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Abstract

We present performance results concerning the validation for anxiety level detection based

on trained mathematical models using supervised machine learning techniques. The model

training is based on biosignals acquired in a randomized controlled trial. Wearable sensors

were used to collect electrocardiogram, electrodermal activity, and respiration from spider-

fearful individuals. We designed and applied ten approaches for data labeling considering

individual biosignals as well as subjective ratings. Performance results revealed a selection

of trained models adapted for two-level (low and high) and three-level (low, medium and

high) classification of anxiety using a minimal set of six features. We obtained a remarkable

accuracy of 89.8% for the two-level classification and of 74.4% for the three-level classifica-

tion using a short time window length of ten seconds when applying the approach that uses

subjective ratings for data labeling. Bagged Trees proved to be the most suitable classifier

type among the classification models studied. The trained models will have a practical

impact on the feasibility study of an augmented reality exposure therapy based on a thera-

peutic game for the treatment of arachnophobia.

Introduction

About 7.4% of the population meets the criteria of a specific phobia at least once in their life-

time [1]. The pathological fear of spiders is one of the most common specific phobias. When

patients are confronted with the phobic object, they react with strong physical anxiety symp-

toms such as tachycardia, sweating or shortness of breath.

Exposure therapy is the method of choice for the treatment of specific phobias [2]. During

exposure, the patient is confronted with the feared object under controlled conditions. Expo-

sure therapy may be conducted in vivo, i.e. the patient is confronted with the phobic stimuli in
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reality, or in sensu, i.e. the patient is confronted with the phobic object in his imagination.

Exposure therapy is highly successful [3], nevertheless, it is rarely used in routine clinical care.

One barrier is its practicability as it involves high organizational and logistical efforts.

Virtual reality exposure therapy (VRET), which started about 20 years ago [4], and aug-

mented reality exposure therapy (ARET) are promising alternatives to in vivo or in sensu expo-

sure [5–7]. They have already been shown to be effective in several anxiety disorders, such as

fear of flying [8], social phobia [9] and spider phobia [10] as well as posttraumatic stress disor-

der [11,12]. Besides the smaller logistical effort, in virtuo therapy offers increased control dur-

ing sessions, allowing therapists to manipulate the characteristics, frequency and intensity of

exposure [13,14].

Moreover, the integration of gamified elements into VRET/ARET can increase patients’

engagement [15] and may reduce the experienced subjective distress [16]. Such serious games

are gaming technologies aiming to entertain but also to educate, inform and train [17,18]. In a

VRET/ARET system for spider phobia, biofeedback on the level of anxiety could be used to

modulate serious game elements. Moreover, such a closed-loop system would allow a better

monitoring (progress and safety) and individualized treatments.

The focus of this research is the usage of physiological responses for anxiety level detection.

The Autonomic Nervous System (ANS) produces physiological responses to regulate body

functions, such as heart activity. Important physiological responses related to stress and anxi-

ety can be derived from electrocardiogram (ECG), electrodermal activity (EDA), and respira-

tion (RSP) signals [18].

Heart rate (HR) and heart rate variability (HRV) can be extracted from ECG signals. While

HR represents the number of heart beats per minute, HRV reflects the variation in time

between consecutive heart beats. Lower HR is associated with relaxation and resting periods,

whereas higher HR is related to disturbance and emotional arousal [19]. Contrary to HR, HRV

increases during resting periods and decreases during stress. Apart from this, ECG feature

extraction is used in current research to detect abnormal heart conditions [20] and for the

development of human authentication systems [21].

Respiration can also be affected by emotional stimuli and is well-known as an indicator of

psychological stress and anxiety [22,23]. Similar to HR, breathing rate (BR) increases as the

levels of stress or anxiety increase leading to hyperventilation in extreme cases [24]. BR

decreases with relaxation, while tense situations may cause interruptions in respiration. It is

calculated by counting the number of breathing cycles per minute. The monitoring of breath-

ing patterns has also been proposed as a way to affect the oscillations in HRV due to respira-

tion [25]. This is because of the close relationship between respiratory and cardiovascular

processes known as the respiratory sinus arrhythmia.

EDA is a measure of changes in the electrical conductance of skin based on the production

of sweat. It is widely used as an indicator of psychological stress and anxiety [22,26]. This phys-

iological response consists of two components: skin conductance level and skin conductance

response. Skin conductance level is the tonic level that slowly varies over time. Skin conduc-

tance response is the phasic response to an emotionally arousing stimulus that is reflected in

faster variations of the skin conductance level.

Interestingly, results from traditional psychophysiology studies (i.e. without using

machine-learning techniques) often show no significant correlations between physiological

measures and subjectively rated anxiety levels. Correspondingly, a recent meta-analysis

reported that “there is no one-to-one mapping between an emotion category and a specific

ANS response pattern” [27].

However, other research using machine-learning techniques show that emotion recogni-

tion through the analysis of physiological responses is feasible. We report similar studies to
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our work in the next section. So-called supervised learning consists of training an algorithm to

approximate a model that predicts new unseen input features. Supervised refers to the fact that

a human expert provides feedback for the algorithm training by labeling input data and thus,

creating targets. Since the labeling is based on assumptions, a certain degree of bias is

inevitable.

This paper describes the algorithm development for on-line anxiety level detection from

biosignals recorded in a randomized controlled trial (RCT) for the envisioned use as emotional

biofeedback in therapeutic games. Fig 1 shows a closed-loop system architecture using anxiety

level detection to control stimulus intensity in a VRET/ARET setting enabling individualized

treatment.

