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Hierarchical deconstruction of 
mouse olfactory sensory neurons: 
from whole mucosa to single-cell 
RNA-seq
Luis R. Saraiva1,2,3,*, Ximena Ibarra-Soria1,*, Mona Khan4, Masayo Omura4, 
Antonio Scialdone1,2, Peter Mombaerts4, John C. Marioni1,2,† & Darren W. Logan1,5,†

The mouse olfactory mucosa is a complex chemosensory tissue composed of multiple cell types, 
neuronal and non-neuronal. We have here applied RNA-seq hierarchically, in three steps of decreasing 
cellular heterogeneity: starting with crude tissue samples dissected from the nose, proceeding to 
flow-cytometrically sorted pools of mature olfactory sensory neurons (OSNs), and finally arriving 
at single mature OSNs. We show that 98.9% of intact olfactory receptor (OR) genes are expressed 
in mature OSNs. We uncover a hitherto unknown bipartition among mature OSNs. We find that 19 
of 21 single mature OSNs each express a single intact OR gene abundantly, consistent with the one 
neuron-one receptor rule. For the 9 single OSNs where the two alleles of the abundantly expressed OR 
gene exhibit single-nucleotide polymorphisms, we demonstrate that monoallelic expression of the 
abundantly expressed OR gene is extremely tight. The remaining two single mature OSNs lack OR gene 
expression but express Trpc2 and Gucy1b2. We establish these two cells as a neuronal cell type that 
is fundamentally distinct from canonical, OR-expressing OSNs and that is defined by the differential, 
higher expression of 55 genes. We propose this tiered experimental approach as a paradigm to unravel 
gene expression in other cellularly heterogeneous systems.

The olfactory mucosa in the nasal cavity of the mouse is a complex and heterogeneous tissue composed of neu-
ronal and non-neuronal cell types. The main olfactory epithelium (MOE) component of the olfactory mucosa 
contains mature and immature olfactory sensory neurons (OSNs), horizontal basal cells (HBCs), globose basal 
cells (GBCs), and sustentacular cells (SUSs). The submucosa below the MOE harbors olfactory ensheathing cells 
(OECs), blood and lymph vessels, and glandular and cavernous tissues1,2. Odorant reception occurs primarily in 
the MOE, via > 1,000 G-protein coupled olfactory receptors (ORs)3. Each mature OSN is thought to express a single 
intact OR gene in a monoallelic fashion4,5. ORs signal in a combinatorial fashion to maximize odorant detection 
and discrimination4,6. OSNs expressing the same OR gene are scattered within a characteristic region of the MOE, 
and their axons coalesce into a few glomeruli in the main olfactory bulb where they synapse with second-order 
neurons in the olfactory pathway7–9. In turn these second-order neurons transmit signals to the olfactory cortex 
and other regions of the brain. A population of OSNs defined by the expressed OR gene constitutes the elementary 
unit of olfactory sensory input to the brain10.

We have recently characterized the transcriptome of C57BL/6 mouse olfactory mucosa by deep RNA sequencing 
(RNA-seq), and generated a comprehensive gene expression profile for this tissue11. But this approach averages 
each gene’s expression level across the many different cell types that are present in these crude tissue scrapes, thus 
obscuring the heterogeneity of cell types and subtypes. Moreover, genes encoding proteins that are abundantly 
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secreted from olfactory glands dominate this transcriptome, to the extent that genes expressed in small subsets 
of cells, like most OR genes, are significantly underrepresented11. Even within one MOE cell type - canonical, 
OR-expressing OSNs - the molecular heterogeneity is substantial: there are > 1,000 distinct OSN subsets, each 
defined by the expressed OR gene11. Multiple additional types of chemosensory neuron have been identified in the 
mouse MOE, including cells expressing the guanylyl cyclase D receptor (Gucy2d or GC-D)12 and cells expressing 
trace-amine associated receptors (TAARs)13. These smaller cell populations have been the focus of some recent 
functional studies14, but the full molecular identity and the extent of heterogeneity among the vast majority of 
chemosensory neuronal cell types in the MOE remain unknown.

Here we combine RNA-seq with Fluorescence Activated Cell Sorting (FACS) in a hierarchical fashion: from 
crude tissue samples containing MOE down to single mature OSNs. Our three-step approach is based on purifica-
tion of mature, GFP-expressing OSNs from whole olfactory mucosa (WOM) scrapes of heterozygous OMP-GFP 
mice15. Olfactory marker protein (OMP) is a widely accepted marker for mature OSNs, but some chemosensory 
neurons in the nasal cavity such as Gucy2d-expressing neurons express little or no OMP16. We find evidence for 
expression of 1,087 from 1,099 (98.9%) intact OR genes within these FACS-sorted cell populations, with intact 
referring to a full length (~1 kb), uninterrupted open reading frame (ORF). Importantly, the expression levels in 
sorted OSNs are proportional to their levels in WOM samples, indicating that our methods of tissue dissociation 
and FACS reliably retrieve and isolate the many distinct OSN subsets from the MOE component of WOM sam-
ples in a highly representative manner. We uncover a hitherto unknown bipartition between OMP-GFPlow and 
OMP-GFPhigh expressing OSNs, representing a discrete subdivision within the OMP-positive OSN population 
defined by markers of neuronal maturity. By RNA-seq of 21 single OMP-GFPhigh expressing OSNs, we find that 19 
cells express a single intact OR gene abundantly, with some evidence of much lower levels of expression for sev-
eral other OR genes. We demonstrate that the monoallelic expression of an OR gene in a single OSN is extremely 
tight in the 9 single OSNs for which single nucleotide polymorphisms (SNPs) enable discrimination between the 
two alleles in the mixed 129P2 x C57BL/6 background of the OMP-GFP strain. Finally, with the remaining two 
OMP-GFPhigh cells, we molecularly characterize a recently described type of chemosensory neuron in the MOE: 
type B Trpc2+ cells17–19. We demonstrate that these two cells do not express ORs, TAARs, Gucy2d or any of the 
other known chemosensory G-protein coupled receptors. We identify 55 upregulated genes that establish these 
cells as a novel neuronal type within the MOE, which is fundamentally distinct from canonical OSNs.

Results
The transcriptional profile of mature olfactory sensory neurons. To characterize gene expression 
in mature OSNs, we need to purify them away from the many other cell types that are present within the crude 
tissue samples that can be scraped from the nasal cavity and contain not only pure MOE but also submucosa and 
adjacent tissues.

