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Escherichia coli still serves as a beloved workhorse for the production of many

biopharmaceuticals as it fulfills essential criteria, such as having fast doubling times,

exhibiting a low risk of contamination, and being easy to upscale. Most industrial

processes in E. coli are carried out in fed-batch mode. However, recent trends show

that the biotech industry is moving toward time-independent processing, trying to

improve the space–time yield, and especially targeting constant quality attributes. In the

1950s, the term “chemostat” was introduced for the first time by Novick and Szilard,

who followed up on the previous work performed by Monod. Chemostat processing

resulted in a major hype 10 years after its official introduction. However, enthusiasm

decreased as experiments suffered from genetic instabilities and physiology issues. Major

improvements in strain engineering and the usage of tunable promotor systems facilitated

chemostat processes. In addition, critical process parameters have been identified, and

the effects they have on diverse quality attributes are understood in much more depth,

thereby easing process control. By pooling the knowledge gained throughout the recent

years, new applications, such as parallelization, cascade processing, and population

controls, are applied nowadays. However, to control the highly heterogeneous cultivation

broth to achieve stable productivity throughout long-term cultivations is still tricky. Within

this review, we discuss the current state of E. coli fed-batch process understanding and

its tech transfer potential within continuous processing. Furthermore, the achievements

in the continuous upstream applications of E. coli and the continuous downstream

processing of intracellular proteins will be discussed.

Keywords: E. coli, continuous processing, process understanding, burden reduction, from batch to continuous

manufacturing

INTRODUCTION

Using equipment at maximum capacity in long-term, quasi-perpetual processes is the dream of
any industrial application in biotechnology (Plumb, 2005; Burcham et al., 2018). Many parts of
the chemical industry (especially the petrochemical one) are already producing at a continuous
level (Glaser, 2015). Continuous production in white biotechnology is also already implemented
(Scholten et al., 2009; Kralisch et al., 2010; Luttmann et al., 2015); it is no huge surprise, therefore,
that the red biopharmaceutical industry is trying to move toward “continuous processing” (Plumb,
2005; Gutmann et al., 2015; Burcham et al., 2018). Even though biopharmaceutical production is
generally still carried out batch-wise, new technology has emerged (Walsh, 2014, 2018), and many
drugs can currently be sold at the cheapest prices ever (Berlec and Strukelj, 2013; Jungbauer, 2013;
Walsh, 2018). Continuous systems are already partially implemented in red biotechnology. Until
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now, however, these processes have only been carried out
with mammalian cells (Vogel et al., 2012; Karst et al., 2017;
Steinebach et al., 2017; Burgstaller et al., 2018). By switching from
a batch-wise to a continuous production system, cultivations
can be improved, which affects the duration of the run and
thereby reduces the frequency of required setup and cleaning
times. Furthermore, by switching to continuous processing, small
footprint facilities can be implemented, leading to an increase in
the overall space–time yield (Seifert et al., 2012; Bieringer et al.,
2013; Lee et al., 2015; Adamo et al., 2016).

Looking at the technical realization of a continuous process,
the upstream is regarded as rather simple. Chemostat processing,
developed back in the 1950s (Novick and Szilard, 1950a), is well-
known. Stable process parameters can be adjusted, and the bleed
containing the desired amount of product can be subtracted
from the culture vessels and further processed. However, the
implementation of the downstream is highly dependent on
the location of the product (Jungbauer, 2013; Slouka et al.,
2018b). Fusing purification steps into an overall non-stop process
seemed unlikely to be achieved a couple of years ago (Rathore,
2015; Vemula et al., 2015; Kante et al., 2018, 2019; VKR
et al., 2019). Continuous chromatography in particular created
a bottleneck; however, simulated moving bed chromatography
(SMBC) improved significantly in terms of performance (Ötes
et al., 2017, 2018). With state of the art technology, we are able
to process proteins independent of location and at a continuous
level (Jungbauer, 2013; Saraswat et al., 2013; Wellhoefer et al.,
2013, 2014), and we are able to unite all process unit operations
into one overall process (Lee et al., 2015; Zydney, 2015; Burcham
et al., 2018).

With emerging process technology, the regulatory authorities
evolved as well, and Food and Drug Administration (= FDA)
regulations for the release of a product are clearly set (Gassman
et al., 2017). Batch-wise production made it rather easy to break
down product streams into certain product pools as upstream
and downstream applications could be clearly separated and
approved by the quality control (Lee et al., 2015). To enable
continuous processing from a regulatory point of view, the
process has to be separated into different lot numbers, creating a
batch-wise system in itself (Jungbauer, 2013) to fulfill acceptance
criteria by regulatory authorities (Gassman et al., 2017). As
an integrated continuous process can achieve time-independent
constant critical quality attributes (=CQAs) (Herwig et al.,
2015; Zydney, 2015), the realization of such a process might
even shorten the time-to-market. The first product derived
from continuous production after its approval was produced
in 2015, namely Orkambi (Matsunami et al., 2018). Prezista,
being produced at a continuous level by Jansen, was accepted
by the FDA in 2016 (Nasr et al., 2017). Ever since first approvals
for continuously produced products emerged (Yang et al., 2017;
Balogh et al., 2018), companies have tended to invest more
into production lines so as to be capable of producing at a
continuous level.

Still, the use of bacteria and yeast in continuous production
modes is not common and has only been implemented once
on an industrial scale for insulin production in Saccharomyces
cerevisiae back in the 90s (Diers et al., 1991). State of the

art recombinant protein production (RPP) in E. coli is still
carried out in a fed-batch mode, and, with ongoing technology
development, very high product titers can be achieved (Kopp
et al., 2017; Wurm et al., 2017a; Hausjell et al., 2018; Slouka et al.,
2018a). Still, “low-cost” biopharmaceuticals produced in bacteria
are expensive to produce (Jia and Jeon, 2016); one gram of
IPTG (Isopropyl-β-D-thiogalactopyranosid, currently purchased
from Sigma-Aldrich for 76.8 e), is more expensive than one
gram of 900 carat gold (currently worth 37.13 e). Therefore,
a continuous production model for E. coli would be highly
beneficial, increasing the overall space–time yield (Seifert et al.,
2012; Bieringer et al., 2013). Counter-intuitively, the upstream
section, which is technically easy to realize, thwarts industry plans
as chemostat cultivations producing recombinant proteins within
microbial hosts lack major instabilities (Diers et al., 1991); shifts
in the transcriptome and proteome leads to enhanced acetate
production, which seems to disturb RPP and decrease the overall
specific productivity (qp) as a consequence (Peebo et al., 2015;
Peebo and Neubauer, 2018). As E. coli still is a beloved workhorse
for industry as well as for research (Rosano et al., 2019), we,
within this review, highlight recent achievements in fed-batch
processing and the first steps that have been implemented
for the ongoing transition toward a continuous recombinant
production system.

