  are the regression coefficients estimated 
according to a set of data y ui1 , 1

+( ) , y ui2 2, +( ) , …, y uqi , 2
+( ) , using 

the least squares method.
Similarity, for the ith sample with label “−” , , ,  ' ' 'S x x xi i i qi

− = … 1 2

x ji
'  can be predicted using the following regression model 

according to uj
− :

 
x u q jji j
'  ,   = + ≥ ≥− − −β β0 1 1

 (4)

where β0
−  and β1

−  are the regression coefficients estimated 
according to a set of data x ui1 1, −( ) , x ui2 2, −( ) , …, x uqi q, −( )  using 
the least squares method.

Algorithm for Identifying Biomarker Genes 
of a Single Sample
Among q DEGs, expression values of some genes of a single 
sample may undergo very significant changes compared with 
their average values, i.e., the observed values of these genes are 
far from regression line. These genes are called biomarker genes 
of the single sample. The degree of the significant difference can 
be calculated using the residual value between the predicted 
value and observed value.

For the ith sample with label “+,” the residual value of its the 
jth DEG is:

 
e y y q jji ji ji

+ = ′ − ′ ≥ ≥   ,        1
 (5)

Similarity, for the ith sample with label “−”, the residual value 
of it’s the jth DEG is:

 e x x q jji ji ji
− = − ≥ ≥' '   ,        1  (6)

To obtain biomarker genes of the ith sample with label “+”, the 
KDE is introduced to estimate the probability density function

  f ei i
 ( )  of residual values: e e ei i qi1 2

+ + +( ), ,..., . Its kernel density 
estimator with Gaussian kernel K is as follows:
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where h is a smoothing parameter called the bandwidth (h > 
0). Let Φ be the cumulative distribution function of the kernel 
density estimator; then, the CI at confidence level α is

 
CIα

α α=












−












∪0
2

1
2

1, ,  Φ Φ
 (9)

The jth gene is considered a biomarker gene of the ith sample 
with label “+” (n1 ≥ i≥ 1) if Φ e CIji

+( ) ∈ α . Similarity, we can obtain 
the biomarker gene of the ith sample with label “−”(n2 ≥i ≥1).

ReSULTS

Performance evaluation
It was somewhat difficult to directly evaluate the performance of 
the proposed method. Three methods were employed to evaluate 
the power of the method.

 1) Statistical test: The biomarker genes of each sample should be 
specific, that is, their expression values in the sample should 
be significantly different from those of other samples. We 
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designed a method to test such differences, as follows. First, 
biomarker genes of sample Si are selected and their expression 
values extracted from all samples. Then, the expression 
values of each biomarker gene in different samples are sorted 
respectively and used to construct a rank matrix. The ith row 
vector, Ri, of the matrix denotes orders of biomarker genes 
of Si. Finally, the Kolmogorov-Smirnov test is performed to 
determine whether there is a significant difference between Ri 
and Rj (j≠i).

 2) Survival analysis: The biomarker genes of each tumor sample 
should reflect its characteristics, namely, it should be possible 
to use biomarker genes to classify tumor samples into high- 
and low-risk groups and predict the survival risk of tumor 
patients.

 3) Validation via biological evidence: The biomarker genes of 
each tumor sample should reflect the pathogenesis of cancer, 
that is, they should have been reported to be associated with 
tumor development in the published literature.

experimental Results for TCGA-BRCA
The experiments on TCGA-BRCA were performed as follows. 
First, 6120 DEGs in two groups of samples were identified using 
DESeq2 (Love et al., 2014) at a 95% confidence level and absolute 
value of log fold change > 1. Next, average tumor and normal 
samples based on 6120 DEGs were obtained using Equations. (1) 
and (2). Then, 1,090 (113) regression models were constructed 
based on average tumor (normal) samples and 1,090 tumor (113 
normal) samples, respectively; an example is shown in Figure 2. 
The residuals of the genes of each sample were calculated 

using Equations (5) and (6); Figure 3 shows residual values of 
biomarker genes from two samples. Finally, biomarker genes for 
each sample were identified using Equations (7), (8), and (9). The 
distribution of the number of biomarker genes in the 1,090 (113) 
tumor (normal) samples is shown in Figure 4.