The objective is to compare different classification models to identify the most suitable clas-

sifier type that fulfils the VRET/ARET requirements. Since the development of the algorithm

is of practical relevance, the following requirements are essential for future implementation of

a portable and affordable VRET/ARET system with on-line anxiety level detection capability:

• Use of low-cost commercial wearable sensors to acquire relevant biosignals.

• Use of a minimal set of features to reduce computing complexity and processing power.

• On-line prediction of two or three levels of anxiety with an update rate of 10 seconds.

• Integration into a Microsoft Windows desktop application using.net assembly.

• Capability for future self-help and minimal-contact therapies.

Based on our literature search, we found a lack of an appropriate dataset that is close to our

envisioned application (VRET/ARET system). There are several datasets publicly available that

are related to stress detection but not explicitly to anxiety detection. Also, it is of advantage to

have a similar stimulus and the same sensor hardware for dataset compilation as in the envi-

sioned application. These were the reasons why we decided to conduct an RCT with spider-

fearful individuals using a similar stimulus and the same sensor hardware to record and com-

pile a dedicated dataset for our research and development purpose.

Furthermore, the scientific aim is to deliver new findings for automated anxiety level detec-

tion based on biosignals using state-of-the-art methods of pattern recognition and statistical

learning. The following research questions will be answered to fulfil this aim:

• Which are the most relevant biosignal features?

• Which is the most suitable classifier?

• How is the accuracy of classifiers influenced by the combination of biosignal features?

Fig 1. Closed-loop system architecture. Use of anxiety level detection to control stimulus intensity in the VRET/

ARET setting enabling individualized treatment.

https://doi.org/10.1371/journal.pone.0231517.g001
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• How is the accuracy of classifiers affected by the use of different time window lengths?

The structure of this paper is organized as follows: the second section introduces related

work. The third section describes the recorded dataset, feature extraction and classifier train-

ing. The fourth section describes the evaluation results of the trained machine learning algo-

rithms. Section five discusses our results in comparison with related work and gives

recommendations for future research. Finally, the sixth section concludes our paper with a

summary of the main contributions.

Related work

To date, several supervised machine-learning techniques [28–32] have proven to be appropri-

ate for stress and anxiety detection, e.g. support vector machines (SVM), neural networks,

naïve Bayes, discriminant analysis, and decision trees.

Healey and Picard [28] reported the highest accuracy of 97.4% using a linear discriminant

classifier when collecting several physiological markers [electromyogram (EMG), ECG, EDA,

RSP and video] from 24 drivers in the Greater Boston area. Data were categorized into three

different levels of stress: low (resting phase at the beginning and the end), moderate (highway),

and high (cities). Keshan et al. [29] and Chen et al. [30] used the same paradigm applying dif-

ferent classifiers (various classifiers vs. one classifier) and window lengths (5 minutes vs. 10

seconds). The findings of Chen et al. reveal that features obtained from ECG, EDA and RSP

can be satisfactory to achieve an accuracy rate of 89% for stress detection using an SVM classi-

fier. Whereas Keshan et al. used various classifiers (naïve Bayes, neural networks, and decision

trees) to obtain an accuracy of about 70% to categorize three levels of stress.

Additionally, Barua et al. [31] retrieve different physiological measures obtained from respi-

ration and finger temperature sensors using a time window of 60 seconds. The study explores

three different classifiers (neural networks, SVM, and case-based reasoning) to differentiate

two levels of stress, with case-based reasoning achieving the highest accuracy of 85.6%. In a

related VRET experiment, Handouzi et al. [32] intended to differentiate two levels of anxiety

in seven participants with social phobia. Anxiety was induced using six different VR scenarios

and features were extracted from blood volume pulse signal. An SVM algorithm with a time

window of 20 seconds reached a 76% accuracy for the differentiation of two anxiety levels.

Materials and methods

Study protocol and dataset

The classifier development is based on supervised machine learning techniques using a dataset

recorded in an RCT with 80 spider-fearful individuals aged between 18 and 40 years. The trial

itself (German Clinical Trials Register DRKS00012278, registered on 23 May 2017, amend-

ment on 5 October 2017) is not part of this work, details of the study protocol are described in

Schäfer et al. [33]. Ethical approval for the trial has been granted by the Ethical Committee of

the Faculty of Human Science of Saarland University (reference: 17–03). Participants provided

their written informed consent. Consent for publication has been obtained from all partici-

pants as part of the informed consent process. The main focus of this RCT was to investigate if

the use of an HRV biofeedback intervention could be a promising therapeutic add-on to expo-

sure therapy for specific phobias [34,35]. Furthermore, biosignal measurements (EDA, ECG

and RSP) were recorded during the biofeedback training session and the exposure session and

were analyzed according to the data labeling approaches described later. Fig 2 shows the sim-

plified study flow chart.

PLOS ONE On-line anxiety level detection from biosignals

PLOS ONE | https://doi.org/10.1371/journal.pone.0231517 June 23, 2020 4 / 20

https://doi.org/10.1371/journal.pone.0231517


All subjects were introduced to the exposure procedure and rationale that is mainly based

on the principles of the one-session exposure treatment developed by Öst [36]. All experimen-

tal groups received a biofeedback training session starting with a 5-minute resting phase. Dur-

ing the biofeedback training session, they learned two tasks, either HRV biofeedback and a

pseudo-biofeedback task or two pseudo-biofeedback tasks. After one week of home training,

all participants returned and watched a series of spider video clips. Each session started with a

1-minute demo clip followed by 16 1-minute spider video clips, all taken from TV documenta-

ries showing detailed shots of spiders, and ended with a 5-minute resting phase. The sixteen

clips with spiders were divided into two groups: clips 1–8 and clips 9–16. The order of the clips

within each group was randomized. After every fourth video clip, participants were asked to

rate their subjective arousal levels on 4-point scales ranging from “1 = not at all” to “4 =

strongly”. Fig 3 shows a schematic illustration of the exposure procedure.