Additionally, the first achievements in the continuous
upstream applications of E. coli; and the continuous downstream
processing of intracellular proteins are discussed.

THE CURRENT STATE OF E. COLI

FED-BATCH PROCESS UNDERSTANDING
AND ITS TECH TRANSFER POTENTIAL
WITHIN CONTINUOUS PROCESSING

Process parameters and their effects on critical quality attributes
are well-understood in E. coli fed-batch cultivations (Ferrer-
Miralles et al., 2009; Babaeipour et al., 2015; Gupta and Shukla,
2017; Hausjell et al., 2018; Kante et al., 2018); they lead to high
titers and predictable manufacturing (Slouka et al., 2018a,b).
Still, RPP causes stress phenomena in the host cells, leading
to decreased host capacity and, consequently, decreased growth
rates (Rozkov et al., 2004; Silva et al., 2012; Ceroni et al., 2015;
Kopp et al., 2017). Many recent publications revealed that RPP
in E. coli suffers from a metabolic burden. Therefore, within this
section we discuss the effects of metabolic burden on RPP and
the determination thereof; intracellular vs. extracellular RPP; and
enablers for continuous processing.

Recombinant Protein Production in E. coli

and Its Effect on Metabolic Burden
Metabolic Burden and Its Effects on Growth Rate
Recombinant protein production (RPP) has always been referred
to as exhibiting a high metabolic burden onto the host
cells (Heyland et al., 2011; Silva et al., 2012; Ceroni et al.,
2015; Dvorak et al., 2015). Effects such as a decrease in the
specific growth rate (= µ) and the specific substrate uptake
rate (= qs) over cultivation time have been observed (Scott
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et al., 2010; Shachrai et al., 2010; Reichelt et al., 2017a,b). As
higher amounts of intracellular proteins can be produced by
applying higher feeding rates (Boström et al., 2005; Ukkonen
et al., 2013; Peebo et al., 2015), the proteome might change
throughout the cultivation and show decreased sugar uptake
rates (Borirak et al., 2015; Peebo et al., 2015). Intracellular
stress might therefore lead to decreased enzyme activity, such
as a reduced activity in the phosphotransferase system, which is
primarily responsible for sugar uptake (Deutscher et al., 2006).
Neubauer et al. established a model where cellular capacities are
limited as an effect of heterologous gene expression (Neubauer
et al., 2003). As intracellular proteins are measured also within
dry cell weight quantification it is important to separate the
cell into a “functional cell part” (showing metabolic activity)
and a “recombinant part” (being unable to show metabolic
activity). Decreased enzyme availability might lead to high
sugar accumulation in the fermentation broth, especially when
exponential feeding is applied (Slouka et al., 2018a), as already
stressed cells might additionally suffer from osmotic stress,
triggering cell death (Slouka et al., 2019). It is shown that high
sugar uptake rates tend to shift toward acetate formation, finally
leading to decreased levels of production (Fragoso-Jiménez et al.,
2019). Therefore, appropriate feeding rates beneath µmax should
be set to avoid overflowmetabolism; however, acetate production
can also be significantly reduced using engineered strains, as
shown by Lara et al. (2008), Valgepea et al. (2010), Peebo et al.
(2015), and Anane et al. (2017). Higher overall titers within
Pichia pastoris are achieved when switching from static qs-based
controls to a dynamic feeding strategy (Spadiut et al., 2014c).
Feeding strategies using a static qs control within E. coli might
therefore need to be adapted.

Metabolic Burden and Its Correlation With IPTG
Declines in growth rates can be linearly correlated to the amount
of recombinant protein produced (Scott et al., 2010). However,
studies using IPTG as inducer have to take into account that
this µ-decrease might result from the inducer itself, as IPTG
is known to exhibit toxicity in host cells at long cultivation
times (Dvorak et al., 2015). Malakar et al. showed that the
growth rate declines in relation to higher amounts of IPTG
used, which leads to higher recombinant protein translation rates
(Malakar and Venkatesh, 2012). Transcriptomic results derived
from fed-batch metabolism hint that essential genes needed for
RPP are sequentially turned down when host cells are induced
with IPTG, indicating that the metabolism switches toward a
stationary phase (Haddadin and Harcum, 2005). As IPTG seems
to be causing a high metabolic burden, it might not be a feasible
inducer for long-term production.

How to Determine the Metabolic Burden
Operating at high specific feeding rates, such as qs of 0.4–0.5
g/g/h, during the induction phase shows a trend of decreasing
uptake “capacity,” which results in high extracellular sugar
accumulation and increased cell death (Kopp et al., 2018; Slouka
et al., 2019). Ceroni et al. aim to determine the metabolic load
using a GFP (green fluorescent protein) cassette as an integrated
marker protein to determine the “capacity” of cells (Ceroni et al.,

2015). The capacity measurements of the cells match the theory
established by Scott et al. even though the overlapping emission
of GFP and m-cherry, used within this study, has to be taken
into account more thoroughly (Scott et al., 2010; Ceroni et al.,
2015). As metabolic burden is known to cause limitations in RPP
(Heyland et al., 2011), the burden control system, also established
by Ceroni et al. in a follow-up study, could soon be implemented
in industry. The results thus indicate that in-vivo controlled
cells exhibited higher capacity and showed better process
performance than common, unregulated cells (Ceroni et al.,
2018). As heat-shock promoters were significantly upregulated
during recombinant protein expression, RPP is controlled in
vivo using these promoters for capacity measurement. A dcas9
feedback control is used to adapt the protein expression due to
the measured capacity. Application of burden–control systems
in continuous cultivations, as demonstrated in Figure 1, would
be an interesting approach to maintaining cells in a “stable
capacity.” Furthermore, as GFP is used as a capacity marker
within this system, at-line, and even online process controls using
plate readers or flow cytometry could be established for this
regulated strain.

