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1  |  INTRODUC TION

Recent estimates suggest that lions (Panthera leo) have undergone a 
43% population decline between 1993 and 2014 (Bauer et al., 2016) 
and that remaining lion populations in West, Central, and East Africa 
may decline by 50% over the next two decades (Bauer et al., 2015). 
Furthermore, lions may occupy as little as 8% of their historic range 

(Bauer et al., 2016). Such estimates are plagued with uncertainty 
due to the difficulties of estimating abundance and distribution of 
these cryptic and wide-ranging species, difficulties that are ampli-
fied in human-dominated landscapes (Funston & Henschel, 2018). 
However, it is within these landscapes that the greatest numeric and 
geographic declines are likely to have occurred resulting in calls to 
focus conservation efforts in and around designated protected areas 
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Abstract
Throughout Africa, lions are thought to have experienced dramatic population decline 
and range contraction. The greatest declines are likely occurring in human-dominated 
landscapes where reliably estimating lion populations is particularly challenging. By 
adapting a method that has thus far only been applied to animals that are habituated 
to vehicles, we estimate lion density in two community areas in Kenya's South Rift, 
located more than 100 km from the nearest protected area (PA). More specifically, 
we conducted an 89-day survey using unstructured spatial sampling coupled with 
playbacks, a commonly used field technique, and estimated lion density using spatial 
capture-recapture (SCR) models. Our estimated density of 5.9 lions over the age of 
1 year per 100 km2 compares favorably with many PAs and suggests that this is a key 
lion population that could be crucial for connectivity across the wider landscape. We 
discuss the possible mechanisms supporting this density and demonstrate how rigor-
ous field methods combined with robust analyses can produce reliable population 
estimates within human-dominated landscapes.
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(PAs) by bolstering the levels of funding and protection (Lindsey 
et al., 2017, 2018). While PAs are frequently perceived to be bas-
tions of hope for lion conservation, they may only encompass ~56% 
of current lion range (Lindsey et al., 2018), and lions and their prey 
may also be declining in a high proportion of Africa's PAs (Lindsey 
et al., 2017). The remaining ~44% of lion range falls within a mosaic 
of land uses from human-dominated landscapes to private land and 
conservancies. In many cases, land use is mixed, with people, live-
stock, and lions sharing the same space. Where tourism is not the 
primary activity, lions are typically unhabituated to vehicles, illusive, 
and cryptic making them harder to monitor with direct methods, 
such as those that involve close-up photography for individual iden-
tification. However, since such areas host a significant proportion 
of lion range, there is an urgent need for robust density estimation 
methods.

Over the last decade, practitioners interested in estimating wild-
life densities have developed, adapted, and applied spatial capture-
recapture (SCR) models to fit a wide variety of data types and 
collection protocols (Royle et al., 2013). This flexibility, coupled with 
a sound theoretical and statistical framework, has seen SCR meth-
ods rapidly emerge as the preferred option for many large carnivore 
population monitoring programs (e.g. Bischof, Milleret, et al., 2020; 
Duangchantrasiri et al., 2016). A key data requirement is the unam-
biguous individual identity of detected animals (but see Augustine 
et al., 2018; Chandler & Royle, 2013; Dey, Delambady, Karanth, 
et al., 2019 for analytical options involving unidentifiable and par-
tially identifiable individuals). To identify individual carnivores within 
an SCR framework, researchers generally rely on DNA or unique 
pelage markings (see Gopalaswamy, Royle, Delampady, et al., 2012 
for an example combining these two data sources). To obtain DNA, 
a variety of hair traps have been used (e.g. Boulanger et al., 2018; 
Roffler et al., 2019), while scat sampling is also common (e.g. López-
Bao et al., 2018), and may be particularly useful at large spatial scales 
(e.g. Bischof, Milleret, et al., 2020). For species with unique coat pat-
terns, camera traps are frequently the tool of choice (for a review 
see Green et al., 2020). While SCR models were originally designed 
for structured data, Russell et al. (2012) extended these to accom-
modate unstructured search effort as they conducted foot-based 
searches for mountain lions (Puma concolor), which were then treed 
by trained dogs and biopsy darted.

