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Abstract
The Nobel prices 2021 for Physiology and Medicine have been awarded to David Julius and Ardem Patapoutian "for their 
discoveries of receptors for temperature and touch", TRPV1 and PIEZO1/2. The present review tells the past history of the 
capsaicin receptor, covers further selected TRP channels, TRPA1 in particular, and deals with mechanosensitivity in general 
and mechanical hyperalgesia in particular. Other achievements of the laureates and translational aspects of their work are 
shortly treated.
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Two days after the publication in Nature of the paper from 
David Julius’ lab, that finally led to this year’s Nobel Price for 
Physiology and Medicine, one could see many (white) people 
with black noses strolling through the rows of posters at the 
huge US-American Neuroscience Meeting in New Orleans 
1997. The publisher had provided a large number of offprints 
with the black Nature title page depicting a variety of hot chili 
peppers, but they were quickly out of stock so that a second load 
of all too freshly printed offprints was supplied. Excited scien-
tists grabbed the paper and curiously rubbed their noses while 
absorbing the spectacular news on the ‘Red-hot receptor’ [33].

Past history

The enormous interest in capsaicin and the successful clon-
ing of its receptor channel had exponentially grown since 
middle of the 1970s. At that time, the groundbreaking 
works starting in the 1940s on capsaicin of Miclos (Nich-
olas) Jancso, his wife Aurelia Jancso-Gabor, later his son 
Gabor Jancso, and his early collaborator, the late Janos 
Szolcsanyi, had become widely appreciated through publi-
cations in English [81, 164]. It was the incomparable—by 
that time—selectivity of capsaicin’s actions that inspired the 
pain research community: It did not smell, it did not taste, 
not numb nor damage the oral mucosa but just hurt, inducing 
the well-known burning pain sensation of Habanero chili. In 
scientific terms, it did exclusively excite a large and distinct 
subpopulation of nociceptors anywhere in the mammalian 
body, but not in avians or amphibians [83]. If concentration 
and duration of capsaicin application were large enough, 
the excitation was followed by a sustained insensitivity to 
heat, but not mechanical, and to chemical (algogenic) stimu-
lation, e.g. by inflammatory mediators like bradykinin or 
histamine. When capsaicin was systemically administered in 
rodents or directly applied to nerve endings, peripheral nerve 
fibres or sensory neurons a lasting, highly selective neuro-
toxic effect with degeneration and necrosis was achieved 
that early awakened hopes for a therapeutic utilization [19]. 
Decades later,  QutenzaTM was approved, a plaster delivering 
capsaicin to painful neuropathic skin, and is still the only 
approved direct TRP channel modulator [113]. Promising 
appears the soon to be expected approval of CNTX-4975, an 
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ultrapure formulation of trans-capsaicin to be injected into 
osteoarthritic joints [157]. A long tradition has the desen-
sitization of the hyperactive (‘neurogenic’) urinary bladder 
by capsaicin instillation [42].

Capsaicin receptor TRPV1

Based on the then accumulated pharmacological evidence, 
already 1975 the existence of a capsaicin receptor was pos-
tulated [165]. With the advent of rat sensory neuron cul-
tivation, intracellular recording indicated that capsaicin—
chemically a vanilloid—activates an ionotropic receptor, a 
depolarizing, excitatory ion channel which was soon ana-
lyzed in detail by patch-clamp techniques and shown to be 
an unselective cation conductor [10, 182]. It is not just the 
‘cherry on the cake’ that the capsaicin receptor transient 
receptor potential vanilloid 1 (TRPV1) was finally cloned 
from rodent sensory neurons, employing an elegant search 
technique, but this achievement released an avalanche of 
other TRP channel discoveries with today (Nov. 2021) more 
than 19,000 papers in PubMed [188]. These penetrate almost 
all fields of physiology and medicine, including so diverse 
disciplines as diabetology, cardiology, or oncology. David 
Julius and his lab at UC San Francisco contributed at least 

48 major publications to this flood of papers. Milestones in 
the timeline are depicted in Fig. 1.

The cloned and heterologously transfected TRPV1 met 
all functional expectations: high calcium ion permeability, 
 Ca2+-dependent desensitization and cytotoxicity, specific 
expression in spinal and trigeminal sensory ganglia, and activa-
tion by noxious heat [33]. Only one property required an early 
second paper to demonstrate the activation of TRPV1 by tis-
sue acidosis as in inflammation, tumours, and ischemic muscle 
work [169]. This important source of pain can be blocked by an 
experimental TRPV1 antagonist (BCTC) in a human psycho-
physical model [69]. Loss of sensory neuronal proton sensing 
and of inflammatory hyperalgesia was to be predicted from the 
phenotype of TRPV1 ‘knockout’ mice [31, 44]. However, the 
reduction of behavioural heat sensitivity was marginal in these 
knockout animals. Only recently it was shown that in mice three 
different genes for heat-activated ion channels, TRPV1, TRPA1, 
and TRPM3, need to be deleted in order to abolish noxious heat 
avoidance [173]. In clinical trials, it was therefore surprising 
that some of the developed TRPV1 inhibitors abrogated heat 
sensing in patients to an extent that burn or scalding injuries 
were to be feared. However, translational research on sensory 
neurons and humans (psychophysics) recently confirmed this 
loss of heat sensing after topical capsaicin-induced desensitiza-
tion of the skin [144]. Although the TRPV1 antagonists were 