As shown clearly in Figures 2 and 3, genes were distributed 
in two main areas. The genes scattered in the upper-left of the 
plots are those with higher expression levels, whereas genes in 
the lower-right portion have lower expression values, in the 
single tumor/normal sample. In Figure 2, there are several spots 
that are distant from the regression lines. These spots represent 
biomarker genes of the single sample. Figure 3 shows more clearly 
which genes had very significant variation in expression. For 
example, the residuals of CLEC3A and CCNO were 4.92 and 3.83, 
respectively, significantly higher than the values for other genes; 
while the residuals of HIST3H2A and TNNT1 were −3.33 and 
−2.95, respectively, significantly lower than those of other genes.

It can also be seen from Figure 4 that the number of biomarker 
genes varied among different samples. Some tumor samples had 
more than 315 biomarker genes, while others had about 290. The 
mean numbers of biomarker genes in the tumor samples and 
normal samples were 304.9 and 305, respectively. In addition, 
the biomarker genes of different samples were also different. 
In 1090 tumor samples and 113 normal samples, the biomarker 
genes had different frequencies (a biomarker gene has higher 
frequency if it is found in more samples). The top 15 biomarker 
genes with significantly different frequencies in tumor and normal 
samples are listed in Supplementary Table 1. These genes were 
common biomarkers of most tumor samples, and they had higher 
frequency in tumor samples than in normal samples. Therefore, 
these genes were likely to be related to the development of breast 
cancer. To test our hypothesis, we searched the literature using 
public databases and found that 14 of the 15 genes were indeed 
related to the development of breast cancer. The top gene was 
S100A7, which has been found to be expressed in several tissues 
including breast adenocarcinomas and squamous carcinomas 
of the head and neck, the cervix, and the lung (Emberley et al., 
2004); S100A7 is also related survival of breast cancer patients 
(Emberley, 2003). CLEC3A had the highest frequency in tumor 
samples; its overexpression promotes tumor progression and 
poor prognosis in breast invasive ductal cancer (IDC) and is 
related to higher lymph node and poorer overall survival (OS) 
of breast IDC (Ni et al., 2018). PRAME has a tumor-promoting 
role in triple-negative breast cancer, increasing cancer cell motility 
through the epithelial-to-mesenchymal transition (EMT) gene 
reprogramming. Therefore, PRAME could serve as a prognostic 
biomarker and/or therapeutic target in triple-negative breast 
cancer (Al-Khadairi et al., 2019). Kammerer et al. (2016) suggested 
that patients with estrogen receptor-positive breast cancer might be 
stratified into high- and low-risk groups based on the KCNJ3 levels 
in the tumor. CST1 was found to be generally upregulated in breast 
cancer at both the mRNA and the protein level. Furthermore, OS 
and disease-free survival in the low CST1 expression subgroup 
were significantly superior to those in the high CST1 expression 
subgroup, indicating that CST1 could be a prognostic indicator and 
a potential therapeutic target for breast cancer (Dai et al., 2017). 
Xuan et al. (2015) reported that higher expression of MMP1 in 

FIGURe 2 | Regression model based on tumor sample TCGA-Z7-A8R6-
01A-11R-A41B-07 and average tumor sample. The points in the upper-left 
(lower-right) partition are two biomarker genes with the highest (lowest) 
expression levels.
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breast cancer might play a crucial part in promoting breast cancer 
metastasis. Powell et al. (2018) demonstrated that CEACAM5 was 
a clinically relevant driver of breast cancer metastasis. NKAIN1 is 
associated with OS in breast cancer (Su et al., 2019). DSCAM-AS1 
promotes tumor growth in breast cancer by reducing miR-204-5p 
and upregulating RRM2 (Liang et al., 2019). Overexpression 
of CEACAM6 promotes migration and invasion of estrogen-
deprived breast cancer cells (Lewis-Wambi et al., 2008). Bhakta 
et al. (2018) suggested that anti-GFRA1-vcMMAE ADC might 
provide a targeted therapeutic opportunity for luminal A breast 
cancer patients. BMPR1B is related to proliferation of breast cancer 
cells (Bokobza et al., 2009). Jia et al. (2016) identified COL11A1 