Subjects were divided into four groups (see Fig 2), of which only group 1 utilizes the HRV

biofeedback during exposure. Consequently, the dataset of the exposure session of groups 2, 3,

and 4 was used for classifier training. The records of group 1 were not considered, since the

subjects applied a trained breathing technique. Thus, our dataset for classifier training and val-

idation contains records from 57 out of 60 subjects. Each record is approximately 35 minutes

long. Three records were disregarded due to technical problems during data acquisition.

We designed ten different approaches to extract biosignal features. These were defined by

the way of labeling the clips during each data record to differentiate between two (low and

Fig 2. Simplified study flow chart of the randomized controlled trial adapted from Schäfer et al. [33].

https://doi.org/10.1371/journal.pone.0231517.g002

Fig 3. Schematic illustration of the exposure procedure including time points of arousal assessment.

https://doi.org/10.1371/journal.pone.0231517.g003
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high) or three levels/classes (low, medium and high) of anxiety. As can be seen in Fig 4, the

main ones are HR, EDA, and subjective (SB) approaches. The SB approach is based on self-

rated arousal during the exposure. Both, HR and EDA approaches are subdivided into clip-

based (HR1 and EDA1) and subject-based (HR2 and EDA2) approaches. The last ramification

of each sub-approach corresponds to the length of the time window for feature extraction: 10

seconds as the envisioned update rate for on-line prediction and 60 seconds for performance

comparison of the classifiers.

HR and EDA approaches. It is expected that HR and EDA will increase during the most

disturbing clips. Given this assumption, clip-based and subject-based approaches were defined.

The clip-based approaches (HR1 and EDA1) establish labels to the video clips by sorting the

average of the normalized signal of all the records. The three clips with the highest normalized

mean for HR and EDA were labeled as ’high’ and three other clips with medium average values

were labeled as ’medium’. As for the ’low’ label, the last 3 minutes of the resting phase from the

biofeedback training session were picked as it is assumed that during this phase the subjects

were the most relaxed. The main advantage of this approach is that the data for classifier train-

ing is balanced (i.e. same number of observations per class). However, at the same time, it

assumes that the same clip is equally disturbing for all subjects, which is not plausible, and may

bias the approach.

On the other hand, the subject-based approaches (HR2 and EDA2) establish labels to the

video clips by considering individual responses. From the 16 clips, the 8 clips with the highest

individual normalized mean for HR and EDA were labeled as ’high’ and the remaining 8 clips

were labeled as ’medium’. As for the ’low’ classification, the entire 5-minute resting phase from

the biofeedback training session was chosen to achieve the most balanced observation. How-

ever, the disadvantage of this approach is that data is still not totally evenly distributed (High-

38%, Medium-38%, Low-24%).

SB approach. The SB approach is based on subjective arousal ratings during exposure.

Labeling was done as follows: ’high’ corresponds to the two highest ratings 3 and 4, whereas

’medium’ corresponds to the two lowest ratings 1 and 2. With regard to the ’low’ category, the

last 3 minutes of the resting phase from the biofeedback training session were selected (equal

to the clip-based approaches). As arousal ratings were obtained at four time points, only data

of the clip right before each rating is taken into account. The disadvantage of this approach is

unbalanced data as most of the subjects unevenly rated the clips and some rated their arousal

Fig 4. Overview of data labeling approaches.

https://doi.org/10.1371/journal.pone.0231517.g004
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stable across all points of assessment. Moreover, the approach only considers four clips for

either ’high’ or ’medium’ and 3 minutes for ’low’. Table 1 displays a summary of the number of

observations per approach.

Biosignal processing and feature extraction

Biosignals were recorded using IBMT’s Biofeedback System (BFS), which is described in Schä-

fer et al. [33]. This system supports state-of-the-art wearable sensors and wireless communica-

tion. In this RCT, the BITalino biosignal measurement device (PLUX–Wireless Biosignals S.

A., Lisbon, Portugal) was used to record ECG, EDA and RSP signals with the sampling fre-

quency set to 100 Hz per channel with 10-bit resolution, which is sufficient for ECG rhythm

monitoring [37]. Three electrodes are placed according to standard lead II configuration for

ECG measurement. Two electrodes are attached to the proximal part of the palm of the partici-

pant’s nondominant hand for EDA measurement. The electrodes used are standard pregelled

and self-adhesive disposable Ag/AgCl electrodes (Kendall H135SG, Medtronic, Minneapolis,

MN, USA). The RSP sensor is an adjustable, elastic-fastening chest strap with an integrated

piezoelectric sensor. Fig 5 shows exemplary plots (raw data) of the three biosignals acquired

using the BITalino device.

Both, the biosignal processing and feature extraction were developed in MATLAB R2017b

(The MathWorks Inc., Natick, MA, USA). In total, 25 statistical and signal-specific features in

time domain were extracted from each biosignal (Table 2). Frequency domain analysis was

disregarded as the window lengths of the present study are too short to allow for accurate spec-

tral analysis. According to the European Heart Journal, accurate short-term power spectral

analysis requires window lengths of two to five minutes [38].