Fig. 1  Timeline of milestones. 
References mentioned only 
here: [18, 28, 35]
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efficacious analgesics, e.g. in osteoarthritic patients, these drugs 
were not pursued, also because they transiently increased body 
temperature [91]. Other approaches, leaving the native TRPV1 
intact but trying to counteract its sensitisation during inflam-
mation, have unfortunately not been further developed [54, 65, 
155]. One new point of attack has recently been proposed: The 
high calcium conductance of TRPV1 leads to activation of the 
 Ca2+-activated  Cl− channel ANO1 co-expressed in nocicep-
tive neurons which amplifies the depolarizing action and action 
potential discharge; this interaction could be pharmacologically 
targeted [167].

Integrator and sensitizer TRPV1

However, scrutinizing the TRPV1 homotetramer with single-
particle cryo-electron microscopy revealed potential allosteric 
activation mechanisms and ligand binding sites that may in the 
future allow to develop targeted small molecules to interfere 
with one but not the other function of the polymodal receptor 
channel [27, 97]. The cryo-electron microscopy and related 
studies also helped to better understand the paramount capac-
ity of TRPV1 to integrate a multiplicity of endogenous (‘end-
ovanilloids’) and exogenous stimuli by enabling synergistic 
or sensitizing actions of the different signals. Much of this 
capacity is based on the action of phospholipase C (PLC)—
a common activator of many TRP channels—to remove the 
double-edged effectors phosphatidylinositol-4,5-bisphosphate 
 (PIP2) and phosphatidylinositol 4-phosphate (PI4P) from the 
membrane domain hosting TRPV1 [26, 64]. Many G pro-
tein–coupled receptors such as the B2 receptor for brady-
kinin activate PLC and also disinhibit TRPV1. In addition, 
diacylglycerol (DAG), resulting from PIP2 cleavage by PLC, 
activates protein kinase C which phosphorylates and further 
promotes TRPV1 activation. This cascade of events can, for 
example, lower the heat threshold of rat skin nociceptors as far 
as below body temperature, thus likely producing inflamma-
tory pain [96]. Also protein kinase A, activated through pros-
taglandin receptors, can sensitize TRPV1 which may be the 
reason why the COX inhibitor ibuprofen, orally or topically 
administered, strongly reduced the pain from experimental 
tissue acidosis in the skin and muscle in the above-mentioned 
human model [156]. Later, cryo-EM investigations using lipid 
nanodiscs generated snapshots of TRPV1 in interim states, 
providing a glimpse at how gating works [186].

An earlier TRP and other ‘pain‑related’ 
channels

TRPV1 was not the very first ‘pain-related’ ion channel to 
be cloned, though particularly seminal. John Wood and his 
lab had previously discovered the P2X3 receptor channel for 

extracellular ATP and diadenosine polyphosphates (‘alar-
mones’) which are cellular stress signals [36]. In 1996, they 
had cloned the TTX-resistant voltage-gated sodium channel 
NaV1.8 which turned out indispensable in nociceptors for 
action potential generation and encoding of discharge rate at 
noxious cold and hot temperatures [3, 170, 189]. TRPV1 was 
also not the very first TRP channel to be cloned, as Craig 
Montell’s lab (Johns Hopkins, Baltimore, at the time) had 
previously discovered TRPC1, the human homolog of the 
drosophila mutant  Ca2+ channel involved in phototransduc-
tion that had led to the misnomer transient receptor channel 
(TRP) [178]. In fact, TRPV1 behaves only ‘transient’, i.e. 
desensitizing, inactivating during ongoing stimulation, if 
 Ca2+ entry through the channel is not prevented by remov-
ing and adequately buffering extracellular calcium [33]. A 
recent review article provides an overview of the TRP chan-
nel superfamily and its 28 mammalian members [171].

TRPV2

The big wave of TRP channel discoveries gained momentum 
1999 with the cloning by David Julius’ lab of the rodent 
TRPV2, capsaicin insensitive but still named ‘V’ for its sim-
ilarity to TRPV1. TRPV2 first appeared as a heat transducer 
for temperatures > 50° C, but global knockouts showed 
no thermo- or mechanosensory deficits even in inflamed 
skin [32, 126]. However, sensory neuron-specific condi-
tional TRPV2 knockout mice were hyposensitive to nox-
ious pressure and a distinct subpopulation of their sensory 
neurons lacked stretch-activated  Ca2+ influx [85]. Stretch 
activation and high expression of TRPV2 in cardiomyoctes 
prompted clinical studies in dilated cardiomyopathy [80]. 
TRPV2 also plays a role in innate immunity by its expres-
sion in macrophages which require the channel for efficient 
phagocytosis. Like many TRP channels, TRPV2 is redox 
sensitive, even the human homolog, originally insensitive 
to heat, gains heat sensitivity with thresholds below body 
temperature when oxidized, and, vice versa, macrophages 
reduce their phagocytic activity when exposed to reducing 
agents [57].