Similar studies have been conducted on African lions and chee-
tahs (Acinonyx jubatus), combining unstructured vehicle-based 
searches during daylight with close-up photography (Braczkowski 
et al., 2020; Broekhuis et al., 2021; Elliot et al., 2020; Elliot & 
Gopalaswamy, 2017). However, these studies occurred in areas 
where lions were habituated to vehicles and relatively easy to find, 
photograph, and individually identify, potentially limiting the appli-
cability of these techniques to PAs. Here we adapt the approach 
taken by Elliot and Gopalaswamy (2017) to estimate lion densities 
in an unprotected area by repurposing a traditional field method, 
playbacks, and combining this with unstructured search encounter 
protocols, conducted primarily at night. Despite taking most ID pho-
tographs at night, we did not use any night vision equipment, and all 

photographs were taken using a spotlight and relatively inexpensive 
DSLR cameras.

2  |  METHODS

2.1  |  Study area

Almost 100 km from the nearest PA (Maasai Mara), this survey was 
conducted in Shompole and Olkiramatian, two communally owned 
and managed areas in Kenya's South Rift Ecosystem (Figure A1). The 
~358 km2 study area (1°58 S, 36° 21 E) is semi-arid, with 400–600 
mm mean annual rainfall (Russell et al., 2018). High evapotranspira-
tion rates and low rainfall result in little standing water outside the 
rainy season. The perennial Ewaso Ngiro River bisects the area—east 
of the river is designated for permanent settlement and used for wet 
season livestock grazing; west of the river is used for dry season 
livestock grazing and also acts as a wildlife conservancy (Figure 
A1). Livestock rearing occurs in both communities and crop farm-
ing occurs to the north-west of Olkiramatian and the south-west of 
Shompole (Russell et al., 2018). The most abundant prey species for 
lions within the survey area were wildebeest (Connochaetes taurinus, 
~3.3/km2) and zebra (Equus quagga, ~6.7/km2), with cattle (~6.2/km2) 
and sheep and goats (~52.2/km2) being the primary domestic stock 
(Russell et al., 2018).

2.2  |  Field methods

Fieldwork was conducted over an 89-day period (September 17, 
2018 to December 14, 2018) using two vehicle-based protocols to 
locate lions. The search encounter protocol consisted of an observa-
tion team covering the study area in a uniform manner while actively 
searching for lions and fresh tracks and recording their search ef-
fort (see Elliot & Gopalaswamy, 2017). When sampling at night, a 
powerful spotlight was used to scan the surroundings from an ele-
vated position as the vehicle moved. The playback protocol entailed 
broadcasting sounds at 95DB to attract lions at night. Playback sites 
were chosen either opportunistically or when fresh tracks had been 
found. On all occasions, sections of an opportunistically collected 
carcass of either a giraffe (Giraffa camelopardalis) or a plains zebra 
were used as a bait. Upon arrival at a site, observers tied the bait to 
a tree, positioned the vehicle in a hidden area that allowed for pho-
tographing the baited area without moving and waited in silence for 
10 min, then broadcast for 5 min, repeating this cycle, and rotating 
the speaker 90° until four broadcasts had been completed or lions 
had appeared. Each playback lasted a maximum of 70 min. We used 
standard sounds that have been successfully used to attract lions in 
traditional playback surveys (buffalo [Syncerus caffer] calf in distress, 
squealing pig, squabbling hyaenas [Crocuta crocuta], or if male lions 
were thought to be in the area we used a recording of a lone sub-
adult male lion roaring; e.g., Cozzi et al., 2013). The spatial location 
and date of each playback were recorded.
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When lions were located, a series of close-up photographs were 
taken of each lion whenever possible. All photographs were taken 
with DSLR cameras (Nikon D90 with a 300 mm F4 lens). When lions 
were sighted at night, a white-light spotlight was switched on be-
fore slowly focusing it on the animal and taking photographs with 
the aid of the inbuilt camera flash. The photographs were later used 
to unambiguously identify individuals based on their unique whis-
ker vibrissae spots and other distinguishing features (Pennycuick & 
Rudnai, 1970), exclude individuals under the age of one year based 
on phenotypic features (Miller et al., 2016), assign gender based on 
secondary sexual characteristics, and finally build capture histories 
(for details see Elliot et al., 2020).