Intracellular vs. Extracellular Expression
for E. coli
High metabolic burden is also often associated with the
accumulation of intracellular proteins as the chaperones
become overloaded and inclusion body formation can be
observed (Fahnert et al., 2004; Ramón et al., 2014). As
misfolded intracellular proteins are also known to suffer from
long purification times and occasionally low refolding yields
(Jungbauer and Kaar, 2007; Singh et al., 2015; Slouka et al.,
2018b), the production of soluble extracellular proteins might
be a feasible approach. Protein secretion, commonly performed
in eukaryotic cells, might also be a key solution to reducing
the metabolic burden; however, recombinant protein secretion
is not easy to establish in bacteria (Berlec and Strukelj, 2013;
Rosano and Ceccarelli, 2014). Still, RPP in the periplasm of
E. coli has shown to yield promising results, especially when
producing antibody fragments, making use of the oxidizing
environment (Spadiut et al., 2014a; Kasli et al., 2019). To enable
protein secretion in E. coli, engineering of the Sec-Pathway is
commonly performed, leading to unfolded protein secretion
(Mergulhão et al., 2005; Burdette et al., 2018). Alternatively,
the SRP pathway can be used to secrete unfolded hydrophobic
amino acid sequences while the twin-arginine pathway can be
used to secrete folded proteins to the outer membrane (Berlec
and Strukelj, 2013). As the amount of recombinant protein
can be as high as 50% of the complete protein content of
the cell, the RPP therefore sometimes might be limited by
the secretion system itself (Rosano and Ceccarelli, 2014). Even
though it is challenging to achieve extracellular RPP in E.
coli, the company WACKER engineered a secretion system,
called ESETEC, which has been upgraded to ESETEC 2 and is
able to achieve high extracellular titers (Richter and Koebsch,
2017). Morra et al. investigated the phenomena of “non-classical
protein secretion,” where cytoplasmic proteins can be secreted
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FIGURE 1 | Stress determined via fluorescence measurement application as an on-line tool during chemostat cultivation to determine metabolic burden and, if

necessary, intervene.

into the supernatant via mechanosensitive channels, triggering
secretion via stress (Morra et al., 2018). Other studies, using
triton, sucrose or glycine to secrete product into the supernatant,
indicate a promising process strategy for fed-batch cultivations,
releasing product into the fermentation broth before harvest
and thereby reducing the purification time (Bao et al., 2016; Na
et al., 2019). To implement a long-term process, constant, stress-
free protein secretion is desired. Previous tests of recombinant
protein secretion in chemostat experiments (operated at D=0.1
h−1) show the feasibility of the study; however, the extracellular
protein concentration dropped significantly over the period
of cultivation (Selvamani, 2014). Although soluble protein
production would be promising, it was shown that achieved
titers were so far still within non-feasible ranges (mg/L to low
g/L range), independent of the cultivation system (Mergulhão
et al., 2005; Kleiner-Grote et al., 2018). Still we would like to
hypothesize, with ongoing host engineering, that extracellular
protein production within E. coli might be an interesting
approach for the future.

Enablers for Continuous Processing With
E. coli
Process Controls in Fed Batch With Tech Transfer

Possibility to Continuous Processing
Even though intracellular shifts might be noticeable (due to
high metabolic burden put on the cells by RPP) the CQAs
of the recombinant product have to be maintained constantly
throughout the process (Rathore, 2009). We defined CQAs

for an E. coli inclusion body fed-batch process, investigating
IB (inclusion body) size, purity, and titer (Slouka et al.,
2018a). Lower temperatures throughout the induction phase
seemed to be favorable for RPP throughout this and other
studies (Wurm et al., 2017a; Slouka et al., 2018a). This might
be due to the high amount of energy needed to produce
recombinant proteins. Host cells might shift intracellular
fluxes toward toxic pathways in order to regenerate reducing
equivalents and further cope with the energy demand needed.
A reduction of cell densities, temperature, or separation of
biomass growth and RPP might facilitate stability in continuous
processes (Rugbjerg and Sommer, 2019). Enabling higher sugar
uptake with engineered strains shows that specific productivity
and specific sugar uptake rates were correlated in a bell-
shaped curve; extreme sugar uptake rates lead to fermentative
growth (Basan et al., 2015; Peebo et al., 2015; Basan, 2018;
Fragoso-Jiménez et al., 2019). The metabolic load therefore
has to be considered, and feeding strategies and model-
based approaches that consider the shifts in the growth rate
have to be established (Kopp et al., 2018). Schaepe et al.
implemented a feeding strategy where the fed carbon is adapted
to the control of the online monitored oxygen consumption
rate (OUR) in order to avoid overfeeding (Schaepe et al.,
2014). As cells exhibiting a high burden tend to shift toward
acetate formation (Martínez-Gómez et al., 2012; Schaepe et al.,
2014), it might be interesting to control onto pre-established
online capacitymeasurements throughout long-term cultivations
(Ceroni et al., 2015).
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Promotor Systems Applied in Fed-Batch and Its Tech