Concerning the ECG signal, the MATLAB function of the Pan-Tompkins QRS detection

algorithm [39], implemented by Sedghamiz [40], was used to extract the HR and Normal-to-

Normal Interval (NNI) values. In general, this algorithm follows six steps:

1. Bandpass filtering (5–12 Hz) to eliminate noise and artifacts.

2. Differentiation to obtain the slope of the QRS complexes.

3. Squaring the last step to highlight the slope.

4. Moving-window integration to obtain waveform feature information in addition to the

slope.

5. Adaptive thresholding since the peaks are variable.

6. Decision rule algorithm to distinguish between true and false peak detection.

A baseline for each subject is necessary to normalize the mean HR. It was calculated by tak-

ing the mean of the HR during the resting phase of the biofeedback training session (see Eq 1).

Table 1. Summary of the number of observations per approach.

Approach Number of observations

60 s 10 s

2 levels 3 levels 2 levels 3 levels

SB 283 398 1702 2392

HR1/EDA1 341 512 2051 3075

HR2/EDA2 740 1196 4439 7170

SB, subjective approach; HR1/EDA1, clip-based approaches; HR2/EDA2, subject-based approaches.

https://doi.org/10.1371/journal.pone.0231517.t001
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Regarding the RSP signal, it is acquired as the sensor displacement value in percentage,

thus, the calculation of the BR was done by counting the number of times that the chest rises

(equivalent to number of peaks). A band-pass filter with cutoff frequencies (0.1–24 Hz equiva-

lent to 6–24 breaths per minute) was implemented to eliminate the offset and high-frequency

noise. Moreover, the peaks were found using the MATLAB function ndpeaks. The baseline for

the normalization of the mean BR was obtained in the same way as for HR (see Eq 1).

Concerning the EDA signal, a second order Butterworth low-pass filter with a cutoff fre-

quency of 1.5 Hz was computed for the extraction of the statistical features. As for the signal-

specific skin conductance orienting responses, further steps were implemented to obtain them

according to the recommendations of Braithwaite et al. [41]: First, a high-pass filter with a cut-

off frequency of 0.05 Hz was applied to produce a phasic signal. Then, the onset, offset and

peaks are detected with a threshold of 0.03 Siemens. The number of orienting responses is sim-

ply the number of peaks detected (Eq 13), the mean magnitude of orienting responses is the

difference between the magnitude of the peak and its respective onset (Eq 14), and the mean

duration of orienting responses is the difference in time between the onset and the offset (Eq

15). The baseline for the normalization of the mean EDA is also obtained from the resting

phase of the biofeedback training session but, in this case, Eq 2 proposed by Lykken et al. [42]

was used instead of averaging the EDA signal.

Fig 5. Exemplary plots of the three biosignals. Raw data acquired using the BITalino device (100 Hz sample rate): (A)

Voltage for ECG processing, (B) Skin conductance for EDA processing, and (C) piezo sensor displacement for RSP

processing.

https://doi.org/10.1371/journal.pone.0231517.g005

Table 2. Summary of 25 statistical and signal-specific features in time domain.

Electro-cardiogram Respiration Electrodermal Activity

Nmean Nmean Nmean

std std std

NFD NFD NFD

NSD NSD NSD

HRV BRV nOR

avNN avNN mmOR

sdNN sdNN mdOR

rMSSD

NN50

pNN50

pNN20

Statistical features are shaded light gray. Feature abbreviations are explained in Eqs 1–15.

https://doi.org/10.1371/journal.pone.0231517.t002
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Four statistical features were extracted from each biosignal that correspond to the ones pro-

posed for emotion recognition by Picard et al. [43]:

• Normalized mean (Nmean):

HR=BR : Nmean ¼
1

N

XN

n¼1

ðxn � mtÞ ð1Þ

EDA : Nmean ¼
1

N

XN

n¼1

xn � minðxtÞ
maxðxtÞ � minðxtÞ

ð2Þ

• Standard deviation (std):

std ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

n¼1

ðxn � mxÞ
2

s

ð3Þ

• Mean of the absolute values of the Normalized First Differences (NFD):

NFD ¼
1

N � 1

XN� 1

n¼1

jx̂nþ1 � x̂nj ð4Þ

• Mean of the absolute values of the Normalized Second Differences (NSD):

NSD ¼
1

N � 2

XN� 2

n¼1

jx̂nþ2 � x̂nj ð5Þ

where xn represents the nth sample of the corresponding signal, x̂n the nth normalized sample

of the corresponding signal, xt the signal during the resting phase of the biofeedback training

session, N the total number of samples, μx the mean of the signal during the current window,

and μt the mean of the signal during the resting phase of the biofeedback training session.