2.3  |  Analytical framework

We used Bayesian SCR models to estimate key state variables. To 
model the spatial distribution of lions (state process), we first gener-
ated a state-space by adding a 15 km buffer around the sampled 
area (Royle et al., 2013). Next, we generated equally spaced pixels 
(0.5 km2) representing potential activity centers across the 2358 
km2 state-space and masked out agricultural areas and large water 
bodies as unsuitable habitat (Figure A1). The value of M (the data-
augmented value of abundance in the larger state-space) was set at 
250 (Royle et al., 2009).

To describe the manner in which individuals were detected during 
the survey (observation process), we compiled a standard SCR array 
(Gopalaswamy, Royle, Hines, et al., 2012) consisting of individuals, 
trap locations (defined by grid cells of 1 km2), and sampling occa-
sions. Here a trap refers to any grid cell within which we invested 
either search encounter or playback effort during the survey. Since 
the intensity and type of effort invested might influence detection 
rates, we included trap and sampling occasion-specific covariates for 
the search encounter protocol and the playback protocol. Including 
these detection covariates extends the SCR model used in Elliot and 
Gopalaswamy (2017) to accommodate multiple field protocols that 
can be adapted to local field conditions. We included sex-specific 
covariates when defining the observation process.

2.4  |  Candidate models

We defined four a priori models that assumed (1) both the basal 
encounter rate 

(
�0

)
 and the rate of decline in detection probability 

(�) are sex-specific, (2) �0 is not sex-specific but σ is sex-specific, (3) 
neither �0 nor � is sex-specific and (4) �0 is sex-specific but σ is not 
sex-specific (see Table 1 for parameter definitions). Each candidate 
model included both the search encounter protocol (effort), taken in 
the logarithmic scale, and the playback protocol (effort2), taken as an 
indicator (0 or 1) variable. The detection function parameter (�) was 
fixed to 1, which implies a fixed half-normal detection function. The 
probability of detecting lion i in pixel j on sampling occasion k

(
�ijk

)
 is 

defined by a complementary log-log function of covariates:

where f
[
dist (i, j) |�, �sex

]
 describes how detection rate is a function of 

distance between the activity center of individual i  and pixel j, which 
are conditional on � and �sex.

We ran the models in R (R Core Team, 2021), using the same 
priors as Broekhuis and Gopalaswamy (2016) and adapted the code 
provided by Elliot and Gopalaswamy (2017) to include the playback 
covariate. Each model was set to run for four chains, each with 
51,000 iterations and an initial burn-in of 1000 iterations. We as-
sessed convergence using the Gelman-Rubin diagnostic (Gelman & 
Rubin, 1992).

Our model choice was informed by a combination of three cri-
teria (Elliot et al., 2020): Bayesian p-value (Royle et al., 2009), the 
logarithm of the Marginal Likelihood using the Harmonic Mean es-
timator (MLHM, Dey, Delambady, & Gopalaswamy, 2019), and pair-
wise correlation plots between estimated parameters, where we 
were particularly concerned with correlations involving the density 
parameters. Input files and R code used to run the analyses are pro-
vided in Appendix 2.

2.5  |  Posterior mean abundance

A previous study in this landscape reported lion abundance and 
density estimates for a 250 km2 area that is completely encom-
passed within our larger survey area (358 km2) (Schuette et al., 
2013). Although we did not have precise spatial information from 
that study, we were interested in discussing our results in the con-
text of Schuette et al. (2013) and thus computed two abundance 
estimates: first, we calculated posterior mean abundance for our 
survey area using area (358 km2) multiplied by posterior mean 
density; second, we added a meaningful and conservative buffer 
around the sampled traps that was equivalent to the weighted 
mean of the estimated movement parameters (�male, �female). For all 
iterations of the Markov Chain Monte Carlo (MCMC) outputs, we 
took the sum of all pixels within the buffer and computed poste-
rior mean abundance. For both abundance estimates, we computed 
posterior standard deviation (PSD) and 95% highest posterior den-
sity intervals (HPD).