We FACS-sorted cell suspensions of dissociated WOM samples from 25-day old, heterozygous gene-targeted 
mice engineered to express green fluorescent protein (GFP) from the endogenous Olfactory Marker Protein (OMP) 
promoter15 (Fig. 1A and Supplementary Fig. S1A). We applied RNA-seq to three independent pools of ~10 million 
OMP-GFP+ OSNs (hereafter referred to as “OSNs”), which is approximately the number of OSNs present in the 
nose of a single adult mouse20, and to three WOM samples from mice of the same age, strain, and mixed genetic 
background (Fig. 1A). We find that gene expression levels are highly correlated between independent biological 
replicates of WOM (Spearman’s rho =  0.975) and between OSN pools (Spearman’s rho =  0.969) (Supplementary 
Fig. S1B). A differential expression (DE) analysis identified 790 genes that are expressed higher in OSNs relative 
to WOM (fold-change >  3; FDR < 5%) (Fig. 1B), 50.1% of which are OR or TAAR genes (Supplementary Data S1). 
A gene ontology (GO) analysis revealed that genes more highly expressed in the OSN pools relative to WOM are 
significantly enriched in terms related to the olfactory transduction pathway, as well as in G-protein coupled amine 
receptor activity (Supplementary Data S1). Other enriched GO terms include genes related to synaptic vesicles, 
branching morphogenesis of a nerve, and peptide hormone processing. Of the 5,227 genes that are expressed higher 
in WOM (fold-change < 0.33; FDR < 5%), 55.46% are expressed at least ten times higher than in the OSN pools, 
suggesting these are likely to be restricted to entirely different cell types within the WOM samples. To validate 
these observations, we interrogated an existing microarray dataset of OSN gene expression from the same strain of 
OMP-GFP mice21. We find that genes enriched in our FACS-sorted OSNs are consistent with OMP+ enrichment 
in Sammeta et al., and conversely, that genes enriched in our WOM samples are consistent with OMP– enrichment 
in the same study21 (Supplementary Fig. S1C). We surveyed the top 200 DE genes between OSNs versus WOM to 
identify novel genes likely to be involved in olfaction (Supplementary Fig. S1D). Among the most abundant genes 
that are more highly expressed in OSNs are Gnal, Gnb1, Adcy3, and Cnga2, all of which are involved in canonical 
odorant-mediated signal transduction. We identified a number of novel genes of interest because of their high 
differential expression in OSNs, such as Fstl5 and Cmip (the 8th and 20th most abundant DE genes in OSNs respec-
tively, Supplementary Data S1).

We next compared OR and TAAR gene expression levels between OSNs and WOM. To capture the full abun-
dance levels, we mapped the sequencing data to full-length transcripts11 instead of the much shorter Ensembl 
transcript models, which typically only capture the coding region (Supplementary Fig. S1E). We find that OR 
and TAAR gene expression levels are strongly correlated between the OSN and the WOM samples (Spearman’s 
rho =  0.953) (Fig. 1C,D). Indeed only 19 (1.52%) OR genes, all expressed at very low levels in the WOM, lack 
representation in any of the OSN pools, and 13 of these are annotated as pseudogenes (Fig. 1D). On average, OR 
and TAAR genes, as well as other OSN-specific markers, are expressed 2.56 fold higher in the OSN samples than 
in the WOM (Fig. 1C), consistent with mature OSNs comprising a minority of the cells within the WOM.

Taken together, we have generated the transcriptome of almost the entire mouse OSN repertoire by RNA-seq, 
identifying hundreds of genes that are OSN-specific and thousands that are restricted to other cells contained 
within the WOM. Our exhaustive sampling approach maintains excellent proportionality of abundance between 
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the purified OSNs and the WOM. There are thus no major differences in recovery of OSN subsets expressing the 
various OR genes by tissue dissociation and FACS-sorting compared to their in situ representation within the MOE.

A bipartition of mature olfactory sensory neurons. While performing FACS of OSNs on heterozygous 
OMP-GFP mice, we noticed two distinct subpopulations based on GFP intensity (Supplementary Fig. S1A). As 

Figure 1. Differential expression analysis of mouse olfactory sensory neurons (OSNs) and whole olfactory 
mucosa (WOM). (A) Schematic of the RNA-seq experimental strategy. After dissection of the WOM of OMP-
GFP (+ /− ) male and female mice, pools of ~10 million OSNs were collected by FACS. RNA was extracted  
from these, along with WOM samples, cDNA generated, and libraries were amplified for deep sequencing.  
(B) Differential gene expression analysis between the transcriptomes of OSNs and WOM. Statistically 
significant differentially expressed genes (fold-change > 3; FDR <  5%) are highlighted in pink. (C) Comparison 
of OR and TAAR gene expression levels. A scatter plot of OR and TAAR gene expression levels (black) in the 
WOM versus the sorted OSNs reveals a strong correlation. The red line represents the 1:1 diagonal. Classical 
marker genes for mature OSNs (yellow) are similarly enriched. (D) Distribution of OR and TAAR gene 
expression (normalized counts) as a barplot, for both OSNs and WOM. Genes are displayed in ascending 
order of their expression values in OSNs (dark green). Matching values are plotted for WOM (bright green), 
demonstrating that the dynamic distribution of OR gene expression is largely conserved, but differs in OR genes 
expressed at low levels in WOM (arrow).
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OMP is widely accepted as a marker of mature OSNs22,23, these may represent subpopulations of mature neurons 
at distinct stages of maturation.

To investigate this hypothesis, we performed RNA-seq on three pools of 10,000 OSNs sampled from the two 
subpopulations (termed OMP-GFPlow and OMP-GFPhigh), each time from a single heterozygous OMP-GFP 
mouse (Fig. 2A). We find that gene expression levels are highly correlated between biological replicates among 
the OMP-GFPlow pools and among the OMP-GFPhigh pools (Spearman’s rho =  0.89–0.91) (Supplementary Fig. 
S2A). One OMP-GFPhigh sample yielded a substantially lower number of sequencing reads (Supplementary Data 
S2) so we excluded it from our subsequent analyses. Consistent with the FACS distributions, we confirmed ~1.5 
higher levels of Omp expression in the OMP-GFPhigh compared to the OMP-GFPlow subpopulations, independently 
by qRT-PCR and RNA-seq (Fig. 2B,C).

We next investigated the expression levels of 1,235 genes that have been reported to be differentially enriched 
in immature (670) or mature (565) OSNs24. We find that the mature OSN-enriched genes are robustly expressed 
at similar levels in both the OMP-GFPlow and OMP-GFPhigh subpopulations (Wilcoxon rank sum test, P =  0.45) 
(Fig. 2D). Moreover, the mature OSN-specific genes are expressed at significantly higher levels than the imma-
ture OSN-specific genes in both populations (Wilcoxon rank sum test, P <  2.2–16 for both OMP-GFPlow and 
OMP-GFPhigh), suggesting that OMP-GFPlow and OMP-GFPhigh cells both correspond to mature OSNs. Further, 
the expression of genes recently implicated in establishing and maintaining monogenic expression in OSNs25,26 
do not significantly differ between the subpopulations (Supplementary Fig. S2B). Among genes involved in OSN 
axon guidance27, only Robo2 has a small but significant decrease in expression in the OMP-GFPhigh subpopulation 
(Supplementary Fig. S2C).

Consequently, we carried out an unbiased comparison between the two subpopulations to determine how 
they differ in their transcriptional profile. We identified 537 DE genes (FDR < 5%) of which 420 (78.2%) are more 
highly expressed in the OMP-GFPlow subpopulation (Fig. 2E). Applying GO term analysis to these genes in order to 
obtain indications about the cellular processes they regulate, we find a statistically significant enrichment for terms 
related to development, morphogenesis, negative regulation of neuronal differentiation and positive regulation of 
cell proliferation (Fig. 2F; and Supplementary Data S2).

A hallmark of neuronal differentiation/maturation is the exit from the cell cycle, late in the G1 stage, by the 
neural progenitors28. We investigated the cell-cycle phase of the OSNs from each subpopulation. We selected 971 
genes with a “cell cycle” GO annotation, calibrated their expression against a published dataset of staged ES cells 
(Supplementary Fig. S2B), and analyzed three test sets (blastomeres, brain, and liver, Supplementary Fig. S2C) to 
ensure that we can accurately allocate RNA-seq data to different cell cycle stages (see Supplementary Methods). 
Testing the RNA-seq datasets from ~10 million OSNs, OMP-GFPlow and OMP-GFPhigh cells, we found that all 
samples are allocated to the G1 phase (Fig. 2G).