as a highly specific biomarker of activated cancer-associated 
fibroblasts (CAFs), which could promote breast cancer and inhibit 
pancreatic cancer. In summary, 14 of the top 15 biomarker genes 
have been reported to be associated with breast cancer. Therefore, 
these results demonstrate that the proposed method can effectively 
identify biomarkers related to cancer.

Statistical tests were performed to evaluate whether expression 
levels of biomarker genes of a sample were significantly different 
compared with those of other samples. As the biomarker gene 
set of each sample was represented by a p-value vector with 
dimension n, 1,090*1,089 [n(n−1)], where n is the number of 
samples) p-values were obtained for the 1090 tumor samples, and 

FIGURe 3 | Residuals of genes of a single sample. (A) Breast tumor sample TCGA-A2-A0D2-01A-21R-A034-07; (B) normal tissue sample: TCGA-A7-A0D9-11A-
53R-A089-07. The green points denote the two biomarker genes with the highest/lowest expression levels in the two samples.

FIGURe 4 | Distribution of the number of biomarker genes in (A) 1090 breast tumor samples and (B) 113 normal tissue samples.
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113*112 p-values for the 113 normal samples; 1,186,999 (99.99%) 
and 12,626 (99.76%) of these p-values were less than 0.05 for the 
tumor samples and normal samples, respectively. These results 
indicate that there were significant differences between the 
expression levels of the identified biomarker genes of a sample 
and those of other samples, that is, the proposed method can 
effectively identify the biomarker genes of a single sample.

The frequencies of biomarker genes in tumor and normal 
samples were different. Here, we mainly analyzed biomarker 
genes whose frequency was higher in tumor samples than in 
normal samples, to explore which genes might have important 
roles in survival prediction and development of breast cancer. 
We selected 305 biomarker genes with higher frequency in tumor 
samples, and clustered the tumor samples into two groups using 
the multiple survival screening (MSS) algorithm (Li et al., 2010). 
Survival was significantly different between the two groups 
(p-value = 0.0089) (Figure 5). This means these biomarker 
genes are important features of breast cancer and can be used to 
distinguish tumor patients into high- and low-risk groups (here, 
we removed two samples with the negative follow-up-time, so 
there were 1,088 samples participating in survival analysis).

experimental Results for 
Immunotherapeutic Response Samples
The proposed method was also used to analyze mouse AB1-HA 
tumor data: GSE63557. A total of 8,042 DEGs in two groups 
of samples were identified using GEO2R (Smyth, 2004) at a 
95% confidence level. Regression models of 10 anti-CTLA-4 
immunotherapeutic response samples and 10 non-response 
samples were constructed; one of these is shown in Figure 6. 
Figure 7 shows residual values of biomarker genes from two 
samples. The number of biomarker genes of 10 response samples 
and 10 non-response samples is shown in Figure 8. In Figures 
6 and 7, there are several genes that are far from the regression 

lines. For example, the residuals of Krt6b and Stfa3 were 2.07 
and 2.26, respectively, significantly higher than those of other 
genes; the residuals of Chil3 and Igkv2-109 were −1.82 and −2.10, 
respectively, significantly lower than those of other genes.