Transfer Potential Within Continuous Processing
The most frequently used system for RPP used in E. coli is still
the Bl21(DE3) strain in combination with pET plasmids, which
make use of the strong T7 promotor under the control of the lac
promotor and its repressor (Studier et al., 1990; Rosano et al.,
2019). Even though BL21 (DE3) is considered the state-of-the-
art strain for RPP in E. coli, homologous recombination rates
might occur, especially throughout long-running fermentations
(Rugbjerg and Sommer, 2019). Therefore, other strains that
experience a recA deletion, such as HMS-174, might be a good
alternative to promote long-term stability, especially as high
product titers have been considered to use this strain (Hausjell
et al., 2018). Using the T7-induction system, induction can
be performed with a simple inducer pulse as IPTG binds to
the lactose repressor (Malakar and Venkatesh, 2012; Marbach
and Bettenbrock, 2012). For standard fed-batch approaches this
system works fine as high titers can be achieved within short
time (Slouka et al., 2019); however, full induction of the T7-
polymerase using IPTG puts a high metabolic burden on the host
cells (Dvorak et al., 2015). The ptac promotor in combination
with IPTG and lactose as an inducer allows the interesting
approach of tunable protein expression, resulting in a lower
metabolic burden put onto host cells (Marschall et al., 2016). A
rather new approach, also making use of the T7-polymerase, is
a double induction system, which shuts down the E. coli RNA-
polymerase, inhibiting host mRNA production (Lemmerer et al.,
2019). Therefore, the total energy flux derived from fed carbon
could be used for RPP. Regulating this system in a tunable
way, with a switch-on/switch-off strategy might be an interesting
approach for chemostat experiments. A further method to
separate rapid growth fromRPPmight be the utilization of stress-
regulated promoters. Making use of phosphate limitation (phoA-
promoter), cAMP/CRP-system regulations (cap promoter with
MglD-Repressor), and other promotor systems could enhance
a more resistant subpopulation in chemostat cultivations,
producing at a low but steady level (Neubauer andWinter, 2001).
Further positive regulation systems, also being referred to as
tunable, are the araBAD and the rhamBAD induction systems,
which are induced by arabinose and rhamnose, respectively
(Khlebnikov et al., 2002; Wegerer et al., 2008). Tunable protein
expression systems, discussed in detail by Marschall et al. (2016),
allow for the control of expression rates and should therefore
ease control strategies for continuous processes. However, the
major advantage of E. coli is still its relatively cheap production,
and the utilization of highly expensive inducers in a continuous
production scale might not be feasible as media costs would rise
drastically. When comparing costs of “tunable” inducers in E.
coli with the methanol inducible AOX system of P. pastoris, it is
obvious that a less expensive induction system needs to be found
(Mattanovich et al., 2012; Spadiut et al., 2014b). Lactose, also
referred to as being be a tunable inducer (Neubauer et al., 1992;
Neubauer and Hofmann, 1994), has been shown to boost soluble
intracellular protein concentrations in E. coli fed-batches so far
(Wurm et al., 2016, 2017c). For white biotechnology approaches,
lactose could be purchased cheaply as side products of the milk
and cheese industry (Viitanen et al., 2003). The implementation

of lactose as an inducer in continuous cultivations could therefore
lead to interesting and affordable approaches.

Engineering on a Genomic Level and Its Tech

Transfer Potential Within Continuous Processing
Plasmid technology is still state of the art for RPP in E. coli
(Rosano et al., 2019). Selection is commonly employed using
antibiotics, though a drug substance (=DS) produced in E. coli
needs to be free from antibiotics (Silva et al., 2012). As high
copy number plasmids, frequently used in industry, put a high
metabolic burden onto the host, the regime of plasmid-based
systems might slowly fade out (Fink et al., 2019). The production
load here is usually used to trigger an escape rate, leading to
diverse subpopulations within the cultivation system (Rugbjerg
et al., 2018). Non-productive subpopulations might arise from
diverse point mutations or reallocations, emerging at an escape
rate as high as 10−5-10−8 per generation in plasmid-based E.
coli systems (Rugbjerg and Sommer, 2019). As high burden
might also lead to high amounts of recombineering, the genomic
integration of the gene of interest (GOI) would reduce host
stress as copy numbers can easily be controlled, and no antibiotic
selection is required (Mairhofer et al., 2013). Introducing the GOI
into the host can be performed by CRISPR-Cas9 strategies or
via a recombineering method (Reisch and Prather, 2015). While
CRISPR-Cas9 selection functions via a double-strand cleavage,
recombineering needs antibiotics resistance to select the GOI.
This antibiotic selection, however, can be cured in an ongoing
step (Biswas et al., 2012; Chung et al., 2017; Reisch and Prather,
2017). Striedner et al. performed chemostat cultivations with
E. coli cells, producing GFP, where the gene was integrated
into the genome (using the recombineering method). However,
production was not stable for 10 generation times (Striedner
et al., 2010). Within a recent study it was shown that the location
is highly dependent on the expression of the GOI (Englaender
et al., 2017), which probably explains the difficulties in stability.
In a different study, the integration of large DNA-fragments, like
complete pathways, was performed. This is sometimes difficult to
reproduce within different strains (Chung et al., 2017; Englaender
et al., 2017). On the other hand,Wang et al. showed that genomic
engineering of the complete mevalonate pathway exceeded
plasmid-based mevalonate production (Wang et al., 2016).

An interesting approach was performed by Rovner et al.
who engineered a codon-optimized E. coli, creating auxothrophy
for phenylalanine-derived amino acids (Rovner et al., 2015).
Coupling the expression of essential genes to synthetic amino
acids, no escape rate could be monitored within 20 days of
cultivation. Even though the selection criteria of synthetic amino
acids might be much more effective than common selection
systems, the amount of synthetic amino acids needed for feeding
at an industrial scale might not be feasible (Stokstad, 2015).
This results in the need for a selection mechanism being
“cheap enough” to boost selection criteria also at large volumes.
Strategies such as connecting cell growth with product formation
would increase the fitness of the subpopulation needed for
RPP and further enhance overall yields (Buerger et al., 2019).
Furthermore, the idea of a two-way selection was shown to
improve the host, as exemplarily shown for an E. coli naringenin
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producer, which was increased by a factor of 36 (Raman et al.,
2014). As negative selection does delete escaped subpopulations,
positive selection can help to find high-productive mutations.
The toggling selection mechanism, which regulates between
positive and negative selection, could be the way to go to create
strains needed for long-term stable production systems.

Trying to reduce the host’s metabolic burden, the usage of
protein secretion or the integration of the target sequence into
the genome seem to be promising tools. Further host engineering
might enable the continuous production of recombinant proteins
in E. coli by eliminating the needs of antibiotics. However,
it seems like neither industry nor academia is there yet, as
a complete understanding of the interactions between the
GOI and integration site is still missing and needs to be
tested (Englaender et al., 2017). Strains commonly employed in
continuous cultivations are screened for maximum production
within short cultivation times (Jia and Jeon, 2016). Even though
it is rather time consuming, it might be necessary to screen for
long-term stable strains in order to find appropriate candidates
for the implementation of continuous cultivations.

ACHIEVEMENTS IN CONTINUOUS
UPSTREAM APPLICATIONS WITH E. COLI

Basing their description of bacterial growth on that which was
established by Monod (Monod, 1949b), the term “chemostat”
was defined by Novick and Szilard in the 1950s (Novick and
Szilard, 1950a). Many physiological characterization studies have
been carried out in E. coli chemostat processing since then, and
the behavior of cells is understood in more depth nowadays
(Wick et al., 2001; Peebo et al., 2015; Kurata and Sugimoto,
2018). As RPP in continuous cultivation systems in E. coli leads
to uncharacteristic intracellular fluxes (Peebo and Neubauer,
2018), there is a high demand in process analytical tools to
monitor and control cultivation systems (Esmonde-White et al.,
2017; Vargas et al., 2018; Zobel-Roos et al., 2019). Within this
section we therefore discuss the physiological characterizations
of E. coli chemostat cultures; process analytical tools (PAT)
implemented in E. coli processes and their applicability within
continuous systems; and engineering screws to optimize long-
term E. coli cultivations.