Regarding HRV, the following seven features were investigated:

• Heart Rate/Breathing Rate Variability (HRV/BRV):

HRV=BRV ¼
1

N

XN� 1

n¼1

ðNNInþ1 � NNInÞ ð6Þ

• average of Normal-to-Normal intervals (avNN):

avNN ¼
1

N

XN

n¼1

NNIn ð7Þ
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• standard deviation of Normal-to-Normal intervals (sdNN):

sdNN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

n¼1

ðNNIn � avNNÞ2
s

ð8Þ

• root Mean Square of Successive Normal-to-Normal interval Differences (rMSSD):

rMSSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN� 1

n¼1

ðNNInþ1 � NNInÞ
2

s

ð9Þ

• successive Normal-to-Normal intervals that differ by more than 50 ms (NN50):

NN50 ¼ #ðNNI > 50msÞ ð10Þ

• proportion of NN50 divided by the total number of Normal-to-Normal intervals (pNN50):

pNN50 ¼
#ðNNI > 50msÞ

#ðNNIÞ
ð11Þ

• proportion of NN20 divided by the total number of Normal-to-Normal intervals (pNN20):

pNN20 ¼
#ðNNI > 20msÞ

#ðNNIÞ
ð12Þ

Eq 6, Eq 7 and Eq 8 were also calculated for the RSP signal. As for the EDA signal, the fea-

tures derived from the skin conductance orienting responses are the following:

• number of Orienting Responses (nOR):

nOR ¼ #OR ð13Þ

• mean magnitude of Orienting Responses (mmOR):

mmOR ¼
1

nOR

XnOR

n¼1

mORn ð14Þ

• mean duration of Orienting Responses (mdOR):

mdOR ¼
1

nOR

XnOR

n¼1

dORn ð15Þ

A sequential feature selection was computed with the extracted features using the MATLAB

function sequentialfs. This function was applied to all the different classifiers in order to select
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the most significant feature subset. It starts with an empty feature set and sequentially adds a

candidate feature until a given criterion is fulfilled. The criterion for this study was the accu-

racy of each classifier. Thus, the sequentialfs function stopped when there was no further

improvement in accuracy.

Classifier training and validation

The 57 records of our dataset were used for classifier training and validation in MATLAB. The

following classification models were compared: decision trees, discriminant analysis (linear

and quadratic), k-nearest neighbors, support vector machines, naïve Bayes and ensemble clas-

sifiers (Bagged Trees). Decision trees were computed with a maximum number of splits of 100

and the Gini’s diversity index was set as a split criterion. The k-nearest neighbors classifiers

were computed with euclidean distance and two different numbers of neighbors (k = 1 and

k = 10). Support vector machines were trained with linear and quadratic kernel functions with

a box constraint of 1 for both of them. Naïve Bayes were computed with a gaussian kernel. The

ensemble classifier type Bagged Trees uses Breiman’s Random Forest algorithm [44]. This algo-

rithm is an ensemble of decision tree predictors that randomly splits the training dataset into

several subsets. Each subset is trained by different decisions and features, and the result repre-

sents the mean of all predictions. Furthermore, according to Breiman, the generalization error

of Random Forest converges as the number of trees increases, which makes it more robust

against overfitting when compared with individual decision trees. Its options were set to: maxi-

mum number of splits = number of observations—1, number of learners = 30, learning

rate = 0.1 and subspace dimension = 1.

A 10-fold cross-validation was computed and its outcome provides measures of perfor-

mance for the different classifiers: Accuracy, True High Rate (THR), True Medium Rate

(TMR) and True Low Rate (TLR) were calculated from the confusion matrix. Accuracy is

defined by the sum of observations that are correctly classified divided by the total number of

observations. Regarding THR, TMR and TLR, they can be defined as the true observations

divided by the sum of true observations and false observations. Another typical performance

measure is the receiver operating characteristic (ROC) curve. It shows true positive rate (TPR)

versus false positive rate (FPR) for each class of the trained classifier.

As additional performance measure, we applied Cohen’s Kappa statistic to the selected

trained machine learning algorithms. It compensates for classifications that may be due to

chance. The original intent of Cohen [45] was to measure the degree of agreement or disagree-

ment between observers of psychological behavior (known as interrater-reliability). Landis

and Koch [46] provided a scheme to interpret Kappa values that vary from -1 to +1: a Kappa

value < 0 is indicating no agreement, Kappa values between 0–0.20 are indicating slight,

between 0.21–0.40 are indicating fair, between 0.41–0.60 are indicating moderate, between

0.61–0.80 are indicating substantial, and between 0.81–1 are indicating almost perfect agree-

ment. Cohen’s Kappa statistic is a very useful, but under-utilized, measure for comparing the

accuracy of classifiers in cases of multi-class and imbalanced class problems [47].

Each of the ten data labeling approaches was applied for the classification of two and of

three levels of anxiety, for 19 different combinations of features, and for 18 different variations

of classification models. Thus, in total 6,840 different classifiers were trained and evaluated.

We selected the favored models by sorting the overall accuracy and taking those with the high-

est values that, at the same time, have balanced results in the prediction rates of true detection

for each class. The purpose of this criteria is to assure high prediction rates for each class disre-

garding options that could have the highest rates in a particular class while having poor rates
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for other(s). Moreover, the selection was made by choosing the simplest models, i.e. the ones

with the minimum subset of features.

In order to implement a Windows desktop application to test the classifers’ capability for

on-line anxiety level detection, four software libraries were created:

• ECGSignal: contains ECG signal processing and feature extraction

• EDASignal: contains EDA signal processing and feature extraction

• LowPfilter: contains low pass filtering for signal processing

• MLA: contains the final selection of trained machine learning algorithms

It is worth noting that the RSP signal processing and feature extraction are not included,

because most of the RSP features were not useful to improve the accuracy of the models.

Results

Subset feature selection

In order to obtain a deeper insight into the relevance of the extracted features tailored to each

machine learning algorithm, a sequential feature selection was computed for each algorithm.

The recommended feature combinations are shown in the tables of the next section. The sub-

set feature selection was useful for model simplification. The most relevant features are

HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, and EDAmmOR. Contrarily, most of

the features obtained from the RSP signal were not useful to improve classification results.