We have thus uncovered a hitherto unknown bipartition among mature OSNs. Both subpopulations are postmi-
totic, but the OMP-GFPlow subpopulation, while mature based on its OMP expression level and expression profile 
of known marker genes, appears to be somewhat less mature than the OMP-GFPhigh subpopulation.

RNA-seq of single olfactory sensory neurons. Having identified and isolated a subpopulation of OSNs 
that represent the most mature state (OMP-GFPhigh), we proceeded to the ultimate objective of this study: charac-
terizing gene expression in single mature OSNs by single-cell RNA-seq.

We used a Fluidigm C1 microfluidic system to capture 58 single cells from the OMP-GFPhigh subpopulation 
of an individual mouse (Fig. 3A). The remaining wells in the 96-well capture chip were either empty, contained 
visible debris and/or more than one cell (Fig. 3B). By applying stringent, hierarchical quality control criteria to 
the RNA-seq data, we further excluded 37 cells. We focused our downstream analysis on the remaining 21 cells 
(Fig. 3C; Supplementary Fig. S3. See Methods and Supplementary Methods for details of the quality control 
procedure). On average 4.4 million sequence fragments were obtained from a single cell. Each fragment provides 
~200 bp of cDNA sequence, which we mapped to the mouse reference genome (Supplementary Data S3). Based 
on their expression of cell cycle genes, all 21 cells were allocated to the G1 stage, consistent with mature neurons 
(Supplementary Fig. S3C). To verify that these 21 cells belong to the OMP-GFPhigh OSN subpopulation, we com-
pared their individual transcriptomes to the gene expression profiles derived from WOM, the pools of 10 million 
OSNs and the bulk OMP-GFPlow and OMP-GFPhigh OSN subpopulations. As expected, all 21 cells correlate better 
with the OSN samples than with the WOM samples (paired t-test, P <  2.2-16), and better with the OMP-GFPhigh 
than the OMP-GFPlow OSN samples (paired t-test, P <  2.2-16) (Fig. 3D). We detect, on average, 4,717 + /−  175 
(SEM) genes per single cell. Collectively, 13,582 different genes are expressed in at least one cell, representing 74.2% 
of the genes expressed in the OMP-GFPhigh OSN pools.

Next we examined expression of a catalog of genes that are widely accepted to characterize distinct cell types 
within the MOE and the vomeronasal organ (VNO). Satisfyingly, we find that all 21 cells show high expression 
of genes characteristic of mature OSNs (such as Omp, Gnal, Cnga2, Ano2, and Adcy3), and low or no expression 
of markers of other MOE cell types (such as Gucy2d and Taar), of immature OSNs (such as Gap43, Ascl1, and 
Neurog1), and of vomeronasal sensory neurons (such as Vmnr and Fpr genes) (Fig. 4). We assessed the expression 
of 87 additional marker genes that have been identified from microarray and other large-scale analyses of olfactory 
and vomeronasal mucosae, but have been less well characterized21,24,29–31. Again, we observe a strong enrichment 
for expression of marker genes from mature OSNs (Supplementary Fig. S4).

Taken together, we have captured and extracted high-quality mRNA and sequenced the corresponding cDNA 
from 21 OSNs. By preselecting OMP-GFPhigh OSNs, we ensured that the captured cells were sampled only from 
the most mature OSN subpopulation, a distinction that cannot be made when picking single cells under a micro-
scope. Our single-cell RNA-seq analyses confirm the source and identity of all 21 cells as mature OSNs, with no 
contamination by other MOE or VNO cell types.
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Figure 2. Differential expression analysis of mature OSN subpopulations. (A) Schematic of the RNA-
seq experimental strategy. The WOM of OMP-GFP (+ /− ) male mice was dissected and pools of ~10,000 
OSNs from two non-overlapping subpopulations, OMP-GFPlow (light green) and OMP-GFPhigh (dark green), 
were collected by FACS gating based on fluorescence intensity. Subsequently the RNA was extracted, cDNA 
generated, and libraries were amplified for deep-sequencing. (B) Representative coverage plot showing the 



www.nature.com/scientificreports/

6Scientific RepoRts | 5:18178 | DOI: 10.1038/srep18178

Abundant and monogenic OR gene expression. Mature OSNs are functionally distinguished by the 
OR gene they express4,6,10. They are thought to adhere to the one neuron – one receptor rule32,33 and to exhibit 
monoallelic expression of the expressed OR gene5.

We would expect OR genes and possible other regulators of OSN identity to show heterogeneous patterns of 
expression across the OSN population. We therefore computed the coefficient of variation (CV =  standard devia-
tion/mean) for the 4,121 genes with > 1000 normalized counts in at least one of the 21 single OSNs. This procedure 
allowed us to identify 598 genes with highly variable expression patterns across cells (CV >  4, Supplementary Data 
S3). These genes are distributed relatively evenly across the single OSNs (Fig. 5A), except for one unusually variable 
cell (OSN 183), which accounted for 89 of the 598 genes (15%). The genes with high CV in this cell are enriched 
for GO terms related to chemokine receptor binding, cytokine binding and activity, antigen processing and pres-
entation, and regulation of lymphocyte activation, suggesting a stressed cellular state. The remaining 509 genes that 
are expressed in one or a small number of the other 20 OSNs are statistically enriched only in GO terms related to 
G-protein coupled receptor (GPCR) signaling and transduction. Importantly, the majority of the high-CV genes 
within these GO terms are OR genes. There are a few other orphan GPCR genes with a CV >  4: Gpr32, Gpr123, 
Gpr125 and Gpr160 (Supplementary Fig. S5A). We carried out a similar analysis to assess whether there is any 
enrichment for shared protein domains in the predicted amino-acid sequences. As expected, we identified the 
seven-transmembrane receptor domain that is typical for GPCRs (defined in the protein family database, PFAM, 
by domain PF00001). Curiously, we also identified a statistical enrichment in 18 genes encoding zinc-finger motifs 
(PFAM: PF00096) (Supplementary Fig. S5B). Thus, OR genes systematically distinguish individual OSNs. We 
speculate that the highly restricted expression patterns of several zinc-finger and orphan GPCR genes may reflect 
lineages or subtypes within the OSN repertoire.

We next investigated the expression of all OR and TAAR genes, including pseudogenes, within the 21 single 
cells. In total, we found 476 instances where an OR gene had at least one fragment mapped in at least one OSN; in 
contrast, no fragments mapped to TAAR genes. In 86% of these 476 instances, however, the mapped fragments 
cover less than one third of the length of the OR gene (Supplementary Fig. S5C), consistent with non-specific 
transcription and/or mismapped reads (Supplementary Fig. S5D). The remaining 65 OR genes segregate into 
two distinct classes based on transcript abundance (Fig. 5B). A total of 45 OR genes fall in a low-abundance class 
with a mean expression of 15.99 ±  2.7 (SEM) normalized counts (Supplementary Fig. S5C,E). The remaining 20 
OR genes are abundantly expressed (mean 36,162.46 ±  6,238.7 SEM normalized counts) and have reads densely 
mapped across the majority of the full transcript (Supplementary Fig. S5C,F).