Physiological Characterization of E. coli
Chemostat Cultures
The introduction of steady-state cultivation systems back in that
1950s was applied to ease research approaches, such as estimating
mutation rates (Monod, 1949a; Novick and Szilard, 1950a,b,
1951). The “competitive ability” of E. coliwas investigated already
back in the 1980s, using a molecular clock principle, and showed
that most changes in population fitness occur within the first
200 h of a cultivation (Dykhuizen and Hartl, 1981). Proteome
changes in E. coli chemostat cultivations were monitored when
switching from glucose-limiting conditions to glucose excess
after 500 h of cultivation (Wick et al., 2001). This study shows
that the proteome can be distinguished in a short and in a long-
term response (Wick et al., 2001), indicating that changes in
the transcriptome could be monitored in long-term cultivations

even without the production of recombinant proteins (Peebo
and Neubauer, 2018). Chemostat cultivations, performed with
different dilution rates, revealed that RPP is fairly constant
within an induction time of 6 h (Vaiphei et al., 2009). Qp can
be correlated to the growth rate, which is in accordance with
other studies and independent from the cultivation mode (Peebo
and Neubauer, 2018; Slouka et al., 2019). The phenomenon of
growth-dependent production shows a need for investigating
intracellular pathways in more detail (Valgepea et al., 2013). A
kinetic model, developed by Kurata et al. describes intracellular
carbon pathways down to the TCA-cycle and can be verified for
non-induced cultivations (Kurata and Sugimoto, 2018). Still, it
has to be taken into account that intracellular fluxes tend to shift,
once RPP is induced, as the maximum growth rate decreases
due to limited host cell capacity (Scott et al., 2010; Heyland
et al., 2011; Ceroni et al., 2015). As seven volume changes in
a steady-state recombinant protein production in single-vessel
E. coli cultivations are regarded as a steady-state (Vemuri et al.,
2006), studies in this field are tricky to implement, as cultivations
might suffer from unexpected metabolic shifts before reaching
a “steady-state” mode. Characterizing intracellular fluxes via
a metabolome analysis indicates a high diversity occurring
between different strains (Basan, 2018; McCloskey et al., 2018).
The metabolome analysis state, which we use to deal with a
highly complex system as different intracellular pathways are
up- or downregulated, is very dependent on the host and
the target protein (McCloskey et al., 2018). As shifts already
occur without RPP, showing that cells try to adapt to the
environment in chemostat cultivation, we hypothesize that the
production of recombinant proteins will increase these shifts to
a maximum.

Process Analytical Tools (PAT) in E. coli

Cultivations
Defining a certain time span of a continuous production as a
lot number has opened up the possibility of releasing products
of long-term processes, providing constant CQAs of each lot
number independently from process time (Allison et al., 2015). In
process realization, analytical methods often create a bottleneck
as they are highly time consuming [taking sample preparation
and data treatment into account (Pais et al., 2014; Gomes et al.,
2015; Sommeregger et al., 2017)]. At-line analytics might provide
useful information (Lee et al., 2015); however, process control in
continuous manufacturing should be implemented using online
signals (Rathore et al., 2010), if possible, making use of PAT
(process analytic tools) (Rathore, 2015; Vargas et al., 2018).
Process controls using a “digital twin” are the way to move
toward Biopharma 4.0 (Nargund et al., 2019), but they still need
to be established for long-term E. coli cultivations. Within this
monitoring strategy, first brought to public by NASA (Rosen
et al., 2015), real processes are represented by virtual simulations
and are continuously fed with all process parameters and sensor
results monitored throughout the process (Zobel-Roos et al.,
2019). Using model-based controls in combination with online
data transmission, process variances can be predicted, and
operators can intervene to keep processes going (Zahel et al.,
2017a; Steinwandter et al., 2019).
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Some online process controls implementing PAT are
nowadays carried out with Raman spectroscopy measurements
in cell culture cultivations (Abu-Absi et al., 2011; Lewis et al.,
2018; Nagy et al., 2018). Esmonde-White et al. found that
Raman spectroscopy is already applied in GMP facilities (good
manufacturing practice) for monoclonal antibody (mAB)
production (Esmonde-White et al., 2017). Raman spectroscopy
can be found in diverse fields, ranging from bacterial impurity
measurement of water (Li et al., 2017) to surface-enhanced
Raman spectroscopy (SERS), which can be used to determine
bacterial contaminations in cell cultures (Esmonde-White et al.,
2017). Teng et al. monitored stress reactions using Raman
spectroscopy on a single-cell bacterial level (Teng et al., 2016),
and overflow metabolites in an E. coli fermentation were
monitored by Lee et al. using online Raman spectroscopy (Lee
et al., 2004). Nevertheless, process controls for RPP in E. coli
have not been established until now.

As biomass provides important information about E. coli
process characteristics (Slouka et al., 2016), online dry cell weight
estimations have been performed with online microscopy and
back-scattered light (Marquard et al., 2017; Mühlmann et al.,
2018). Since scattered light analysis is difficult to implement
on a large scale, and microscopy might suffer from the use
of complex media, process control implementation is tricky.
At-line flow cytometry measuring viable cell concentration can
provide useful information to determine states throughout a
cultivation (Langemann et al., 2016). Using GFP reporter strains,
it has been shown that the adaption of glucose pulses in
chemostat cultivation could be monitored using flow cytometry
analysis (Heins et al., 2019). Baert et al. also used flow
cytometry as a tool to determine variations in phenotypes
(Baert et al., 2015). Cell filamentation and its correlation with
high productive subpopulations are also monitored with flow
cytometry in fed-batch cultivations (Fragoso-Jiménez et al.,
2019). Measuring filamented populations via PI-staining showed
that the filamented subpopulation had enhanced PI uptake,
forming the so-called red but not dead phenotype (Shi et al.,
2007; Davey and Hexley, 2011). Sassi et al. presented an
interesting follow-up approach, which showed the possibility
of monitoring and controlling subpopulations with online
PI staining being detected with online flow cytometry in
chemostat cultivations (Sassi et al., 2019). The red but not
dead phenotype population can be regulated at a constant
level of 10% using a cultivation system called the “segregostat,”
which applies starvation or glucose pulses. Still, the feasibility
of this cultivation mode needs to be tested for continuous
recombinant protein formation, and proper online dilution
systems need to be established in order to dilute high cell
density cultivations (Langemann et al., 2016). Nevertheless,
the applicability of an online flow cytometer as a PAT for
continuous microbial fermentations is clearly needed in order
to characterize heterogeneous differences throughout cultivation
(Delvigne et al., 2017). The determination of viable biomass with
rheological measurements (Newton et al., 2016) could also be
implemented in an at-line application. Soft-sensor cultivation for
recombinant GFP production was also established using NIR-
signals and at-line HPLC to control metabolite accumulation