TRPV4

TRPV4 was cloned in 2000 as an osmoreceptor for hypoto-
nicity and putative stretch receptor but soon shown also to 
serve as a transducer for warm ambient temperatures [62, 
98]. TRPV4 was the first TRP channel mutations of which 
were associated with various genetic diseases in humans 
ranging from asthma over skeletal dysplasias to neuropathy; 
global knockout mice show deficits in various visceral pain 
models [179]. The complex phenomenologies are due to a 
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very widespread expression of TRPV4 in many cell types 
and organs, i.e. in epithelial cells, particularly keratinocytes 
[91]. A stunning cascade of events leading to cholestatic itch 
in liver diseases has recently been established: Enhanced 
blood and skin levels of lysophosphatidylcholine (LPC) acti-
vate TRPV4 in keratinocytes which in response release the 
particular microRNA-146a known to act as an inflammatory 
mediator in the innate immune system. This acts probably 
through toll-like receptor 7 (TLR7) which finally activates 
TRPV1 in nociceptors, some of which also act as pruricep-
tors inducing itch [37].

Price worthy TRPs, TRPV3 and TRPM8

In 2002, the second Nobel laureate Ardem Patapoutian 
entered the stage of TRP channel discoveries. TRPV3 was 
cloned in his lab at the Genomics Institute of the Novartis 
Research Foundation in La Jolla/San Diego, adjacent to the 
Scripps Research Institute where he moved soon after [131]. 
TRPV3, activated by warm temperatures (> 32° C), was 
abundantly expressed in skin keratinocytes, not in rodent 
but in human sensory (DRG) neurons, and accordingly, from 
knockout mice no alterations in thermal preference and nox-
ious heat withdrawal were reported [79]. TRPV3 found great 
attention in dermatology, a human gain-of-function mutation 
is in part responsible for the hyperkeratotic and mutilating 
Olmsted syndrome; TRPV3 plays roles in the control of hair 
growth and lipid secretion, in atopic dermatitis and pruritus 
[91, 107]. However, by optogenetic inhibition of keratino-
cytes in mice, it was recently shown that stimulated ATP 
release from these cells contributes to behavioural heat, cold, 
and mechanosensitivity through neuronal P2X4 purinocep-
tor channels [109, 147], and TRPV3 expression is essen-
tial for the heat-induced ATP release that is able to activate 
nearby DRG neurons in co-culture with keratinocytes [103].

Also 2002, the cold transducer and menthol receptor 
TRPM8 was cloned in Patapoutian’s and, independently, in 
Julius’ lab [106, 131]. TRPM8 is particular among the TRPs, 
as it is alone largely responsible for the delicate sense of 
cooling, being expressed in the ‘cold’ fibres, unmyelinated 
C-fibres in rodents and thinly myelinated in humans. Due to 
the widely overlapping stimulus-response curves of ‘warm’ 
and cold fibres around body temperature, TRPM8 indirectly 
also contributes to the equally delicate sense of warming. 
Ongoing activity in cold fibres and their input to the CNS 
appear to inhibit the throughput of warm fibre activity; tem-
perature increase immediately silences the cold fibres and, 
thus, enables the perception of warming [125]. Accordingly, 
TRPM8 knockouts cannot discriminate between warm and 
cool stimuli; in addition, they do not exhibit inflammatory 
or neuropathic cold allodynia, a painful sequelae of can-
cer chemotherapies [12]. These knockout mice also tend to 

develop obesity due to day-time hyperphagia; and ageing 
wildtypes, showing reduced TRPM8 expression and func-
tion, cannot properly prevent heat loss by vasoconstriction 
in cool environment [141, 168]. Vice versa, TRPM8 agonist 
treatment in wildtypes leads to enhanced energy expendi-
ture and loss of body weight [39]. The inhibitory action of 
TRPM8 expressing cold fibres seems to extend to nocicep-
tion: Hyperalgesia in neuropathy and inflammatory models 
was antagonized by the TRPM8 agonists menthol or ici-
lin at the affected skin or upon intrathecal administration; 
these analgesic effects were lost after specific knockdown 
of TRPM8 by intrathecal antisense oligonucleotides [134]. 
Moreover, a human population identified by single nucleo-
tide polymorphism in or near the TRPM8 gene has been 
found to carry a reduced risk of migraine headaches. Car-
riers also show a reduced expression of TRPM8 in DRGs 
(post mortem) and, in vivo, a correlating reduction of cold 
and cold pain sensitivity [59]. These findings justify the 
clinical studies with menthol and various TRPM8 antago-
nists against pain and itch [91]. A particular role of TRPM8-
expressing nerve fibres in the cornea has been identified: 
When the tear film on the eye evaporates, the temperature 
drops and the osmolality increases; both effects are adequate 
stimuli to TRPM8 and lead to reflex blinking and lacrima-
tion [127, 136]. The structure of TRPM8 has been discov-
ered by cryo-EM [184].