We then analyzed the OR genes expressed in each individual OSN, using the intersection between these two 
distributions at 855 normalized counts (Fig. 5B; and Supplementary Fig. S5C) to define whether an OR gene is of 
high or low abundance. We find that 19 of the 21 OSNs express a single intact OR gene at extremely abundant levels 
(above the intersection, Fig. 5B,C). On average the OR genes rank as the 6th most abundantly expressed genes in 
the cells (range 1 to 15), when measured by normalized counts, with only Stoml3, Gnb1, Malat1 and Calm1 being 
consistently expressed more strongly (Supplementary Data S3). Consistent with the ~1:10 ratio of class I to class II 
OR genes in the mouse genome34, all but one (Olfr556) of these abundantly expressed OR genes encode a class II 
OR protein. Moreover, the set of OR genes expressed are distributed throughout the OR phylogeny (Fig. 5D). Thus, 
the 19 OR-expressing mature OSNs that we captured appear broadly representative of the full OR gene repertoire.

In OSN 188, we observed that Olfr1372-ps1, an OR pseudogene, is coexpressed at moderate levels (exactly at 
the intersection of 855 normalized counts, between the low/high abundance distributions) alongside an intact OR 
gene (Olfr1348, Fig. 5E–G). We reconstructed the Olfr1372-ps1 transcript from the mapped reads and confirmed 
that it has a truncated ORF. The coexpression of two OR genes (Olfr1348 and Olfr1372-ps1) in OSN 188 is con-
sistent with evidence that OR genes with an experimentally interrupted ORF can still be expressed, but lose their 
monogenic character35. The 19 OSNs also have between 11 and 28 additional OR genes with evidence of expression, 
but all with extremely low normalized counts. Indeed, after excluding pseudogenes, the most highly expressed 
OR gene is on average over 1,000 times more abundant than the next highest OR gene expressed (Fig. 5H–J; and 

distribution of RNA-seq reads across the Omp locus (which is located within an intron of Capn5) is similar 
in both subpopulations. (C) The number of Omp normalized counts is 1.5 times higher in the OMP-GFPhigh 
population (unpaired t-test, 2 tails, *P =  0.025). Analysis of the same samples by TaqMan qRT-PCR verified this 
increase. (D) Scatter plot showing the expression levels of previously reported immature (brown) and mature 
(green) OSN-specific markers24 in the OMP-GFPlow and OMP-GFPhigh OSNs. Both sets of genes are expressed at 
equivalent levels in both populations (Wilcoxon rank sum test, P =  0.45 and P =  0.22 for mature and immature 
gene sets), but mature specific genes are expressed considerably higher (Wilcoxon rank sum test, P <  2.2–16 
and P <  2.2–16 for OMP-GFPlow and OMP-GFPhigh). (E) Differential gene expression analysis between the 
transcriptomes of OMP-GFPlow and OMP-GFPhigh OSNs. Statistically significant differentially expressed 
(FDR <  5%) genes are highlighted in pink. (F) Functional terms enrichment analysis between the OMP-GFPlow 
and OMP-GFPhigh differentially expressed genes identified a total of 88 GO terms significantly overrepresented 
(FDR <  5%). The bar graph indicates the expected and observed number of DE genes for six of these GO terms 
(*P ≤  0.05, **P ≤  0.01, ***P ≤  0.001). The full list and GO category names is in Supplementary Data S2. (G) 
Projection of the OSNs, OMP-GFPlow and OMP-GFPhigh samples onto the cell cycle Principal Component 
Analysis (PCA) that differentiates between cell cycle stages (see Supplementary Fig. S2B and Supplementary 
Methods for details). Principal Component 1 (PC1) segregates the samples based on their cell cycle stage, with 
samples in G1 having negative values and samples in S/G2-M positive values. All tested samples are in the G1 
stage.
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Figure 3. RNA-seq in single mature OSNs. (A) Schematic of the single-cell RNA-seq experimental strategy. 
After dissection of WOM of a heterozygous OMP-GFP mouse, 5,000 mature OMP-GFPhigh OSNs were collected 
by FACS into a C1 IFC (10–17 μ m, Fluidigm). Using the Fluidigm C1 platform, single cells were sorted, imaged, 
RNA extracted, cDNA generated, and libraries amplified for deep-sequencing. A representative bright field and 
fluorescence image for a captured single OSN is shown in the middle panel. (B) Capture rate for single cells: 30 
wells captured more than one cell and/or debris, 58 captured single cells, and 8 were empty. Representative bright 
field images are shown for each of these categories. (C) The 58 captured single OSNs were subjected to stringent, 
hierarchical quality control criteria, which defined low-quality (LQ, black dots) and high-quality cells (HQ, green 
dots, see also Supplementary Fig. S3; and Supplementary Methods). (D) Spearman correlation coefficients of the 
21 single cells used in our downstream analysis with the WOM and OSN populations (10 million, OMP-GFPlow 
and OMP-GFPhigh OSNs). As expected, the single cells correlate best with the OMP-GFPhigh OSNs, followed by 
the OMP-GFPlow OSNs, the 10 million OSNs and finally WOM. To the right of the graph, boxplots show the 
cumulative data for each comparison. The thick black horizontal bar corresponds to the median and data points 
that are outside 1.5 times the interquartile range (the box) are indicated as outliers (black dots).
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Supplementary Fig. S5G), and we find no evidence of phylogenetic or chromosomal proximity between the two 
(Supplementary Data S3).

In two cases, we identified a pair of cells that abundantly express the same OR gene: OSN 171 and OSN 177 each 
express Olfr728, and OSN 222 and OSN 263 each express Olfr55. Interestingly, the additional OR genes with very 
low normalized counts are not shared between the cells of each pair (Supplementary Fig. S5G). Their expression 
is thus not coordinated with the choice of abundant OR gene, nor are their low expression counts a consequence 
of mismapping of a fraction of the reads of the abundantly expressed OR gene. To assess whether this pattern of 
OR genes with very low normalized counts is specific to OSNs, we analyzed single-cell RNA-seq data from 96 
mouse T-helper lymphocytes36 and 288 single mouse embryonic stem cells37, captured using the same microfluidics 
method and in the same research facility as the 21 OSNs. We found examples of individual cells in both popula-
tions where up to 101 OR genes are expressed but, like the additional OR genes in the OSNs, they display very low 
normalized counts (Supplementary Fig. S5G).

In sum, 19 of 21 single mature OSNs express a single intact OR gene abundantly. They also express other OR 
genes but at three or more orders of magnitude less. We find no indication that these additional OR transcripts 
display coordinated patterns of expression, nor is low level OR gene expression specific to OSNs. These 19 mature 
OSNs thus obey the previously established one neuron - one receptor rule (reviewed in32,33,38).

Monoallelic expression of OR genes. The OMP-GFP mouse strain was generated in the E14 embryonic 
stem cell line on a 129P2 genetic background, and then crossed to C57BL/615. As OR genes have higher than average 
sequence variation between mouse strains39, we sought to identify the strain of origin for the OR genes that are 
abundantly expressed in single OSNs.