3  |  RESULTS

During the 89-day survey, we drove 2701 km and conducted 14 
playbacks in search of lions. This resulted in 84 detections of 19 
individuals (6 males and 13 females) estimated to be >1 year old 
(Figure 1). We detected 17 individuals at more than one trap, with 
each individual being detected at an average at 3.1 traps. The 
vast majority of our 84 detections occurred during the search 
encounter protocol (81), while only 3 detections (two males and 
one female all on separate occasions) resulted from 3 different 
playbacks (see Figure A2 for example photographs). We detected 

cloglog
(
�ijk

)
= log�0 + �eff

[
log

(
effortjk

)]
+ �eff2

[
effort2jk

]
+ �sex

(
sexi

)
− f

[
dist (i, j) |�, �sex

]
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2 individuals once, 2 individuals twice, 1 individual 3 times, 10 in-
dividuals 5 times, 3 individuals 6 times, and 1 individual 7 times. 
Seven additional detections could not be identified to individual 
level and were discarded. Two thirds of the detections (n = 56) 
occurred during night-time hours (19:00–06:00), while the rest 
occurred in the early hours of the morning (before 08:00) or late 
evening (after 18:40). Just over half of our fieldwork (51%) was 
conducted at night.

3.1  |  Model diagnostics

All models achieved convergence (R̂ ≤ 1.05 for each parameter) with 
50,000 iterations. Bayesian p value for all models was estimated be-
tween 0.5 and 0.58, which were well within the extremities (0.15–0.85, 
Table A1). The MLHM estimate (Dey, Delampady, & Gopalaswamy, 
2019) was highest for Model 3 (Table A1), and visual inspection of 
the pairwise correlation plots between estimated parameters from 
the posterior MCMC draws showed minimal parameter redundancy 

across the models (Figure A3). Considering these pieces of evidence 
together, and since parameter estimates and levels of precision were 
very similar between all models (Table A2 and Figure A4), we report 
the posterior parameter estimates from the most informative model, 
Model 1.

3.2  |  Posterior summaries for lions >1 year old

Posterior mean lion density within our study area was estimated at 
5.9 (PSD = 1.4, HPD = 3.3–8.6) individuals >1 year/100 km2. Lion 
abundance within the study area and larger buffer (474 km2) was 
estimated at 21 (PSD = 4.9, HPD = 12–31) and 27 (PSD = 4.5, HPD = 
19–36), respectively. The sex ratio, as estimated by �sex, was 2.1♀:1♂. 
Posterior summaries of all parameters estimated from Model 1, in-
cluding the beta parameters for our field protocols, are displayed in 
Table 1. Detailed summaries of all models are provided in Table A2, 
and posterior density estimates for each 0.5 km2 pixel are displayed 
in Figure 2.

TA B L E  1 Posterior summaries of parameters estimated from a Bayesian spatial capture-recapture model used to estimate spatial lion 
density in Shompole and Olkiramatian community areas in Kenya

Parameter Definition
Posterior 
mean

Posterior 
standard 
deviation

95% Lower 
HPD

95% Upper 
HPD

�F Rate of decline in detection probability as a female 
lion's activity center increases as a function of her 
distance from the centroid of a sampled grid cell

1.82 0.21 1.42 2.23

�M Rate of decline in detection probability as a male lion's 
activity center increases as a function of his distance 
from the centroid of a sampled grid cell

2.00 0.37 1.36 2.75

�sex Difference of the complementary log-log value of 
detection probability between a male and a female 
lion

−0.33 0.45 −1.21 0.55

�eff The rate of change in the complementary log-log value 
of detection probability as the (log) effort changes 
by one unit, where effort is measured in kilometers

3.65 0.25 3.15 4.14

�eff2 The change in the complementary log-log value of 
detection probability when playbacks are included

0.28 0.83 −1.46 1.79

�0 The basal encounter rate of a female lion whose activity 
center is located exactly at the centroid of a grid cell

0.003 0.001 0.001 0.005

� Proportion of the true number of individuals in the 
data-augmented population M