Even though the normalized mean of the BR appeared to be relevant for a few models, it did

not improve the accuracy by much. Thus, in order to simplify not only the models but also the

envisioned on-line biofeedback system in a practical manner, the RSP sensor chest strap was

disregarded for further steps.

Evaluation of the machine learning algorithms

Table 3 shows our favored three results on the two-level classification for time windows of 60

seconds and 10 seconds, respectively. Likewise, our favored three results on the three-level

classification are displayed in Table 4 for the same time windows. The most frequent classifier

in Table 3 is Bagged Trees. HR1 is the most frequent approach while all main approaches are

present in this table. The highest accuracy achieved using the HR1 approach is almost 91% for

the 60 seconds time window and almost 90% for the 10 seconds time window using the SB

approach. The most frequent classifier in Table 4 is Bagged Trees again. SB is the dominant

approach while HR2 appears once in this table. Accuracy results are lower than the two-level

Table 3. Favored three results on two-level classification for time-window length of 60 and 10 seconds.

Classifier Features Approach TW [s] Accuracy [%] THR [%] TMR [%] TLR [%]

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR HR1 60 90.9 90.6 - 91.2

Bagged Trees HRNmean, EDANmean, EDANFD, BRNmean HR2 60 89.5 91.9 - 85.6

Quadratic SVM HRNmean, HRNN50, EDANmean HR1 60 89.1 84.2 - 94.1

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR SB 10 89.8 82.4 - 94.7

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR HR1 10 89.0 88.4 - 89.6

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR EDA2 10 85.3 86.0 - 84.3

Results for time-window length of 60 seconds are shaded light gray.

TW, time window; THR, true high rate; TMR, true medium rate; TLR, true low rate; SVM, support vector machine.

https://doi.org/10.1371/journal.pone.0231517.t003
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case but fairly good considering the additional class. The highest accuracy achieved using the

SB approach is 73.4% for the 60 seconds time window and 74.4% for the 10 seconds time win-

dow using the same approach.

Among our favored results, we finally selected among the trained machine learning algo-

rithms by prioritizing the 10 seconds over the 60 seconds time window. We selected five algo-

rithms to have a range of approaches relevant for further test and development (last three rows

of Table 3 and row 4 and 6 of Table 4). Table 5 lists the final selection of trained machine learn-

ing algorithms for a time window of 10 seconds. All algorithms have the same classifier Bagged

Trees and the same combination of two ECG features and four EDA features in common. In

addition to the accuracy and the true class rates, we calculated the Cohen’s Kappa as perfor-

mance measure. All Kappa values show a consistent trend with the accuracy for each algo-

rithm. The algorithms for the two-level classification have Kappa values in the substantial

range with two of them, based on the SB and HR1 approach, at the upper limit close to the

almost perfect range. The algorithms for the three-level classification, based on the SB and

HR2 approach, show Kappa values at the upper limit of the moderate range close to the sub-

stantial range.

Fig 6 shows exemplary plots of ROC curves for the Bagged Trees classifier in Table 5 based

on the EDA2 approach. The marker on the plot shows the values of the FPR and the TPR for

the selected trained classifier. This classifier assigns 86% of the observations correctly and 16%

of the observations incorrectly to the positive class ‘high’. Concerning the positive class ‘low’,

this classifier assigns 84% of the observations correctly and 14% of the observations incor-

rectly. The area under curve (AUC) is 0.93 for both.

Fig 7 shows exemplary plots of ROC curves for the Bagged Trees classifier in Table 5 based

on the HR2 approach. This classifier assigns 71% of the observations correctly and 14% of the

observations incorrectly to the positive class ‘high’ (AUC is 0.86). Further, it assigns 72% of the

Table 4. Favored three results on three-level classification for time-window length of 60 and 10 seconds.

Classifier Features Approach TW [s] Accuracy [%] THR [%] TMR [%] TLR [%]

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR SB 60 73.4 59.3 59.1 92.4

Decision Tree HRNmean, HRpNN20, EDANmean SB 60 71.4 46.9 60.9 94.7

Quadratic SVM HRNmean, EDANmean, EDANFD SB 60 70.4 35.4 67.8 95.3

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR SB 10 74.4 60.0 60.7 93.1

Bagged Trees HRNmean, HRNN50, EDANmean SB 10 73.5 60.4 60.6 90.9

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR HR2 10 72.3 71.1 71.6 75.2

Results for time-window length of 60 seconds are shaded light gray.

TW, time window; THR, true high rate; TMR, true medium rate; TLR, true low rate; SVM, support vector machine.

https://doi.org/10.1371/journal.pone.0231517.t004

Table 5. Final selection of trained machine learning algorithms for time-window length of 10 seconds.

Classifier Features Approach # Levels Accuracy [%] THR [%] TMR [%] TLR [%] Kappa

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR SB 2 89.8 82.4 - 94.7 0.78

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR HR1 2 89.0 88.4 - 89.6 0.78

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR EDA2 2 85.3 86.0 - 84.3 0.69

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR SB 3 74.4 60.0 60.7 93.1 0.59

Bagged Trees HRNmean, HRstd, EDANmean, EDANFD, EDAnOR, EDAmmOR HR2 3 72.3 71.1 71.6 75.2 0.58

Results for two-level classification are shaded light gray.

THR, true high rate; TMR, true medium rate; TLR, true low rate.

https://doi.org/10.1371/journal.pone.0231517.t005
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observations correctly and 16% of the observations incorrectly to the positive class ‘Medium’

(AUC is 0.87). Concerning the positive class ‘low’, this classifier assigns 75% of the observa-

tions correctly and 12% of the observations incorrectly (AUC is 0.91).