We first focused on Olfr55, an OR gene that is expressed abundantly in two cells, OSN 222 and OSN 263. The 
C57BL/6 and 129P2 strains differ by 15 SNPs within the Olfr55 transcript (Fig. 6A,B). We quantified the number 
of reads from each allele at these positions in each Olfr55-expressing cell (Supplementary Fig. S6). Summed across 
the 15 SNPs, 54,563 of 54,677 reads (99.79%) in OSN 222 originate from the C57BL/6 allele of Olfr55, and 52,465 
of 52,503 reads (99.93%) in OSN 263 are from the 129P2 allele (Fig. 6C,D). As both OSNs originated from the 
same individual mouse, these data demonstrate that monoallelic expression of Olfr55 is extremely tightly regulated. 
Overall, of the 19 abundantly expressed intact OR genes, six expressed the C57BL/6 allele essentially exclusively 
(including both Olfr728-expressing OSNs) and three expressed the 129P2 allele (Olfr6 and Olfr556, in addition to 
Olfr55). Both Olfr6 and Olfr556 are located near to the Omp locus on chromosome 7, suggesting their 129P2 allele 
has been maintained in the OMP-GFP strain for over 15 years of breeding by linkage disequilibrium (Fig. 6E). 
The 10 OR genes that are abundantly expressed in the remaining 10 single OSNs do not have SNPs that allow us 
to distinguish between the two strains.

We have shown previously that many OR genes have multiple transcripts within the WOM11, including some 
that, if translated, would alter the amino-acid sequence of the receptor and generate multiple protein isoforms. We 
do find multiple OR transcripts expressed within most single OSNs, such as the class I OR gene Olfr556 in OSN 
236 (Fig. 6F), but none that alter the coding sequence.

Taken together, we confirm and extend the rule of monoallelic expression5 of OR genes at the level of single 
OSNs, and show that it reaches a level of constraint that has thus far not been demonstrated.

Figure 4. Captured single cells express canonical marker genes of mature OSNs. Heatmap of the expression 
of canonical olfactory cell-specific markers across the WOM and all OSN samples analyzed. While the WOM 
and OSN population samples express markers for all cell types, the single cells specifically express high levels 
of mature OSN markers. mOSNs: mature OSNs, iOSNs: immature OSNs, GBCs: globose basal cells, HBCs: 
horizontal basal cells, SUSs: sustentacular cells, VSNs: vomeronasal sensory neurons.
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A neuronal type lacking OR gene expression. There is no abundantly expressed OR gene in two sin-
gle cells, OSN 259 and OSN 261 (Figs 4,5C). These cells do express some OR genes, but again at very low levels: 
OR genes at best rank 3,752 (12.66 normalized counts) and 4,997 (7.7 normalized counts) respectively, which is 
similar to the OR gene expression levels in T-helper lymphocytes and ES cells (Supplementary Fig. S5G). Nor 
can we identify expression of any other known chemosensory receptor gene in these two cells (Supplementary 
Fig. S7A). They both also lack expression of Adcy3 and Cnga4, components of the canonical OR-mediated signal 
transduction pathway, but express many other markers of mature OSNs such as Omp, Gnal and Cnga2 (Fig. 4; and 
Supplementary Data S3). What are these cells?

What sets them apart from the other 19 OSNs, is that they express high levels of Trpc2 (Fig. 4), a gene encoding 
a cation channel that was thought to be expressed exclusively in vomeronasal sensory neurons40. Recently Trpc2 
expression has been reported in two subsets of chemosensory neuron in the mouse MOE17. Comparing the tran-
scriptomes of these two cells to the remaining 19, we find 494 genes that are classified as DE (Fig. 7A), including 
55 that, similar to Trpc2, are only highly expressed in these two cells (Fig. 7B). To ascertain whether this number 
of shared DE genes is statistically meaningful, we carried out the same analysis for all 210 possible combinations 
of two cells among the 21 single OSNs. Intriguingly, this pair of cells (OSN 259 and OSN 261) share over twice the 
number of uniquely coexpressed genes than any other combination (Supplementary Fig. S7B), suggesting they 
do indeed represent two examples of a molecularly distinct type of neuron. The most abundant DE genes in these 
two cells are Gucy1b2 (a soluble guanylyl cyclase), followed by Sln (sarcolipin, a transmembrane protein involved 
in mobilizing Ca2+ from the cytosol to the sarcoplasmic reticulum), and Emx1 (a transcription factor involved in 
neuronal fate specification) (Fig. 7A,B). In comparison, Trpc2 is only ranked 39th by abundance among the DE 

Figure 5. OR gene expression patterns single OSNs. (A) Heatmap of the expression levels of the most variable 
genes in single OSNs. All 598 highly expressed genes (≥ 1000 normalized counts in at least 1 sample) with a 
coefficient of variation ≥ 4 are represented. The identity of these genes are presented in Supplementary Data 
S3. (B) Normal-like distributions were fitted for all lowly expressed (blue line) and highly expressed (red line) 
OR genes. Only genes at or above the intersection of both curves (855 normalized counts) were considered 
as abundantly expressed. (C) Expression level of the most abundant OR in each of the 21 single OSNs. The 
most abundant ORs in OSN 259 and OSN 261 are expressed at extremely low levels. (D) Phylogenetic tree of 
all mouse OR genes (Class I and II in black and grey, respectively). The most abundant ORs in all the single 
OSNs analyzed are depicted as red circles. (E) Expression levels of all ORs in OSN 188. The two most abundant 
ORs in that cell are indicated. (F,G) Coverage plots of the RNA-seq data for OSN 188 mapping to the first 
(Olfr1348, (F)) and second (Olfr1372-ps1, (G)) most abundant ORs. Boxes correspond to exons and arrowheads 
indicate the strand of the gene. The existing Ensembl annotations are shown in the top box. Optimized OR 
gene models11 used in our analysis are shown in the middle box. The sequencing data mapping to the OR gene 
models is below. (H) Expression levels of all ORs in OSN 236. The two most abundant ORs in that cell are 
indicated. (I,J) Coverage plots of the RNA-seq data for OSN 236 mapping to the first (Olfr556, (I)) and second 
(Olfr1509 (J)) most abundant ORs. Boxes correspond to exons and arrowheads indicate the strand of the gene. 
The existing Ensembl annotations are shown in the top box. Optimized OR gene models11 used in our analysis 
are shown in the middle box. The sequencing data mapping to the OR gene models is below.
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Figure 6. Monoallelic expression of OR genes in single OSNs. (A,B) Coverage plots of the sequencing data mapping 
to the same OR (Olfr55) in two cells, OSN 222 (A) and OSN 263 (B). Boxes correspond to exons and arrowheads indicate 
the strand of the gene. The existing Ensembl annotations are shown in the top box. Optimized OR gene models11 used in 
our analysis are shown in the middle box. The sequencing data mapping to the OR gene models is below. Reported single 
nucleotide polymorphisms (SNPs) used to map the C57BL/6 and 129P2 alleles are shown in black and golden vertical 
lines, respectively. (C,D) The percentage (%) of sequencing data showing the C57BL/6 (black) or the 129P2 (gold) allele 
at each SNP on Olfr55 in OSN 222 (C) and OSN 263 (D). Genomic coordinates on chromosome 17 for each SNP are 
indicated in the x-axis. (E) The percentage (%) of sequencing data showing the C57BL/6 (black) or the 129P2 (gold) allele 
for all ORs with at least one reported informative SNP. In all cases, only one allele is expressed per cell. (F) Example of 
differential splicing of an OR gene. The sequencing reads in the bottom panel are represented by grey boxes; blue lines 
join portions of reads that map across exon junctions. Two isoforms are present, with the differential inclusion of the 
second exon. Thus individual OSNs express multiple isoforms of the chosen OR gene.
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genes. We used single-color in situ hybridization (ISH) to histologically characterize the MOE cells with this gene 
expression profile. We confirm that Gucy1b2 is expressed in some cells within the mouse MOE, sparsely distributed 
within the OSN and sustentacular cell layers (Fig. 7C). Sln similarly identifies a subset of cells in the MOE (Fig. 7D). 
We then used two-color ISH to confirm that the Gucy1b2+ cells define a subset of the Trpc2+ cells in the MOE 
(Fig. 7E), consistent with our single-cell RNA-seq data (Fig. 7B) and recent reports17,18. We used a similar approach 
to determine whether the other most differentially expressed genes identified by RNA-seq identify the same subset 
of cells. We find that Sln and Gucy1b2 are coexpressed and that many, but not all, of the cells that express Emx1 also 
express Gucy1b2 (Fig. 7F), suggesting further molecular subdivisions may exist within the OMP+ neurons of the 
MOE. Finally we selected a less-abundantly expressed gene, Sncg (γ -synuclein), ranked 7th by abundance among 
the 55 DE genes, and find that this gene is also coexpressed with Gucy1b2 (Fig. 7F).