TRPA1, almost universal chemosensor 
and polymodal receptor

Although an ankyrin-rich TRP-like protein was first iden-
tified in 1999 in human fibroblasts, its huge potential as 
ANKTM1, soon renamed TRPA1, came to appearance in 
2003 with its cloning in Patapoutian’s lab. First described 
as a noxious cold transducer, its role as a chemosensor for 
many pungent plant compounds such as the volatile mustard 
oil ingredient allyl-isothiocyanate (AITC, e.g. in horserad-
ish) was soon recognized and its function as an effector ion 
channel for bradykinin and products of phospholipase acti-
vation such as arachidonic acid and diacylglycerol [11, 158]. 
David Julius’ lab soon joined in, extending the library of 
TRPA1 agonists to other isothiocyanates and, surprisingly, 
to delta(9)-tetrahydrocannabinol (THC) that was already in 
fashion as a would-be analgesic and now turned out to be a 
potentially painful irritant. In addition, they confirmed the 
TRPA1 activation by G protein–mediated phospholipase C 
(PLC) activation and provided first evidence for TRPA1 gat-
ing by intracellular calcium ions [82]. Meanwhile, the bind-
ing pocket in TRPA1 for intracellular  Ca2+ ions, accounting 
for activation, desensitization, and metabotropic modulation, 
has been identified by cryo-EM analysis and the mecha-
nisms of cysteine-dependent activation by intracellular 
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electrophilic compounds as AITC have further been elu-
cidated [187]. The latter involves a most unusual cova-
lent, but not irreversible, ligand binding principle, which 
can lead to the formation of activating disulphide bridges 
between adjacent cysteine thiols. This applies, for exam-
ple, to methylglyoxal, a cytotoxic side product of glycolysis, 
accumulating in diabetic or uremic patients and contributing 
to their potential development of painful neuropathy [48]. 
Methylglyoxal belongs to the highly reactive endogenous 
carbonyl species (RCS) that are TRPA1 agonists as well as 
the reactive oxygen and nitrogen species (ROS, RNS) such 
as  H2O2 and peroxynitrite [6, 8]. However,  H2O2 is used in 
molar concentration to clean and disinfect wounds which 
does not hurt, in contrast to the TRPV1 agonist ethanol. Rea-
son for the discrepancy is that many of the reactive species, 
in particular  H2O2, are relatively impermeable and there-
fore much more potent at oxidizing proteins like TRPA1 
if generated, or experimentally applied, intracellularly. An 
example is again methylglyoxal which is overproduced in 
the insulin-independent neurons under the substrate pressure 
of hyperglycaemic episodes in diabetes, potentially evoking 
pain [7]. Other examples are  Fe2+ ions as in heme which 
potentiate  H2O2 activation of TRPA1 by catalytic formation 
of hydroxyl radical  (OH.), or the heme precursor protopor-
phyrin IX, a chromophore present in all cell types, which 
generates singlet oxygen (1O2) activating TRPA1 under the 
influence of violet visible light (406 nm). This causes pain 
when unpigmented human skin is irradiated, which serves 
as a model for the painful photosensitivity of porphyria 
patients [9, 72]. Near ultraviolet light (UVA) could also act 
through creating oxidative stress, but in human melanocytes 
it is a UVA-induced, retinal- and opsin-dependent activa-
tion of PLC that activates TRPA1, channelling  Ca2+ ions 
which stimulate the cellular melanin synthesis [16]. This is 
a striking example for the widespread extraneuronal TRPA1 
expression, particularly in epithelial cells, which makes the 
development of TRPA1 blockers for clinical use so difficult 
and lengthy, although preclinical results are most promis-
ing. On the other hand, epigenetic regulation of expression 
of TRP channels in diseases and overexpression in certain 
tumours may open new therapeutic options [70, 91].

TRPA1 is the most polymodal receptor channel of all 
TRPs, activated or inhibited by hundreds of natural and 
synthetic chemicals including common drugs such as dipy-
rone (metamizol) and acetaminophen (paracetamol), the lat-
ter accounting for analgesic and antipyretic effects [61, 77, 
119, 149], and somehow contributes to noxious heat and 
cold transduction [74, 110, 154]. Particular chemical cases 
are cigarette smoke and its nicotine-free gaseous phase, 
tissue acidosis activating only the human TRPA1 but not 
rodent and non-human primate homologs, and nitroxyl anion 
 (H+NO−) which results from the chemically unusual interac-
tion of the two gasotransmitters  H2S and NO. [47, 87, 142].