by Gustavsson and Mandenius (2013). Applications like this
could be of particularly high interest for continuous cultivations.
High throughput metabolite quantification such as the RP-LC-
MS/MS method by McCloskey et al. may help to get an at-
line “host response” (McCloskey et al., 2018). Understanding
intracellular dynamics on a single-cell level might additionally
help to characterize different phenotypes occurring throughout
the cultivation (Leygeber et al., 2019). Nevertheless, further
understanding on a transcriptome and proteome level will be
needed to shed more light on intracellular fluxes. Therefore,
characterizing the intracellular fluxes throughout the production
of recombinant molecules, with metabolites being measured
at-line, is the way to develop adequate process control
strategies. Table 1 gives a short overview of monitoring
tools developed for E. coli cultivations up until now, and
these can be implemented in an online control mode for
continuous cultivations.

Mammalian cell cultivations for RPP already make use of
RAMAN- and NIR-signals (Iversen et al., 2014; Berry et al.,
2015; Esmonde-White et al., 2017; Li et al., 2017), and even
have implemented signal-derived feedback controls (Li et al.,
2013; Craven et al., 2014). As the major advantage of microbial
processes compared to mammalian cell line cultivations is the
cheap manufacturing, the devices and detectors needed for
Raman and NIR spectroscopy are possibly too high in price to
establish microbial process controls until now (Rathore, 2014).
With cheaper analytical devices being developed, the future
might show a new trend in process controls within E. coli.

Engineering Screws to Optimize
Long-Term E. coli Cultivations
As different continuous cultivation modes for microbial systems
have been discussed by Adamberg et al. (2015), we will focus
on continuous cultivation systems, which are feasible for RPP.
Fermentations with E. coli need high gas flows and high stirrer
velocities to accomplish the respiratory demand of the host cells
(Schaepe et al., 2014). Scale-up via kLA is well-understood and
can be performed without observing a large-scale yield decrease
(Junker, 2004; Islam et al., 2008). The development of continuous
cultivation systems using mini-reactor systems is therefore a
feasible approach (Lis et al., 2019), especially as continuous
culture development is highly time and media consuming
(Schmideder et al., 2016). Multiple small-scale reactors can
be operated in parallel, increasing the number of experiments
(Schmideder et al., 2015). Furthermore, it opens up the possibility
to screen multiple candidates in a high throughput manner
(Bergenholm et al., 2019), which might be necessary to develop
suitable strains for continuous manufacturing.

To overcome stability issues in long-term RPP within E.
coli, Schmideder et al. implement a cascaded system, pictured
in Figure 2, where two stirred tank reactors were operated in
parallel at different conditions (Schmideder and Weuster-Botz,
2017). Steady-state production within an E. coli plasmid-based
system could be reached for two residence times within this
study. Higher dilution rates seem to be beneficial for RPP in
cascade cultivations, which is in accordance with chemostat- and
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TABLE 1 | PAT tools established in Escherichia coli or with promising prospects for establishment.

Monitoring tool Scale & cultivation mode Application Host & target product References

Raman-spectroscopy Fermentation 2.5 L, batch mode Measuring of glucose, lactate, formate,

acetate

E coli ATCC31883, for

phenylalanine production

Lee et al., 2004

NIR (near infra-red)

spectroscopy

Fermentation 2 L, batch mode Glucose, glycerol, ammonium, and

acetate measurement with at line NIR

E. coli ML308 & E. coli

W310

Schenk et al., 2008

In situ microscopy (ISM) Fermentation 2 L, fed-batch Cell concentration measurement up to 70

g/L

E. coli BL21(DE3) Marquard et al., 2017

Electrochemical impedance

spectroscopy (EIS)

Fermentation, 10 L, fed-batch increase in the double layer capacitance at

low frequency can be correlated to

biomass growth; offline and online analysis

E. coli BL21 DE3,

horseradish peroxidase

production

Slouka et al., 2016

Viscosity monitoring for cell

lysis

Fermentation 5 L, fed batch DNA release due to cell lysis increases

viscosity up to 25%; cell lysis can be

determined with at-line rheological

measurement

E. coli W3110, for Fab

production

Newton et al., 2016

Scattered light for

predication of burden

Biolector plate & RAMOS

shake-flask

Scattered light is calculated to oxygen

transfer rate & biomass prediction on

burden

E. coli BL21 (DE3) for

cellulose and fluorescent

protein FbFP production

Mühlmann et al., 2018

Fermentation off-gas

analysis to determine

metabolic state

Fermentation 15 L, fed batch Online Oxygen transfer-rate monitoring,

Sugar accumulation/Overfeeding can be

correlated with decreased signal of OTR

E. coli BL21 DE3, sfGFP

production

Schaepe et al., 2014

At-line flow cytometry for

bacterial cell lysis

Fermentation 20 L, fed batch Combination of 2 fluorescent stains

[DiBac4(3)) & Rh414] showed that viable

cell counts from FCM measurements

could be correlated with viable CFUs

E. coli NM522, no RPP Langemann et al., 2016

Online flow cytometer

control—“segregostat”

Fermentation 2 L, chemostat Monitoring & control of PI-positive

phenotype with online FCM and control via

glucose pulses or starvation

E. coli JW2203-1 1ompC,

no RPP

Sassi et al., 2019

Soft-sensor-sensor PAT

application (NIR + at-line

HPLC)