First tests with different records of our dataset were carried out in the developed Windows

desktop application. In order to test the on-line capability of the trained machine learning

algorithms in Table 5, a playback of each record was run, emulating real-time data acquisition.

These algorithms were able to classify on-line without any significant delay. Fig 8 shows the

graphical user interface of the Windows desktop application.

It is worth noting that the calculated accuracy shown in Fig 8D does not correspond to the

accuracy of the classifiers. Also, the true classes depicted in Fig 8E are only displayed when

labeled data is played back, as the true classes are known in this case. Thus, the calculated accu-

racy is only considering the predictions (blue line) corresponding to the true classes (in yellow

bars) and the predictions without any true class (no yellow bars) are not taken into account.

Discussion

Table 6 compares the results obtained in different studies with those of our study. Even though

applications are different, classes are quite similar and comparable to our study. For instance,

Fig 6. Exemplary plots of ROC curves. Bagged Trees classifier in Table 5 based on the EDA2 approach: (A) Positive

class “high”, (B) Positive class “low”.

https://doi.org/10.1371/journal.pone.0231517.g006

Fig 7. Exemplary plots of ROC curves. Bagged Trees classifier in Table 5 based on the HR2 approach: (A) Positive class

“high”, (B) Positive class “medium”, (C) Positive class “low”.

https://doi.org/10.1371/journal.pone.0231517.g007
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Fig 8. Graphical user interface of the Windows desktop application. (A) Inputs—Machine learning algorithm

(MLA) and subject, (B) On-line plots of HR and EDA, (C) Details of the selected algorithm, (D) Calculated accuracy

only considering the true classes, (E) On-line prediction status (blue line) and true class according to the labeled data

(yellow bars).

https://doi.org/10.1371/journal.pone.0231517.g008

Table 6. Summary of different classifers found in literature in comparison to the results of our study.

Reference Application Validation Features Classes Classifier TW

[s]

Accuracy

[%]

Healey and

Picard [28]

Driving-stress detection Leave-one-out cross-

validation

22, EMG-based EDA-based ECG-

based RSP-based Video-based

3 levels of

stress

Linear

discriminant

300 97.4

Keshan et al.

[29]

Driving-stress detection 10-fold cross-validation 1, ECG-based 2 levels of

stress

Naïve Bayes 300 100

3 levels of

stress

Neural

Networks

70.15

8, ECG-based 2 levels of

stress

Decision trees 97.92

3 levels of

stress

Decision trees 70.15

Chen et al. [30] Driving-stress detection Leave-one-out cross-

validation

73, EDA-based ECG-based RSP-based

+ feature selection and reduction

3 levels of

stress

SVM 10 89

Barua et al. [31] Driving-stress detection 72% split, 146 training

cases, 58 test cases

IBI-based 2 levels of

stress

Case-based

reasoning

60 85.63

Finger temperature 80.45

Handouzi et al.

[32]

Social phobia treatment

using VRET

71% split, 200 training

cases, 80 test cases

6, Blood volume pulse signal 2 levels of

anxiety

SVM 20 76

Our study Arachnophobia treatment

using video clips

10-fold cross-validation 6, EDA-based ECG-based 2 levels of

anxiety

Bagged Trees 10 89.8

6, EDA-based ECG-based 3 levels of

anxiety

74.4

Results of our study are shaded light gray.

TW, time window.

https://doi.org/10.1371/journal.pone.0231517.t006

PLOS ONE On-line anxiety level detection from biosignals

PLOS ONE | https://doi.org/10.1371/journal.pone.0231517 June 23, 2020 15 / 20

https://doi.org/10.1371/journal.pone.0231517.g008
https://doi.org/10.1371/journal.pone.0231517.t006
https://doi.org/10.1371/journal.pone.0231517


the first four publications in Table 6 are focused on driving-stress detection whereas only Han-

douzi et al. [32] and our study investigate the treatment of specific phobias. Nevertheless, all

cases of application aim for two-level and/or three-level classification.

Other important criteria for a proper comparison are the type of validation, the time win-

dow length, and the number of features. The simple split ratio of about 70% from Barua et al.

[31] and Handouzi et al. [32] can be considered as least strict method of validation, which is

also very prone to overfitting, whereas cross-validation methods are used specifically to avoid

overfitting [48]. Although there are known methods that can improve cross-validation, such as

the .632+ bootstrap method [49], especially in the case of small datasets [50], we did not apply

it in the current stage of this work, because we compared our results with related work in

which k-fold cross-validation methods were used. Taking this into account, accuracy rates of

our study for two-level and three-level classification are very good as they are within the same

range of the accuracy of Barua et al. [31] and Handouzi et al. [32]. Furthermore, we use a simi-

lar number of features but a shorter time window in our study. Barua et al. [31] do not specify

the exact number of features but mention using several features in time and frequency domain

obtained from the finger temperature and the inter-beat-interval (IBI).

The research of Keshan et al. [29] has the same number of folds for the cross-validation.

Compared to our findings, their accuracy for the two-level case is higher and the model is sim-

pler (only one feature). Nonetheless, their time window length is 30 times larger (5 minutes vs.

10 seconds) and, for the three-level case, their accuracy is about 4% lower compared to our

findings (74.4%). Healey and Picard [28] and Chen et al. [30] applied the strictest validation

method. Healey and Picard [28] reported almost a perfect accuracy for their three-level classifi-

cation, however, the time window is very large (5 minutes) and they included a higher number

of features compared to our study. Similarly, the model of Chen et al. [30] using the same time

window length is very complex with 73 features in total, however, they obtain a good accuracy

of 89%.