TRPA1 channelopathy and other diseases

A peculiar human TRP channelopathy discovered in mem-
bers of a Colombian family is a gain-of-function muta-
tion in the TRPA1 gene that leads to severe upper body 
musculoskeletal pain attacks when fatigue, exhaustion, 
hunger coincide with a chilly environment [92]. This 
familial episodic pain syndrome (FEPS1) and its very 
particular characteristics may result from an inhomoge-
neous composition of the TRPA1 tetramer, consisting of 
wildtype and mutant monomers in various combinations 
[117]. Among the preclinical disease models, TRPA1 is 
involved in almost all painful or pruritic disorders, promi-
nently in respiratory (cough), pancreatic, and inflamma-
tory bowel disease (IBD) models [70, 91]. In three models 
of chemically induced colitis (TNBS, DSS, oxazolone), 
TRPA1 gene deletion or pharmacological block prevented 
or cured the disease. In addition, the TRPA1-mediated (via 
 Ca2+ influx) neuropeptide release, of substance P (SP) in 
particular, was identified as the decisive disease promoter; 
disruption of SP signalling also had preventive or curative 
effects [50–52]. These findings, including the detrimental 
role of SP, were soon corroborated in pancreatitis mod-
els [34]. Nonetheless, the gastrointestinal research field is 
still controversial with respect to TRP involvement, also 
because none of the disease models is fully accepted to 
reproduce the human diseases [43]. Part of the controversy 
resulted from the use of capsazepine, a classical capsaicin 
antagonist developed long before TRPV1 was cloned; the 
much-used drug tool was reported to exert curative effects 
in models of colitis and pancreatitis [58, 180]. However, it 
then turned out that these beneficial effects were the same 
in global TRPV1 knockouts, and that capsazepine actually 
acted as a weak TRPA1 agonist with strong desensitizing 
aftereffects [90]. Systemically administered (in drinking 
water) capsazepine even achieved a body-wide desensiti-
zation against noxious heat stimuli and chemical irritants 
in wildtype mice but not TRPA1 knockouts—much like 
systemic capsaicin (or resiniferatoxin) would do, reflect-
ing the co-expression of TRPA1 and TRPV1 in sensory 
neurons and their cross-desensitizing effects [89].

TRPA1 and other mechanosensitivities

The direct and indirect mechanosensitivity of TRPA1 
completes the picture of TRPA1 polymodality. Its mecha-
nosensitivity was discovered in David Corey’s lab where 
global knockouts had been generated that showed deficits 
in sensing ice cold, chemical, and punctate mechanical 
stimuli [94]. Ardem Patapoutian’s and a collaborating lab 
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soon joined in demonstrating mechanical activation of 
TRPA1 first in C. elegans and then in mice where it con-
tributes to inflammatory hyperalgesia [88, 132]. Recently, 
the inherent responsiveness to graded (negative) pressure 
of the purified hTRPA1 protein reconstituted in artifi-
cial lipid bilayer has been established by single-channel 
patch-clamp recordings [111]. A hint for the mechanism 
of activation comes from lipopolysaccharides, toxic decay 
products of Gram-negative bacteria that activate TRPA1 
without being able to bind to the receptor. Instead they 
integrate into the outer leaflet of the neuronal membrane, 
distorting it and exerting ‘force-from-lipid’ on the trans-
ducer channel [108]. This concept had been introduced in 
2004 and explained by ‘hydrophobic mismatch’ between 
lipophilic amino acid helices of the transmembrane com-
ponents of stretch-activated ion channels and the surround-
ing lipid bilayer [159]. The authors employed a tarantula 
toxin (GsMTx4) that inhibited mechanosensitive TRPC1, 
TRPC6, and other stretch-activated ion channels but later 
was shown to also activate TRPA1 potently [71]. A stun-
ning example for the versatile application of mechano-
sensitivity in evolution is Drosophila vision where stretch 
activation of TRP and TRPL ion channels by force-from-
lipid is the final step in the ‘photomechanical’ transduc-
tion cascade that leads to measurable contraction of the 
omatidium [68].

Mechanical hyperalgesia is the main reason for chronic 
pain in daily life, e.g. in osteoarthritis. One reason why the 
mechanisms of painfully exaggerated mechanosensitivity 
are not fully unravelled is that so many functional proteins 
show mechanosensitive properties, one way or the other. Not 
only ion channels and G protein–coupled receptors but even 
the ubiquitous phospholipases are mechanosensitive due to 
their ‘interfacial activation’, enhancing the catalytic activ-
ity 1000-fold upon contact of the enzymes with the inner 
leaflet of the plasmalemma which is induced by increased 
membrane tension, heating, submicromolar  Ca2+ concentra-
tions, or ERK/MAPkinase signalling [115]. This mechanism 
may be involved in the dramatic increase of prostaglandin 
E2 release from the mouse colon upon distension by intralu-
minal pressure. The same stimulation also leads to a graded 
release of vasoactive neuropeptides (CGRP and SP, ‘neu-
rogenic inflammation’) from colonic primary afferents and, 
in vivo and in parallel, to a measurable (iEMG) muscular 
defence reaction in the abdominal wall [114, 145]. Both 
‘visceromotor’ response and CGRP release upon colonic 
distension depend largely and to about equal degrees on 
TRPV4 and TRPA1 expression and can pharmacologically 
be diminished by selective inhibitors. However, not every 
neuronal membrane equipped with TRPA1 is mechanosensi-
tive. Nociceptive nerve fibres in peripheral nerves do express 
TRPA1 as well as TRPV1 in their axolemma and respond to 
AITC as well as to capsaicin and heat, just like their nerve 

endings in the skin, but they are not sensitive to pressure, 
not even to forces much higher than required to excite their 
polymodal terminals [17, 75, 177]. This selective suppres-
sion of one but not the other modality could possibly be due 
to equally mechanosensitive antagonists such as the two-
pore domain  K+ channels (K2P) TRAAK and TREK1 that 
could counteract the depolarization by TRPA1 by hyper-
polarizing currents. Their activation by force-from-lipid is 
well established [23, 24]. Both K2P channels also play a role 
in the fine adjustment of noxious heat and cold sensitivity, 
counteracting TRPV1 and TRPM8 [120].