Fermentation 10 L, fed batch NIR in situ probe & at-line HPLC for

measuring overflow metabolites to control

metabolites at a set level

E. coli HMS174, GFP

production

Gustavsson and

Mandenius, 2013

Full-rip (RP-LC-Ms/Ms) for

metabolome

characterization

Shake flask cultivation, 25m L Offline measurements of metabolomics

with RP-LC-MS/MS; determining 100

metabolites within 5min;

differences in the central, amino acid,

nucleotide, and energy pathways were

found

E. coli C,

E. coli Crooks,

E. coli DH5a,

E. coli W,

E. coli W3110,

E. coli BL21 (DE3),

E. coli K-12-MG1655

McCloskey et al., 2018

Online scattered light

measurement for IB

measuring at 625 nm

Shakeflask cultivation 180◦ measurement for morphological,

opacity & color change

E. coli, BL21 (DE3) for GFP

& hLIF production

Ude et al., 2016

fed-batch experiments (Vaiphei et al., 2009; Peebo and Neubauer,
2018; Slouka et al., 2019). As product formation within the host
cells is a time-dependent process in E. coli, there is a trade-
off between maximum productivity and steady state production.
Maximum qp in fed-batch usually is usually achieved after∼10 h
of induction when maintaining a growth rate of µ = 0.1 h−1

(Slouka et al., 2018a). As occurring cell lysis and decreased host
capacity towards the end of a fed-batch cultivation possibly
lead to “non-productive” subpopulations, continuous cascaded
systems operating at higher dilution rates, washing out cells
before achieving maximum productivity seems to be beneficial
to achieve stable productivity in two-compartment systems.

An interesting approach on the pharmaceutical horizon
might be moving away from only RPP and move onto
recombinant mRNA production (Pardi et al., 2018; Zhang
et al., 2019). As E. coli is a well-characterized host, with
cheap cultivation possibilities (Gupta and Shukla, 2017;

Wurm et al., 2017c; Slouka et al., 2018b; Rosano et al.,
2019), recombinant mRNA production might soon be
performed within E. coli. Establishing continuous cultivation
systems for recombinant mRNA is yet to come; however, we
would suggest that process technology should be ready for
such implementations.

THE CONTINUOUS DOWNSTREAM
PROCESSING OF INTRACELLULAR
PROTEINS

The continuous downstream processing of extracellular proteins
derived from cell culture cultivations (mostly monoclonal
antibody production) is already implemented in some branches
of the pharmaceutical industry (Vogel et al., 2012; Ötes
et al., 2018). Proteins can be separated from impurities at
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FIGURE 2 | Comparison of common chemostat processing in (A) with the established cascaded processing system in (B); different process parameters for biomass

growth and RPP can be adjusted in each reactor using the cascaded system, optimizing RPP; X, Biomass; P, Product; D, dilution rate; R1, reactor 1 for biomass

production; R2, reactor 2 for recombinant protein production.

high efficiency either with SMB (simulated moving bed)-
chromatography or continuous membrane chromatography
(Shekhawat and Rathore, 2019). Workflows and the processing
of proteins in a continuous mode have recently been discussed by
Jungbauer in more depth (Jungbauer, 2013). While extracellular
proteins are separated via centrifugation from the host cells,
are captured as they go, and then purified and polished,
intracellular proteins need more downstream unit operations
to achieve the same quality attributes. As stable product
formation within E. coli in a continuous mode has so
far been difficult to realize; the difficulties of continuous
purification of intracellular protein have not been discussed
in much depth (Peebo and Neubauer, 2018). Therefore,
we will give an update on the newest achievements in
continuous downstream processing for intracellular proteins
derived from E. coli.

Purification of intracellular proteins generally starts with a
centrifugation step, separating biomass from the supernatant
(Jungbauer, 2013). Simulations of a disc stack centrifugation
applied in a continuous mode have been done and technical
realization is feasible for continuous application (Chatel et al.,
2014). Ongoing cell disruption is performed with high-pressure
homogenization, as high-pressure homogenization is the only
scalable form of cell disruption (Balasundaram et al., 2009;
Lin and Cai, 2009). Homogenizers can be operated at high
velocities; realizing cell disruption within one passage and the
implementation of a continuous cell disruption mode is rather
easy (Barazzone et al., 2011). The following centrifugation step,
separating cell debris from soluble proteins, is also feasible in a
continuous mode with techniques available nowadays (Palmer
and Wingfield, 2012; Chatel et al., 2014). Even though IBs suffer
occasionally from low yields throughout refolding unit operation,
product purity was found to be as high as 80% after differential
centrifugation, which would lead to a decreased demand in
chromatography (Jungbauer, 2013).

It was shown that IB processing can be boosted when
operating the notorious refolding step in a continuous mode
(Wellhoefer et al., 2014; Walch and Jungbauer, 2017). Within
different studies, the continuously refolded lysozyme exhibited
higher refolding yields than commonly performed batch/fed-
batch refolding (Farshbaf et al., 2002). As a lysozyme is
known to have high refolding yields (Sakamoto et al., 2004;
Rathore, 2013) when compared to many other proteins, yield
enhancement by continuous refolding still needs to be verified
with different proteins (Yamaguchi and Miyazaki, 2014; Pieracci
et al., 2018). Still, Schlegl et al. simulated the refolding efficiency
in continuous stirred-tank reactors, and the results showed
that higher refolding yields could be achieved in continuous
applications when compared to batch processing (Schlegl et al.,
2005). As dilutions in batch refolding unit operation increase
the refolding yield (Vemula et al., 2015), huge volume capacities
are needed (Yamaguchi and Miyazaki, 2014). Wellhoefer et al.
further mark that continuous refolding could save up to 98%
of the refolding buffer applied within a process (Wellhoefer
et al., 2014). Mild solubilization techniques were discussed in
more detail by Singh et al. and are also known to enhance
product yield depending on the target protein (Singh et al.,
2015). Applying continuous solubilization in a plug-flow reactor
system and passing the solubilized protein on to a continuous
refolding unit operation seems to be the holy grail in continuous
IB processing, as reactor volumes can be reduced and efficiency
can be enhanced.

Endotoxin removal represents a further issue in bacterial
processing as purification is dependent on the target protein
(Hyun et al., 2009; Lopes et al., 2010). Depending on the target
protein size, lipopolysaccharide purification can be performed
with an ultrafiltration step (Pieracci et al., 2018). However,
establishing a clean cutoff might be tricky as endotoxins usually
are in the size-range of 10–20 kDa (Hyun et al., 2009). Two phase
applications for endotoxin removals might also be challenging
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TABLE 2 | Current problem states and approaches to move on toward continuous processing with E. coli.