The number of biomarker genes of different samples is shown 
in Figure 8, illustrating the variation between samples. The 
biomarker genes from different samples were also different. For 10 
response samples and 10 non-response samples, the top 15 genes 
with the most significant differences in frequency are shown in 
Supplementary Table 2. Four of these genes, Gzme, CD38, CD3D, 
and Chil3, appeared in the important cancer modules identified 
by Lesterhuis et al. (2015) However, the top gene, Jchain, had not 
been identified as a member of these important cancer modules; 
notably, Jchain was also found to be the most important of the 
anti-CTLA-4 immunotherapeutic response biomarker genes in 
our study, with frequencies in response and non-response samples 
of 80% and 0%, respectively. This suggests that Jchain is related to 
immunotherapeutic response. GeneCards (https://www.genecards.
org/) indeed confirms that Jchain has an important role in immune 
response. Moreover, Iglj1, Cd38, and Cd3d are also immune response 
related. This demonstrates that the IBI method can detect important 
genes contributing to the immunotherapeutic response mechanism.

According to the statistical tests, 100% of p-values were less 
than 0.05 in both response and non-response samples. The rank 
matrix of each response sample is shown in Figure 9A. These 
results indicate that there are significant differences between the 
identified response biomarker genes of a sample and those of 
other samples, that is, the proposed method also can effectively 
identify biomarker genes of individual samples even when fewer 
samples are used. We wanted to analyze biomarker genes whose 
frequency was higher in response samples than in non-response 
samples, and estimate their ability to predict survival in AB1-HA 
tumor samples. However, there was no follow-up information 
for AB1-HA mice. The selected 392 biomarker genes with higher 

FIGURe 5 | Kaplan-Meier survival curves based on 305 tumor biomarker 
genes. In the high-risk group (red line), there are 329 tumor samples. In the 
low-risk group (blue line), there are 759 tumor samples.

FIGURe 6 | Regression model based on response sample GSM1552230 
and the average response sample.
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frequency were tested against a human mesothelioma data set 
(TCGA-MESO, https://portal.gdc.cancer.gov). Notably, these 
biomarker genes could still effectively distinguish all patients into 
high- and low-risk groups (Figure 9B) with a p-value of 1.57×10-5. 
These results further support the validity of the proposed method.

experimental Results for Advanced 
Melanoma Data
The proposed method was used to analyze advanced melanoma 
data: GSE35640. A total of 1420 DEGs were identified in 22 

MAGE−A3 immunotherapeutic response and 34 non-response 
samples using GEO2R (Smyth, 2004) at a 95% confidence 
level. Regression models of 22 MAGE−A3 immunotherapeutic 
response and 34 non-response samples were constructed; one of 
these is shown in Figure 10. Figure 11 shows residual values of 
biomarker genes from two samples. The number of biomarker 
genes of 22 response samples and 34 non-response samples is 
shown in Figure 12.

As shown in Figure 12, there were small differences in 
the number of biomarkers from different samples. The mean 
number of biomarker genes in response samples was 70. The 

FIGURe 7 | Residuals of biomarker genes (A) GSM1552230, (B) GSM1552221.

FIGURe 8 | Number of biomarker genes in (A) response samples and (B) non-response samples.
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top 15 genes with the most significant difference of frequency 
in 22 response samples and 34 non-response samples are shown 
in Supplementary Table 3. We proposed that these genes 
were likely to be mainly immune or tumor related. To test our 
hypothesis, we searched GeneCards for these genes and found 
that some of them play important roles in the development of 
immune-related cells. For example, MS4A1 is associated with 
the development of B-cells into plasma cells; CD37 may play a 
part in T-cell–B-cell interactions; CD5L participates in obesity-
associated autoimmunity; MMP8, IRF5, and RHOF are related to 
innate immune pathways; MMP9 has a role in tumor-associated 
tissue remodeling; and TRAM1L1 is related to the well-known 
cancer-related NF-kB pathway. This demonstrated that the 
IBI method could detect important genes contributing drug 
response mechanisms and help to elucidate immunotherapeutic 
response mechanisms. In the statistical tests, 96.96 and 95.72% 
of p-values were less than 0.05 in the response and non-response 
samples, respectively. These results also indicate that biomarker 
genes of a sample show significant differences compared with 
those of other samples, that is, the proposed method can also 
effectively identify MAGE−A3 immunotherapeutic response 
biomarker genes in individual advanced melanoma samples 
even with fewer samples.