Unravelling mechanosensitivity has recently been further 
complicated by the optogenetic demonstration that Schwann 
cell processes, joining sensory nerve terminals into the epi-
dermis, transduce and transmit not only heat and cold but 
also mechanical stimuli, evoking pain-related behaviours in 
mice [1]. The transducers and transmitter of the Schwann 
cells have not yet been identified, but the findings remind 
of the above-mentioned TRPV3 and TRPA1 expression in 
keratinocytes that confers the same sensory capacities on 
cells that are also in close contact with nociceptive nerve 
endings in the skin [147]; as a possible transmitter, ATP 
had previously been proposed [103]. In addition, PIEZO1 
and PIEZO2 have recently been found in keratinocytes and 
in Schwann cells, respectively [76, 153].

Nobel‑prized PIEZOs

In view of the confusing multiplicity of cell types showing 
mechanosensitivity and the large variety of possible mech-
anisms, the discovery in Ardem Patapoutian’s lab of the 
PIEZO channels feels like the revelation of a great unifying 
concept [41]. Indeed, they account for a whole range of low-
threshold mechanosensitivities in various cell types and sen-
sory nerve terminals. Like expression cloning for TRPV1, 
also identification of the PIEZOs required persistence for a 
brute force approach on mouse Neuro2A neuroblastoma cells 
which showed constitutive mechanosensitivity [123]. Can-
didate genes with transmembrane domains were addressed 
one-by-one by means of RNA silencing until the mecha-
noreceptor, encoded by the Fam38A gene, was found. The 
last one of 72 candidates brought this success. The receptor 
was named PIEZO1, derived from πιέζω the Greek word for 
exerting pressure. In hindsight, there are also Greek words 
for touch or stretch, but the existence of technical piezoelec-
tric sensors, which convert movement into voltage, was sug-
gestive. PIEZO1 is sufficient to endow HEK293t cells with a 
mechanically induced unselective cation current in response 
to perturbation of the lipid bilayer [45]. Its molecular size as 
well as 38 transmembrane domains by far exceeded known 
ion channel families at the time. Although PIEZO1 expres-
sion is reported from sensory neurons, [143], the important 
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role is played by its only known sibling, PIEZO2, which 
was identified by sequence homology. The latter is not only 
present in DRG neurons but also expressed in the cutaneous 
Merkel cells that form a functional complex (‘touch dome’) 
with the terminals of a fast conducting Aβ-fibre; together 
they constitute an exquisitely sensitive tactile receptor [181]. 
Mice with a conditional deletion in DRGs of the gene for 
PIEZO2 showed severe deficits in proprioception and cuta-
neous mechanosensitivity [139], much like patients with a 
lack-of-function mutation who exhibit ataxia and dysme-
tria in addition to a lack of interoception and discriminative 
touch perception [38].

PIEZOs beyond somatosensation

With the establishment of PIEZO2 in mechanosensation, 
Ardem Patapoutian focussed on other body sites. This 
sparked a remarkable set of so far 30 publications alone from 
his laboratory, and occurrences in far more functions than 
expected. PIEZO2 is found in the vagal stretch receptors 
of the tracheobronchial wall and is important for regular 
breathing in neonatal life and later for the Hering-Breuer 
lung inflation reflex that ends inspiration and initiates expira-
tion and bronchial relaxation [121]. Enterochromaffin cells 
in the gastrointestinal tract are mechanosensitive through 
PIEZO2 and this regulates serotonin release controlling 
secretion and motility [5]. In the bladder, PIEZO2 is found 
in urothelial cells as well as in the innervating afferent neu-
rons subserving urinary function [105]. As previously men-
tioned for the skin, the dual appearance in neuronal and non-
neuronal cells required targeted deletions to conclude on the 
relative importance of the receptor in a particular cell type.

PIEZO1 can keep up with the multiplicity of diverse func-
tions of PIEZO2. PIEZO1 in endothelial cells is essential for 
vascular development and remodelling due to its sensitivity 
for blood flow–induced shear stress [138]. Red blood cells 
require PIEZO1 to cope with the mechanical stress when 
passing narrow capillaries [25]; rare mutations in the gene 
lead to different syndromes causing haemolytic anaemia in 
patients [4]. A PIEZO1 gain-of-function variant with about 
30% prevalence in Africa was shown to reduce red blood 
cells size and to increase resistance against Plasmodium 
falciparum infection [101]; whether the same variant is of 
importance for glaucoma is less clear [13]. This variant also 
shows a role of PIEZO1 in upregulating phagocytic activity 
of macrophages which leads to increased erythrocyte turno-
ver and elevated plasma iron levels [102]. PIEZO1 in osteo-
blasts plays a role in bone homeostasis and remodelling; the 
conditional deletion of the channel leads to reduced bone 
mass and fractures [174]. This seems to be mediated by an 
effect of PIEZO1 on developmental fate in the osteoblastic 
lineage [160].