Chapter Problem state Effect Current approach Proposed next step References

The current state in E. coli

fed-batch process

understanding and its tech

transfer potential to

continuous processing

Metabolic burden &

measurement of such

Intracellular stress, decreasing

viable cell concentration &

decreased levels of RPP

Time of induction is adapted to achieve

high RPP;

new in vivo burden control system

tunable promotor systems,

extracellular protein formation

Establish online burden control using online

PAT applications→ biological system =

complex→ get process understanding

establish→ robust process

Neubauer et al., 2003; Scott et al.,

2010; Ceroni et al., 2018;

Fragoso-Jiménez et al., 2019

Extracellular protein

production

Reduce complexity and time of

protein purification

Chemostat cultivations with extracellular

protein production suffers from qp

decrease over time

Establish better secretion systems, protein→

strain engineering;

qp needs to be comparable to intracellular

concentrations

Mergulhão et al., 2005; Selvamani,

2014; Kleiner-Grote et al., 2018

Tunable promotor systems Reduce metabolic burden on

host cells during RPP

Arabinose & rhamnose can be used as

tunable induction systems but are

expensive in utilization

Lactose might be used as a tunable inducer;

Development of new tunable inducer systems

feasible for industrial approaches

Marschall et al., 2016; Wurm et al.,

2017a,b,c

Genomic integration Stable product formation due

to reduced burden

Integration of GOI with Recombineering/

CRISPR-Cas9; integration of complete

pathways

Understand effects between GOI and

integration site→ need screening approaches

for long-term stable production

Reisch and Prather, 2015; Chung

et al., 2017; Englaender et al., 2017

The achievements in

continuous Upstream

applications with E. coli

Instable product formation

in chemostat

Product formation decreases

due to instable metabolome

Parallelization, Cascade processing; Analysis and characterization of metabolome &

transcriptome investigate & understand

intracellular shifts;

move on toward different feeding approaches;

optimization of Cascade-processing;

Schmideder and Weuster-Botz, 2017;

Peebo and Neubauer, 2018;

Bergenholm et al., 2019; Sassi et al.,

2019

Lack of proper PAT in

Upstream processing

Process control via

at-line/offline measurements→

time-delay in control→ suffer

from process variances

compare to Table 1 for PAT approaches Monitoring of subpopulations establish→

population controls with online flow cytometry;

establish new process control with different

spectroscopies like EIS;

Slouka et al., 2016; Esmonde-White

et al., 2017; McCloskey et al., 2018

The continuous

downstream processing of

intracellular proteins

Lack of proper PAT in

Downstream processing

Process control via

at-line/offline measurements

time-delay in control& quality

check longer times to market

Offline sampling, model-based

approaches

Monte-Carlo Simulations in order to find out

criticality of each step Downstream = cell free,

non-biological (ease in prediction) establish

digital twin control

Wellhoefer et al., 2014; Kateja et al.,

2017; Zahel et al., 2017b; Sauer

et al., 2019
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to operate in a continuous mode as long residence times
are needed to extract endotoxins (Lopes et al., 2010). This
leaves chromatography as the most efficient operation mode to
continuously purify proteins from lipopolysaccharides (Lin et al.,
2005). A case study is shown by Kateja et al. where IBs are purified
in a continuous mode using two different chromatography
systems, each of them using three stacked columns, operated in
a counter current system (Kateja et al., 2017). Defined CQAs
can be kept at a constant level within a processing timeframe
of 26 h, but analysis is performed after the process as the PAT
for each unit operation still needs to be established. Progress in
downstream PAT development is carried out by using a model
for real-time monitoring, and this was established using standard
measurements such as, pH, conductivity, and UV-VIS absorption
as a model input (Sauer et al., 2019). Online prediction of
host cell proteins, DNA impurities, and an estimation of the
protein content throughout the purification step is possible
using this model. Methods of establishing more model-based
PATs and using process parameters as inputs are yet to be
established for each unit operation. By understanding the effects
of process parameters onto product quality, a digital process can
be simulated, and process control can be implemented, making
use of digital twins, also in downstream processing (Zobel-Roos
et al., 2019).

DISCUSSION

Up until now, continuous RPP in a one-compartment system
(Adamberg et al., 2015); using E. coli as a host is still
lacking in stability issues (Peebo and Neubauer, 2018). It was
always thought that E. coli fed-batch processes were already
fully characterized, but occurring stress responses by host
cells might have never been monitored until now due to the
short time span of fed-batch cultivations. Trying to establish
a time-independent cultivation system, we have to go back
to a black-box model as, so far, unexplainable effects have
occurred throughout long-term cultivations. Even though E.

coli exhibits slightly slower mutation rates than mammalian
cells (10-10/base pair per generation for E. coli; 10-8/base

pair per generation for mammalian cells), the high growth
rate of bacteria and therefore the high amount of generation
times might explain the potential shifts in continuous systems
with E. coli (Rugbjerg and Sommer, 2019). We hypothesize
that the same shifts in transcriptomes and proteomes would
occur through continuous processes with mammalian cells if
processes ran long enough to achieve a comparable number of
generation times. However, we believe that, once intracellular
fluxes can be monitored and are understood in greater depth,
we can adapt control strategies to keep subpopulations at
a constant level, which has been exhibited for uninduced
systems already (Sassi et al., 2019). Even though single-stage
cultivation systems might not be ready yet for continuous RPP
in E. coli, the previously mentioned two-compartment system
showed stable RPP with E. coli (Schmideder and Weuster-
Botz, 2017). The feasibility of a continuous inclusion body
downstream process has also been demonstrated (Kateja et al.,
2017); therefore, it seems like process technology is ready for
implementing RPP in a continuous mode, using E. coli as
a host. Still, we believe that more work needs to be done
in the physiological characterization and implementation of
process analytical tools to establish a more robust process
control. Current problems in the continuous processing with
E. coli and solutions are thus summarized and highlighted
in Table 2. Once online monitoring devices are ready, we
only need a change of mind-set and a switch from batch
processing toward a fully integrated continuous process, and
there are indeed multiple benefits to performing continuous
RPP within E. coli.
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