0.47 0.11 0.26 0.70

Nsuper The total number of lions in the larger state-space S 116.84 27.33 64 169

�sex The proportion of lions that are male 0.32 0.12 0.10 0.57

D Estimated density of lions/100 km2 > 1 year of age 5.87 1.37 3.32 8.60

N Estimated abundance within survey area (358 km2) 21.04 4.92 12.06 30.97

N1� Estimated abundance within larger area (474 km2) 
calculated by adding a buffer according to the 
weighted mean of the σ parameters

27.50 4.52 19 36

Note: Estimates presented above are from Model 1 
([
�sex, � (. ) [. ]

)
 and include posterior standard deviations and 95% highest posterior density 

intervals (HPD). Number of posterior samples used was 200,000. Maximum value of potential scale reduction factor = 1.01, Bayesian p-value = .577. 
See Figure A3 for pairwise plots of parameters, A4 for posterior distributions, and Tables A1 and A2 for more detailed summaries from Models 1–4.
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4  |  DISCUSSION

Our estimated lion density (5.9 individuals >1 year/100 km2) com-
pares favorably to estimates using similarly robust methods and age 
classes within PAs (2.4/100 km2 in Queen Elizabeth NP, Uganda—
Braczkowski et al., 2020; 6.7/100 km2 in Lake Nakuru NP, Kenya—
Elliot et al., 2020). However, it is considerably lower than the 
13.6  lions >1 year/100 km2 reported within an area encompassed 
by the current study (Schuette et al., 2013). However, we caution 
against comparing our estimates to those of Schuette et al. (2013) 
since they did not conduct a formal survey, but rather individually 
identified 34  lions within an arbitrarily defined area of 250 km2 
over a period of 1 year and converted this to density. The prolonged 
timeframe is likely to have violated assumptions of demographic 
and geographic closure (Karanth & Nichols, 1998), and it is possible 
they detected lions that majorly resided outside their study area (see 
Figure A5 for collar data from around that period which supports this 
view). Furthermore, their approach did not allow them to eliminate 

detection bias. Our SCR framework overcomes these concerns by 
formally linking individuals and space and defines N within an ex-
plicit spatial region (the state-space), allowing for direct estimates of 
density with a measure of precision while accounting for detection 
probability. However, we do note some numerical congruence be-
tween the 34 lions seen by Schuette et al. (2013) and our abundance 
estimate (27 lions) for the larger area.

The relatively high density of lions in the current study is note-
worthy, given it is a landscape shared by wildlife, livestock, and peo-
ple and is more than 100 km away from the nearest PA. That lions 
occur at this density may be partially explained by the tolerance of 
the local Maasai community for lions as reported by an attitudinal 
questionnaire survey showing that 88% of respondents expressed a 
desire for lion numbers to stay the same or increase (Western et al., 
2019). This attitude was largely attributed to perceived benefits, 
such as increasing tourism revenue, despite livestock depredation 
by lions (Western et al., 2019). It is plausible that the broad range 
of community based conservation initiatives in this area have led to 

F I G U R E  1 Two field protocols were 
deployed to find and identify individual 
lions within Shompole and Olkiramatian 
community areas, Kenya: a search 
encounter field protocol and a playback 
protocol. Our unstructured spatial 
capture-recapture sampling design 
accounted for both protocols per pixel per 
sampling occasion (1 day) and resulted in 
85 detections of 19 individuals (colored 
lines connecting detections represent 
spatial recaptures of individuals which 
have been jittered)
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a perceived ownership of lions by the local community (Western, 
2012) and enabled benefits to reach the community, thus fostering a 
landscape of coexistence (Western et al., 2019) where lions are not 
only tolerated, but actively conserved. This hypothesis finds sup-
port in the nearby Maasai Mara, where high densities of lions were 
reported in wildlife conservancies (Elliot & Gopalaswamy, 2017), 
and community member's attitudes to carnivores was generally 
positive, largely due to perceived benefits (Broekhuis et al., 2020). 
Finally, the relatively low livestock densities in the current survey 
area combined with the effective management of livestock and their 
seasonal movements by community grazing committees may help to 
facilitate coexistence (Russell et al., 2018; Tyrrell et al., 2017). Given 
that around 44% of existing lion range may lie outside formally PAs 
(Lindsey et al., 2018), our density estimates offer reason for opti-
mism that lions may persist in such areas if the local community de-
sires this.