Figure 7. Gene expression profile of another neuronal type in the MOE. (A) Scatter plot of the mean 
expression values for all genes in the two cells lacking OR gene expression versus the remaining 19 OSNs. 
Statistically significant differentially expressed genes (FDR <  5%) are highlighted in pink; those that show 
consistent high expression in both cells lacking OR gene expression are in purple. The three most abundant 
DE genes are indicated (Gucy1b2, Sln and Emx1). (B) Heatmap of the 55 DE genes that constitute the gene 
expression signature of the cells lacking OR gene expression. (C,D) Cryosections of adult mouse MOE 
hybridized with cRNA probes for the two most highly expressed DE genes – Gucy1b2 (C) and Sln (D). The 
hybridization signals are sparsely distributed within the MOE. (E) Two-color in situ hybridization of the top 
ranked marker (Gucy1b2) with Trpc2. As previously shown18, some, but not all of the Trpc2 cells in the MOE 
also coexpress Gucy1b2. (F) Two-color in situ hybridization of the top ranked marker (Gucy1b2) with other 
differentially expressed genes, Sln, Emx1 and Sncg. Arrowheads point to labeled cells. Scale bars, 50 μ m.
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Thus, these two cells appear to be examples of the recently discovered type B Trpc2+ cells in the MOE, which 
we here firmly establish as a neuronal cell type that is fundamentally distinct from canonical OSNs.

Discussion
We have here applied RNA-seq hierarchically to the main olfactory system of the mouse, starting with WOM 
(crude tissue samples that can be dissected from the nasal cavity and contain non-olfactory cell types), proceeding 
to GFP+ cell pools that were FACS-sorted from heterozygous OMP-GFP mice (mature OSNs), further to sorted 
OMP-GFPlow and OMP-GFPhigh subpopulations, finally arriving at single OMP-GFPhigh OSNs. These samples all 
originated from heterozygous OMP-GFP gene-targeted mice in a mixed 129P2 ×  C57BL/6 background15. Our 
data afford six conclusions.

First, we show that 1,087 from 1,099 (98.9%) intact OR genes are expressed in mature OSNs, indicating that 
essentially every member of the OR gene repertoire is a candidate receptor for odorants based on the minimal 
criterion of expression in mature OSNs. Second, the OR gene expression levels in sorted OSNs are highly correlated 
to their levels in WOM. This proportionality proves that our methods of tissue dissociation and FACS retrieve 
and isolate these different OR-expressing OSN subsets from the MOE in a reliable and representative manner - a 
critical experimental requirement that thus far had not been demonstrated. Third, we uncover a hitherto unknown 
bipartition between OMP-GFPlow and OMP-GFPhigh OSNs. We show that these subsets represent a subdivision 
within the population of mature OSNs, with OMP-GFPlow cells being somewhat less mature than OMP-GFPhigh 
cells. Fourth, we find that 19 of 21 single OMP-GFPhigh OSNs each express a single intact OR gene abundantly, 
providing the most direct evidence for the one neuron - one receptor rule to date. Interestingly, these 19 cells each 
coexpress a variety of other OR genes at low levels, but so do non-olfactory cells like T-helper lymphocytes and 
embryonic stem cells, thereby providing a warning for unvalidated interpretation of low-level coexpression of OR 
genes in OSNs. Fifth, we demonstrate that monoallelic expression of the OR gene that is abundantly expressed 
in an OSN is extremely tight in the 9 of 19 OSNs where SNPs enable discrimination between the two alleles in 
the mixed 129P2 ×  C57BL/6 background of the OMP-GFP strain. Sixth, the remaining two single OMP-GFPhigh 
OSNs appear to be examples of the recently discovered type B Trpc2+ MOE cells17–19. Our identification of 53 
upregulated genes in addition to Trpc2 and Gucy1b2 firmly establishes type B Trpc2+ MOE cells as a novel type 
of chemosensory neuron within the MOE that is fundamentally distinct from canonical OSNs. Our hierarchical 
strategy has thus proven that it can identify and classify a minor MOE cell type, paving the way for identification 
of additional MOE cell types in an unbiased, explorative, discovery-based approach.

Advances in RNA sequencing technologies have made possible the fast and cost-effective whole transcriptome 
profiling of organs, tissues, and now single cells. We and others have recently applied RNA-seq to the mouse olfac-
tory system, allowing us to generate complete lists of the average expression level for each annotated gene across all 
cell types that are contained within the crude tissue samples that can be dissected from the nasal cavity11,41,42. But 
this approach does not allow discrimination between sets of genes variably expressed in different cell types within 
a tissue, and does not enable exploration of molecular heterogeneity within a particular cell type, such as mature, 
canonical OSNs. The nervous system is especially sensitive to these issues, due to its vast functional diversity of neu-
rons and supporting cells. A growing body of work has addressed cellular diversity by sequencing RNA extracted 
from pools of neurons that express a shared, single marker43. More recently, single neurons from specific brain 
areas have been sampled for RNA-seq, enabling subclassification of neuronal types by gene expression profiles44–46.

OSNs constitute an extreme challange for the molecular subclassification of neurons by RNA-seq. Since all 
mature OSNs are likely to fulfill the same general role in chemoreception and are distinguished only by the molec-
ular identity of the odorants that they detect, it is widely accepted that expression of a single allele of a single intact 
OR gene is a functional molecular classifier. Different subsets of OSN can thus be identified, molecularly compared, 
and contrasted in the context of the expressed OR gene. Two early studies analyzed RNA from nine single OSNs 
using microarrays and LongSAGE, but no data on OR gene expression were reported most likely due to extensive 
3’ bias in cDNA amplification31,47. Here we have embarked on a systematic program to deconstruct the molecular 
heterogeneity of mouse OSNs. By combining RNA-seq with FACS in a tiered fashion, we have sampled the entire 
transcriptome of over 99.4% of the population of canonical OSNs. Focusing on the most mature subpopulation 
(OMP-GFPhigh), single-cell RNA-seq analysis allowed us to directly test the widely held paradigms of monogenic 
and monoallelic OR gene expression, and enabled us to characterize a minor type of MOE neurons that do not 
express OR genes or other known chemoreceptor genes.