Concerning our machine learning implementation, the evaluation of the trained algorithms

shows very good accuracy and true class rates as well as substantial Kappa values for the two-

level classification. In the case of the three-level classification, the results are lower than the

two-level case but fairly good considering the additional class. In contrast to the expectation of

a low correlation between physiological and subjective psychological anxiety [27], Table 5

shows that the two algorithms based on the SB approach exhibit very good performance mea-

sures that are comparable to those of the HR approaches. However, these algorithms might

have learned the noise in the training data, which could negatively impact the performance of

the algorithm on new data.

Among the two-level classifiers, the most suitable algorithm for further development may

be the one based on the HR1 approach. By contrast, the one based on the SB approach was

trained with less and uneven data. On one hand, it may not be suitable since it is likely to be

overfitted [48]. On the other hand, it should not be omitted for further development due to its

substantial Kappa value. The algorithm based on the EDA2 approach is considered because it

contains more training data than both other algorithms. Among the three-level classifiers, the

most recommendable algorithm may be the one based on the HR2 approach, since the other

one is based on the SB approach. Thus, the two algorithms presented in Table 5 based on the

HR approaches may be proposed as final recommendation for two-level and three-level anxi-

ety classification.

For future research, it is recommendable to analyze the feasibility of a self-trained algo-

rithm. Firstly, the system could start with the same pre-trained algorithm and, as the therapeu-

tic game sessions go on, it could gather new data and retrain itself. Such an outcome is

expected to be more tailored to individual features and thus, more accurate. On the other
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hand, the drawback of this idea is that it requires storage for both, the pre-trained data and the

new data. Moreover, the new data could also be unfavorable if self-help or minimal-contact

therapy is not performed properly by the individual. Hence, some trials will be necessary to

examine the balance between the improvement in accuracy and computational implications.

Complementary to previous recommendations, having more data would allow exploring

the area of deep learning, which is an emerging field in machine learning [51], and investigat-

ing the possibility of implementing more classes, i.e. more levels of anxiety. This would provide

the VRET/ARET system with more degrees of freedom to modulate the intensity of the

sessions.

Conclusion

The current study describes training and validation of supervised machine learning algorithms

for two-level and three-level classification of anxiety. The results show that Bagged Trees is the

most suitable classifier among the classification models studied. We discovered remarkable

performance measures for both classification cases that are comparable to similar research.

The trained machine learning algorithms will have practical impact on the feasibility study of a

VRET/ARET system for the treatment of arachnophobia. In this study, the performance of

these algorithms on new data will be investigated. This might further inform a decision which

data labeling approach should be favored for such and similar applications. Moreover, the

main contributions of the current study can be summarized as follows:

• Simple and efficient algorithms with a minimum subset of six features.

• On-line classification with an adequate short time window of 10 seconds.

• Overall high accuracy, high and balanced true class rates as well as good Kappa values.

Technology-based self-help and minimal-contact therapies have been proposed as effective

and low-cost interventions for anxiety and mood disorders in recent years. In fact, available

state-of-the-art, commercial technologies such as VR/AR glasses and wearable sensors permit

the continuous acquisition of real-time data and the use of such data for individualized

treatments.

The underlying research question is whether biofeedback on anxiety levels could be used as

a beneficial therapeutic add-on for exposure treatment with the aim to increase and to stabilize

its effects. This question should be addressed in future studies.
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Johanna Lass-Hennemann, Tanja Michael.

References
1. Wardenaar KJ, Lim CCW, Al-Hamzawi AO, Alonso J, Andrade LH, Benjet Cet al. The cross-national

epidemiology of specific phobia in the World Mental Health Surveys. Psychol Med 2017; 47(10):1744–

60. https://doi.org/10.1017/S0033291717000174 PMID: 28222820

2. Hofmann SG, Smits JAJ. Cognitive-behavioral therapy for adult anxiety disorders: A meta-analysis of

randomized placebo-controlled trials. J Clin Psychiatry 2008; 69(4):621–32. https://doi.org/10.4088/

jcp.v69n0415 PMID: 18363421

3. Wolitzky-Taylor KB, Horowitz JD, Powers MB, Telch MJ. Psychological approaches in the treatment of

specific phobias: A meta-analysis. Clin Psychol Rev 2008; 28(6):1021–37. https://doi.org/10.1016/j.

cpr.2008.02.007 PMID: 18410984

4. Rothbaum BO, Hodges L, Smith S, Lee JH, Price L. A controlled study of virtual reality exposure therapy

for the fear of flying. Journal of Consulting and Clinical Psychology 2000; 68(6):1020–6. https://doi.org/

10.1037//0022-006x.68.6.1020 PMID: 11142535
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33. Schäfer SK, Ihmig FR, Lara H KA, Neurohr F, Kiefer S, Staginnus M et al. Effects of heart rate variability

biofeedback during exposure to fear-provoking stimuli within spider-fearful individuals: Study protocol

for a randomized controlled trial. Trials 2018; 19(1):184. https://doi.org/10.1186/s13063-018-2554-2

PMID: 29548298

34. Gevirtz R. The Promise of Heart Rate Variability Biofeedback: Evidence-Based Applications. Biofeed-

back 2013; 41(3):110–20.

35. Tabachnick L. Biofeedback and Anxiety Disorders: A Critical Review of EMG, EEG, and HRV Feed-

back. Concept 2015; 38.
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