We wanted to analyze biomarker genes whose frequency was 
higher in response samples than in non-response samples, and 
estimate their ability to predict survival in advanced melanoma. 
However, there was no follow-up information in GSE35640, so 
we used skin cutaneous melanoma gene expression data (TCGA-
SKCM) for the survival analysis. The selected 70 biomarker genes 
were tested against TCGA-SKCM, showing that these biomarker 
genes could effectively distinguish skin cutaneous melanoma 
patients into high- and low-risk groups (Figure 13), with a 
p-value of 0.016. These results indicate that the proposed method 
performs well. In their original paper, Ulloa-Montoya et al. (2013) 
identified 84 gene expression signatures associated with response 
to MAGE-A3 immunotherapy in metastatic melanoma and non-
small-cell lung cancer, whereas 61 of the 84 genes were chosen 
as biomarker genes by our proposed method (e.g., CD86, CCL5, 
and IRF1). These genes were mainly immune related and were 
involved in interferon gamma pathways and specific chemokines. 
Experimental results showed that pretreatment MAGE-A3 
immunotherapy in metastatic melanoma influenced the tumor’s 
immune microenvironment and the patient’s clinical response. 
The proposed method could be used to identify these biomarker 
genes and predict the influence of MAGE-A3 immunotherapy on 
survival in metastatic melanoma (Figure 13).

experimental Results for the Simulated 
Data
In order to further test the performance of the proposed method, 
we added a supplemental experiment on the simulated gene 
expression data. First, the simulated gene expression data with 10 
samples 1000 genes is generated using simulateGEdata function 
in the RUVcorr (Freytag et al., 2015) package. Then, 1,000 genes 
are divided into 10 groups, we increase/decrease gene expression 
value of the ith group of genes in the ith sample by an up or down 

FIGURe 10 | Regression model based on response sample GSM872356 
and the average response sample from GSE35640 gene expression data.

FIGURe 9 | (A) Rank matrix of each response sample. (B) Kaplan-Meier 
survival curves for human mesothelioma tumor samples based on biomarker 
genes from mouse AB1-HA tumor samples; p-value=1.57×10-5. High-risk 
group includes 44 samples; low-risk group consists of 40 samples.
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perturbation value. The range of perturbation value is from 0 to 
mean value of the corresponding gene in 10 samples. Thus, the 
ith group of genes can be considered as biomarker genes of the 
ith sample. Finally, experiment is performed on the simulated 
data to observe whether the proposed method can find these 
markers. We repeated the above steps ten times and experimental 
results shown that the proposed method can effectively identify the 
biomarker genes of 10 samples. The 99% biomarker genes identified 
by the proposed method are the predefined biomarkers when the 
perturbation value is twice (see Supplementary Figure 1).

DISCUSSION
Precision medicine is an active area of cancer research. The 
key to cancer precision medicine is to find biomarker genes 
with high performance, and various approaches to identify 

FIGURe 11 | Residuals of biomarker genes. (A) GSM872356, (B) GSM872328.

FIGURe 13 | Kaplan-Meier survival curves for TCGA-SKCM based on 
biomarker genes from GSE35640; p-value = 0.016. There were 281 and 166 
samples in the high-risk and low-risk groups, respectively.

FIGURe 12 | Number of biomarker genes in (A) response samples and (B) non-response samples.
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such genes have been developed. However, identification 
of biomarker genes for individual tumor samples remains 
a challenging problem; for many reasons, there is a lack of 
effective approaches to identify biomarkers in individual 
patients. Here, we developed a novel approach to address this 
issue. Experimental results based on several different data 
sets show that the proposed method can effectively identify 
biomarker genes of individual human tumor samples, not only 
from several hundred samples but also from a few samples 
without clinical information, and even from mouse samples.
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