Most OR genes remain candidate receptors for odorants because no odorous ligands have been identified. 
Arguably a minimal criterion for a gene that phylogenetically belongs to the OR gene repertoire to serve as a recep-
tor for odorants, is that it must be expressed in an olfactory epithelium such as the MOE. This issue has become 
more relevant in light of increasing evidence of ectopic (non-olfactory) expression of OR genes48. We here report 
evidence for expression of 98.9% of intact OR genes in mature OSNs. We obtained no reads in our OSN samples 
for only six intact OR genes (Olfr247, Olfr331, Olfr456, Olfr663, Olfr1008, Olfr1128) that are nonetheless expressed 
in our WOM samples, albeit at extremely low levels. This minor discrepancy suggests that OSNs that express these 
OR genes are sparse and/or do not mature to the OMP+ stage, possibly because the genes do not encode a func-
tional OR. On the other hand, this discrepancy between WOM and OSNs also emphasizes the importance of very 
deep sampling of cells for the study of the complete OSN population. Using conservative statistical thresholds, our 
analysis identified 29% more genes enriched in OSNs and 300% more genes enriched in other WOM cell types 
compared to those reported by Sammeta et al.21. Some genes that are enriched in OSNs with high abundance have 
been previously identified and characterized through other enrichment methods49,50, but others have not yet been 
reported as being expressed in OSNs.

OMP is widely used as a marker of most mature OSN types23. Instead of observing cells with a continuum of GFP 
expression levels by FACS of heterozygous OMP-GFP mice, we were intrigued to find two distinct subpopulations 
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of GFP+ cells. Both subpopulations represent mature OMP+ OSNs by all previously known molecular markers. 
It is possible that these subpopulations are distinguished by post-transcriptional differences in proteins involved 
in OR gene choice and stabilization25,26 or axon guidance27, but we observed only very minor differences in the 
expression of these genes. Instead, the set of genes that do distinguish them suggests that their constituent OSNs 
are at different stages during late neuronal maturation, with OMP-GFPlow cells being somewhat less mature than 
OMP-GFPhigh cells. It appears that OSNs increase Omp RNA levels during late maturation. We speculate that 
a discrete and reasonably rapid event must be occurring during the transition between the OMP-GFPlow and 
OMP-GFPhigh subpopulations in adult mice, such as completion of successful and stable innervation of a glomerulus 
that is appropriate for the expressed OR. A recent analysis of OSN maturation in postnatal day 7 mice51 revealed 
the temporal sequence of expression Gap43, OR, Adcy3, and Omp, but did not indicate a distinction between 
OMP-GFPlow and OMP-GFPhigh. Conceivably this distinction cannot be made histologically. Picking single OMP+ 
OSNs with a pipette prior to single-cell RNA-seq may also suffer from the inability to distinguish between the 
OMP-GFPlow and OMP-GFPhigh subpopulations. Until proven otherwise, we consider it prudent to select OSNs 
from the most mature, OMP-GFPhigh population for single-cell RNA-seq analysis, in order to minimize the likeli-
hood of sampling less-mature OSNs, which may include OSNs that coexpress two or more OR genes abundantly.

It is now widely accepted, though has been difficult to prove directly, that each mature OSN expresses a single 
intact OR gene from a single allele4,5,32,33,35,38. A hierarchy of events, some stochastic others deterministic, appear 
necessary to generate such exquisite specificity and restriction of gene expression38,52, but how these processes 
are coordinated at the molecular level remains largely unknown. Recent advances in single-cell transcriptomics53 
now permit us to quantify the transcriptomes of single OSNs, including all OR genes, and to directly assess their 
molecular heterogeneity at a level that was not previously possible.

We first searched for genes with a high coefficient of variation (CV) across cells and, as expected, identified OR 
genes but also other orphan GPCR genes and a statistical enrichment in zinc-finger protein genes. In each of the 
OSNs that passed our stringent quality control process, we found between 11 and 28 OR genes with evidence of 
transcription per cell; but in most cases we estimate that a single abundant OR accounts, on average, for 98.1% of 
the sequencing data mapped to OR genes. Compared to the classical evidence for the one neuron - one receptor 
rule, which was generated by single-cell RT-PCR using degenerate primers for OR genes4 and other lines of evi-
dence33, we argue that our single-cell RNA-seq data provide the clearest direct evidence in support of this paradigm.

What consequence might the low-level coexpression of other OR genes have? Single-cell RNA-seq analysis of 
two other non-olfactory cell types, T-helper lymphocytes and embryonic stem cells, reveals similar patterns of 
low-level OR gene transcription, suggesting it may be a feature of many cell types and not functionally relevant 
for OSNs. Moreover, bulk RNA-seq analysis has revealed that genes expressed at very low levels are not associated 
with active chromatin markers and lack correlative protein expression data54.

Nevertheless, we cannot discount the possibility that one or more of the additional OR genes could generate low 
levels of functional OR protein. Moreover we sampled less than 1.6% of the subsets of OSN, and our strict quality 
control procedure selected against the inclusion of OSNs potentially expressing more than one OR at high levels, 
because these cannot be distinguished empirically from cross-contamination, even when only one cell is visible 
in the Fluidigm microfluidic chip46. New technologies for single-cell transcriptome analysis continue to emerge, 
enabling tens of thousands of neurons to be analyzed in parallel46,55. A comprehensive sampling on this scale will 
be necessary to fully assess the pervasiveness of the one neuron – one receptor rule in OSNs.

By capturing cells from a single mouse on a mixed genetic background, we could use SNP analysis to quantify 
allele-specific OR gene expression for approximately half of the single OSNs. In all cases we find that monoallelic 
expression is extremely tightly regulated. Together, these data provide a novel insight into the extraordinary strin-
gency of transcriptional control of OR expression at single-cell resolution. It is likely that allelic choice or silencing 
in OR genes is the first restrictive event to occur, perhaps even in progenitor cells prior to the development of 
the olfactory system52. We find that this process is extremely strongly maintained in mature OSNs (> 99.7%). In 
contrast, the promoter and/or splicing machinery of an active OR allele appears to be under weaker regulatory 
control, permitting in some cases multiple OR gene transcripts from the same allele often in roughly equal abun-
dances. All of the transcript variation we detected is within the untranslated regions (UTRs), most likely resulting 
in no functional consequence for the OR protein and hence exerting no pressure to ensure a single transcript is 
produced. However variation in UTRs can influence the amount of OR protein produced by altering the stability, 
localization, or translational efficiency of the transcript56.

In addition to the canonical OSNs, which express OR genes, small subsets of neurons that express other 
chemoreceptor types have been reported in the mouse MOE12,13,57,58. The subset of mature OSNs that express 
Gucy2d expresses little or no OMP16. Our experimental design precludes the discovery of further chemosensory 
cell types that do not express OMP at all, or at low levels. However other minor cell types express OMP and 
therefore would be expected to be represented in the OSN pools or in the mature, OMP-GFPhigh subpopulation. 
Full transcriptome analysis of single OSNs revealed two that represent a molecularly distinct type, but are not 
TAAR-expressing neurons. Instead, these appear to be examples of the recently described type B Trpc2+ MOE 
cells17–19. Consistent with these recent reports, these two OSNs lack expression of Adcy3 but abundantly express 
Gucy1b2 and Trpc2. Importantly, we identified an additional 53 genes not expressed in the canonical OSNs but 
expressed in both type B cells, and validated three as markers of these cells by ISH. It remains puzzling that two 
out of 21 single captured OSNs (~10%) represent a minor population of OMP+ cells in the MOE: a 3-week old 
mouse has only 16,115 of these type B Trpc2+ MOE cells18, which is a mere 0.24% of the estimated ~6.6 million 
OR-expressing OSNs at the same age59. We speculate that the superficial location of type B Trpc2+ MOE cells within 
the sustentacular layer may facilitate dissociation of these cells. Alternatively, these cells may have a different shape 
or size compared to canonical OSNs, more amenable to capture by the microfluidic device. Are these neurons 
chemosensory? Interestingly, they do not express an OR gene abundantly, nor any other previously described 
chemoreceptor. However, they express many of the genes involved in olfactory signal transduction and project 
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axons to form glomeruli17,18. Further work will be necessary to determine whether, analagous to the role of Gucy2d 
in another minor type of OSN60, Gucy1b2 itself serves a chemosensory function in these cells.