A major step forward was the discovery of a chemical 
agonist for PIEZO1, the first called Yoda1 [162], followed 
by the chemically different Jedi1/Jedi2 [176], demonstrating 
druggability, but still with limited potency. These substances 
do not activate PIEZO2, for which no agonist has been dis-
covered. The engineering of chimeras between PIEZO1 
and PIEZO2 helped to identify the PIEZO1 binding sites 
for these agonists [95]. An important leap was solving the 
cryo-EM structures of PIEZO1 [60, 63, 148], and PIEZO2 
[175]. The receptor channels are trimers (> 1 MegaDalton) 
with large propeller-like blades around an extracellular 
‘nano-dome’, which generate a large in-plane membrane 
area expansion. Deformation of the latter opens the pore, 
but more work is still required to elucidate the molecular 
mechanics [166].

PIEZO2 and pain

The Nobel committee’s press release hardly mentioned the 
word pain in conjunction with PIEZO2, although mechani-
cally induced pain and hyperalgesia under the physical loads 
of daily life are a scourge of humanity with a large unmet 
medical need. However, PIEZO2 does seem to be involved 
in pain, although mainly in the particular pathophysiology 
of tactile allodynia, painful sensations evoked by touching or 
brushing affected skin, which are a hallmark of neuropathic 
syndromes. This phenomenon is attributed to ‘central sen-
sitization’: Enhanced transmission of non-nociceptive input 
to spinal dorsal horn neurons in the nociceptive pathway; 
transient noxious stimulation can temporarily induce this 
condition and heating capsaicin-treated skin is a human 
model. Applying this model to the patients with a loss-of-
function mutation in the gene for PIEZO2 failed to cause 
tactile allodynia, consistent with their inability to detect light 
touch and vibration but in contrast to their largely retained 
perception of innocuous and noxious pressure [29, 163]. 
These results are in agreement with findings from condi-
tional PIEZO2 knockout mice that showed major deficits in 
responsiveness to various weak mechanical stimuli but only 
minor reduction of responses to pin prick and pinch. Single-
fibre recordings from C- and Aδ-nociceptors in the ex vivo 
saphenous nerve-skin preparation showed only reductions 
of the short dynamic phase of discharge evoked by noxious 
punctate force stimulation, the subsequent static discharge 
phase was the same in knockouts and wildtypes [116]. In 
the rat skin, only C- and Aδ-nociceptors but not low-thresh-
old Aβ-mechanoreceptors were able to encode different 
noxious pressures over two minutes of constant stimula-
tion, and only the high-threshold Aδ-fibres (HTM-Aδ) got 
markedly sensitized by such traumatic stimuli, which cor-
responds to mechanical hyperalgesia after pinching human 
skin folds [67, 140]. Similar myelinated high-threshold 
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mechanoreceptors able to discriminate intensities of nox-
ious mechanical stimuli have recently been found by human 
microneurography, but the patients with PIEZO2 loss-of-
function were able to discriminate the stimuli that excited 
those nerve fibres [118].

Apart from low-threshold mechanoreceptive (LTM) 
Aβ-fibres that all express PIEZO2, this expression in LTM 
C-fibres has not safely been established [66]. These slowly 
adapting fibres have been shown to contribute to tactile allo-
dynia in mouse models of inflammation, nerve injury, and 
trauma [56, 152]. Paradoxically, the same LTM C-fibres 
seem to mediate pleasant, rewarding touch in humans, 
whereas they also contribute to signalling pain in the rodent 
formalin test that is largely mediated by TRPA1 activation 
[99, 172].

The other extreme in the skin is represented by the 
apparently mechanoinsensitive C-fibres  (CMi or C-MIA, 
‘sleeping’ or ‘silent’ nociceptors) that respond vigor-
ously to capsaicin and histamine and can be sensitized to 
mechanical stimulation by inflammatory mediators includ-
ing nerve growth factor (NGF).  CMi-fibres have been dem-
onstrated in rat and non-human primate skin as well as by 
human microneurography [93, 122, 151, 183]. In mouse 
skin,  CMi have not safely been identified [73]. Recently, 
a novel biomarker for  CMi in mouse sensory neurons has 
been discovered, the nicotinic acetylcholine receptor subunit 
alpha-3 encoded by the CHRNA3 gene, and it was shown 
that the labelled DRG neurons project to visceral organs 
and other deep tissues but not to the skin. These initially 
mechanoinsensitive neurons (in primary culture) express 
PIEZO2 and become responsive to mechanical stimulation 
after prolonged treatment with an inflammatory mediator 
combination or with NGF [133]. This corroborates earlier 
work from Patapoutian’s lab showing that bradykinin, by 
activation of protein kinase A or C, potentiates mechanically 
evoked inward currents through PIEZO2 [46]. In addition, 
a neuronal upregulation of PIEZO2 immunoreactivity has 
recently been described that follows upon cutaneous inflam-
mation, osteoarthritis, and in neuropathic pain models [153]. 
This may indicate an epigenetic upregulation of PIEZO2 
expression that may not only ‘awaken sleeping’ nocicep-
tors in viscera, but also enhance the mechanosensitivity of 
the ‘ordinary’ polymodals in the skin. Acute exposure of 
those mechano-heat-sensitive C-fibres to a combination of 
inflammatory mediators is not sufficient to sensitize them 
to mechanical stimulation, although it most effectively 
enhances heat responsiveness [150]. This suggests that a 
transcriptional upregulation is required to achieve sustained 
mechanical hypersensitivity as induced, for instance by 
axonal transport of NGF and activation of ERK1/2 regulat-
ing nuclear gene expression [133]. Microinjection of NGF 
in human skin induces delayed mechanical hyperalgesia last-
ing for up to seven weeks but also increases cold and heat 

sensitivity for up to three weeks, suggesting upregulation 
of several sensory transducers [146]. Consequently, several 
pharmaceutical companies have developed monoclonal anti-
bodies against NGF and performed clinical trials on osteo-
arthritic pain, but none has yet been approved by FDA and 
EMA, perhaps because the drugs were ‘too good’, seducing 
patients to overload their worn-out joints with sportive activ-
ities which too often led to joint replacement surgeries [137].