In the current study, we set out to extend the field and an-
alytical approaches provided by Elliot and Gopalaswamy (2017) 
to include playbacks, a commonly used field technique. This 
technique has commonly been deployed in a structured manner, 
usually referred to as “call-in” or “playback” surveys to estimate 
the population size of African carnivores (Funston & Henschel, 
2018; Ogutu & Dublin, 1998). This technique does not make use 

of individual identification and the estimates have low precision 
(Elliot & Gopalaswamy, 2017). We opportunistically used playbacks 
to attract lions to obtain individual identification photographs. We 
detected solitary lions during 3 of the 14 playbacks (two different 
males and one female). These were the only occasions that lions 
were observed during playbacks and we managed to successfully 
identify all individuals. While the presence of a carcass assisted 
in providing a distraction and anchor for the lions allowing us to 
photograph them, most detections during the search encounter 
protocol were at night when no carcass was present. Furthermore, 
other surveys using the same protocols have since been conducted 
without the use of baits, yielding a good number of detections 
(Elliot et al., 2022). Thus, a bait may be helpful, especially for re-
captures but is not essential to obtaining detections during play-
backs. Although the playbacks did not result in many detections, 
and consequently an insignificant effect (see �eff2 in Table 1), we 
were able to successfully demonstrate how to combine this field 
protocol with the search encounter protocol and modeling frame-
work of Elliot and Gopalaswamy (2017) while accounting for dif-
ferent detection rates arising from each field protocol. Our study 
also highlights the value of conducting large carnivore sampling 
during night-time hours, a practice that is not always permitted. 
We foresee that this combined approach will have great utility in 
areas where lions are not habituated to vehicles and thus help to 
provide reliable lion density estimates for a wide variety of import-
ant source populations. SCR models generally assume that activity 
centers are independent of one another, which is unlikely to be 
the case with social animals such as lions. While simulation studies 
suggest that SCR models are largely robust to violations of this 
assumption (Bischof, Dupont, et al., 2020; López-Bao et al., 2018; 
Russell et al., 2012), we note with interest a recently developed 
SCR model for group-living species (Emmet et al., 2021). However, 
this model requires knowledge of which group each individual be-
longs to, which is frequently not known in field studies such as 
ours.

5  |  CONCLUSION AND 
RECOMMENDATIONS

The survey area we defined does not contain an isolated popula-
tion with lions recently documented in Torosei and Musenge (~30–
50 km east of the survey area, Western unpublished data), and in 
nearby Naimina Enkiyio Forest (~25 km west of the survey area, 
Broekhuis et al., 2018). Future local monitoring efforts should 
therefore aim to increase the sampling area, while also increas-
ing the field effort, which would provide valuable information and 
likely have the added advantage of increasing the relatively low 
precision of our estimates, since more recaptures are likely to be re-
corded. In addition, a wet season sampling session is recommended 
to gain an understanding of potential seasonal differences also not-
ing that this is a multiple-use landscape. At a landscape level, it is 
possible that lions are distributed across southern Kenya from the 

F I G U R E  2 Pixel-specific lion density expressed in units of 
individual lion activity centers per state-space pixel (0.5 km2) in 
Shompole and Olkiramatian community areas in Kenya's South Rift 
Ecosystem. Estimated by Model 1, three hotspots of lion activity 
are revealed. The area for which pixel density is displayed was 
created based on the weighted mean of the posterior estimates for 
σ, and abundance was calculated both within the survey area (358 
km2) and the larger buffer (474 km2)
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Maasai Mara to the Tsavo ecosystem (Broekhuis et al., in review). 
Population monitoring across this area is recommended and could 
be achieved using the methods presented in this paper, perhaps 
within a combined SCR approach (Gopalaswamy, Royle, Delampady, 
et al., 2012) that makes use of high-quality camera traps, unstruc-
tured sampling to collect noninvasive DNA via fecal samples (e.g., 
Bischof, Milleret, et al., 2020), or by using sign-based occupancy 
surveys (e.g., Karanth et al., 2011).
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