Finally, a large discrepancy needs to be discussed that 
occurs between the DRG patch-clamp and the single-fibre 
or microneurographic recordings: The mechanically evoked 
depolarizing currents are all more or less rapidly adapting 
within a range of some hundreds of milliseconds. However, 
the discharge activity of ‘real’ nociceptors, i.e. cutaneous 
nerve endings, lasts as long as the noxious pressure is main-
tained following an initial dynamic response [67, 78]. This 
indicates a heterogeneity of mechanically evoked currents, 
which leaves room for the previously mentioned mechano-
sensitivities of other mechanisms of stretch activation. The 
discrepancy goes even further, considering that a constant 
noxious pinch of human skin causes increasing pain, while 
the nociceptors clearly show adaptation, though with hun-
dreds of seconds time constant [2, 55, 67]. This contradic-
tion may be resolved by recruitment of initially unaffected 
nociceptors through diffusing mediators (neuropeptides, ara-
chidonic acid derivatives) released from the bruised skin. 
Indeed, HTM Aδ-fibres show delayed and crescendo-like 
discharge activity when skin just outside their receptive field 
is sustainably pinched [140]. This sensitizing mechanism 
may involve closing the K2P channels and/or activating the 
TRP channels which are chemosensors in the first place.

Other discoveries of the laureates

The Nobel Prize has been awarded ‘for their discoveries of 
receptors for temperature and touch’. However, the laure-
ates also have other achievements that are less well known. 
As a punctual and incomplete selection, David Julius has 
cloned the serotonin receptor 5-HT1c [84], the only iono-
tropic 5-HT3 serotonin receptor [104] and an ATP receptor 
[100]. He also addressed Gα protein coupling [40] before 
he turned his expression cloning expertise towards the 
discovery of TRP channels [30]. Several unusual channel 
functions have been elucidated by his affinity to toxins, not 
only modulating TRP channels [22] but also a coral snake 
toxin acting on acid-sensing ion channels [21], a tarantula 
toxin acting on NaV1.1 [124], a pit viper toxin causing ATP 
release [185], or a snail toxin inhibiting 5-HT3 receptors 
[53]. As a side note, papers considering electroception [14, 
15], itch [49], but also the heterogeneity of mechanosensitive 
sensory neurons should be mentioned [20]. The latter topic 
leads to Ardem Patapoutian, who started with developmental 
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biology. The first first-author papers consider muscle devel-
opment in mice [129, 130] before turning to the development 
of sensory neurons. Here, wnt-based development through 
neurotrophin signalling [128] and TrkA and TrkC influence 
on neuronal fate should be mentioned [112]. The papers 
considering TRP channels dominate the publication list in 
the period 2002–2011 which switches to PIEZO channels 
thereafter. Exceptions are the contributions to the physiology 
of volume-regulated anion channels [86, 135, 161], although 
an association with mechanical activation could be argued.

Translational relevance in medicine

For the few who suffer from a rare disease and undergo 
human genetic diagnostics, understanding the functions of 
the described ion channels allows to judge whether a genetic 
alteration fits to the observed phenotype. Several single 
nucleotide polymorphisms or other mutations with pheno-
typic consequence are already known. The time of individual 
gene editing will come; therefore, loss- or gain-of-function 
mutations with a severe phenotype in well-understood ion 
channels could, one day, prompt gene-therapeutic correction.

For the many other patients, new pharmacological options 
would be relevant. So far, these have not materialized, and 
this could perhaps never happen due to the widespread bod-
ily functions of these targets. Despite extensive efforts to 
target the TRP channels, no TRP channel inhibitor is on the 
market; considering TRPV1, many drug development pro-
jects have been scrapped—perhaps overprotectively—due to 
adverse effects. Also, more recently developed compounds 
not increasing body temperature seem to lack efficacy, 
although this cannot be well judged as little is published 
about ‘failed’ trials. The PIEZOs are involved in so many 
physiological functions that it remains open whether there 
will be indications where intended effects would outweigh 
off-target effects. In case there were tissue-specific cofactors 
of PIEZO channels, these might also allow to target their 
function only in a particular tissue. Epidermal application 
of antagonists for patients with mechanical hypersensitivity 
could avoid systemic side effects.

Even at this time, when the milestones of scientific dis-
covery contributed by the Nobel laureates have not mani-
fested in therapeutic options for the population at large, the 
fundamental importance of knowing and understanding a 
physiological mechanism on which models of disease are 
resting can hardly be overstated.
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