Methods
Mice. Mice heterozygous for the OMP-GFP (B6:129P2-Omptm3Mom/MomJ, The Jackson Laboratory, Stock # 
006667) mutation15 were used in RNA-seq experiments, and C57BL6/J mice were used for in situ hybridization 
experiments. For the experiments done in the UK, mice were maintained in accordance with UK Home Office 
regulations, under a project license approved by the Wellcome Trust Sanger Institute Animal Welfare and Ethical 
Review Body. Experiments done in Germany were carried out in accordance with the German Animal Welfare 
Act, European Communities Council Directive 2010/63/EU, and the ethical and animal welfare guidelines of the 
Max Planck Institute of Biophysics and the Max Planck Research Unit for Neurogenetics, with approval from the 
Regierungspräsidium Darmstadt and the Veterinäramt of Frankfurt.

Capture, library preparation and sequencing of whole olfactory mucosa and pools of GFP+ 
OSNs. Whole olfactory mucosa (WOM) was dissected from three 21-day-old OMP-GFP heterozygous mice 
(two males and one female), and homogenized in Lysis RLT Buffer. Total RNA was extracted using the RNeasy 
Mini kit (QIAGEN) together with genomic DNA eliminator (QIAGEN) according to manufacturer’s protocol. To 
obtain pools of 10 million OMP-GFP+ OSNs, a total of 45 male and female, 25-day-old OMP-GFP heterozygous 
mice were used in three sorting experiments on three separate days: 14 (OSN1), 16 (OSN2), and 15 (OSN3) mice, 
respectively. WOM was dissected from olfactory turbinates and septum, and includes the septal organ but not 
the VNO. Tissue was collected in HBSS without Ca2+ and Mg2+ (Gibco) on ice. Collected tissue was minced with 
scissors followed by enzymatic digestion in HBSS without Ca2+ and Mg2+ supplemented with 44 U/ml Dispase 
(Invitrogen), 1000 U/ml Collagenase type II (Invitrogen) and 10 mg/ml DNaseI (Roche), for 20–30 min at 37 °C 
with agitation. Digested tissue was centrifuged at 0.4–0.5 ×  1000 rcf for 5 min and washed in HBSS without Ca2+ 
and Mg2+. Dissociated cell suspension was passed through a 70 μ m cell strainer (Falcon) into a sterile 35 ×  10 mm 
petri dish (Falcon). Propidium iodide (final concentration of 1 μ g/ml) was added to the final cell suspension prior 
to sorting. OMP-GFP+ cells were sorted by flow-cytometry using a JSAN desktop sorter (Bay bioscience Kobe, 
Japan) equipped with a 488 nm solid-state laser (DPSS) at 20 mW. A total of 10 million OMP-GFP+ cells were 
collected directly in Lysis RLT buffer. The time elapsed between mouse euthanasia and the collection of the cells 
into lysis buffer was ~1 hr. Total RNA was extracted using RNeasy Micro kit (QIAGEN) together with genomic 
DNA eliminator (QIAGEN) according to manufacturer’s protocol. mRNA was prepared for sequencing using the 
TruSeq RNA sample preparation kit (Illumina) with a selected fragment size of 200–300 bp. All six samples (three 
WOM and three OSN samples) were multiplexed together and sequenced across two lanes on an Illumina HiSeq 
2000, to generate paired-end 100 bp sequencing reads.

Capture, library preparation, and sequencing of OMP-GFPlow and OMP-GFPhigh OSNs. Male 
OMP-GFP heterozygous mice aged 15, 24 and 25 weeks were used in three sorting experiments on three separate 
days. WOM was dissected from olfactory turbinates and septum. Tissue was collected in PBS without Ca2+ and 
Mg2+ (Gibco) on ice. Collected tissue was finely minced with forceps in 1 mL ice-cold dissociation buffer (1.1 mM 
EDTA; 5.5 mM DL-Cysteine-HCl; Papain 2.2 U/mL in PBS without Ca2+ and Mg2+), and incubated for 15–20 min 
at 37 °C with agitation. An equal volume of DNAse solution (50 U/mL of DNAse I and DNAse buffer in PBS, 
Roche) was added to the dissociated cell suspension, gently triturated, and diluted 5-fold with pre-heated (37 °C) 
phenol-red-free DMEM (Gibco) plus 4% fetal bovine serum (Sigma) (hereafter referred to as ‘media’). After cen-
trifugation at 1000 rpm for 5 min, the supernatant was removed, the cell pellet re-suspended in 500 μ l of media 
and passed through a 30 μ M mesh filter (Partec). The cell suspension was then kept on ice, and GFP-positive cells 
were immediately isolated using a MoFlo™  XDP cell sorter (Beckman Coulter, Inc).

A total of 10,000 OMP-GFPlow and 10,000 OMP-GFPhigh cells sorted from the same mouse were collected in a 
1.5 ml Eppendorf tube, immediately frozen in dry-ice and kept at − 80 °C. The time elapsed between mouse eutha-
nasia and the termination of the FACS procedure was ~1 hour. RNA was extracted using the RNeasy Plus Micro 
Kit (Qiagen), together with genomic DNA eliminator (QIAGEN), according to the manufacturer’s instructions. 
Reverse transcription and cDNA pre-amplification were performed using the SMARTer PCR cDNA Synthesis 
kit (Clontech) and the Advantage 2 PCR kit (Clontech) following the instructions in Appendix 1 of the Fluidigm 
manual. cDNA was harvested and quantified with the Bioanalyzer DNA High-Sensitivity kit (Agilent Technologies). 
Nextera libraries were prepared using the Nextera XT DNA Sample Preparation Kit and the Nextera Index Kit 
(Illumina) following the instructions in the Fluidigm manual. Multiplexed libraries were pooled, and paired-end 
100-bp sequencing was performed on one flow–cell (two lanes) of an Illumina HiSeq 2500.

Capture, library preparation and sequencing of single OSNs. One male OMP-GFP heterozygous 
mouse aged 23 weeks was used in one sorting experiment. WOM dissection and dissociation procedures were the 
same as in the previous section. 5,000 OMP-GFPhigh cells were isolated by FACS and loaded onto a 10–17 μ m C1 
Single-Cell Auto Prep IFC chip (Fluidigm). Cell capture was performed according to the manufacturer’s instruc-
tions. The capture efficiency was verified by visual inspection using a fluorescent microscope; there were single 
fluorescent cells with neuron-like morphology in 58 wells, more than one cell (or one cell plus debris) in 30 
wells, and no cells in 8 wells. Upon capture, reverse transcription and cDNA pre-amplification were performed 
in the 10–17 μ m C1 Single-Cell Auto Prep IFC using the SMARTer PCR cDNA Synthesis kit (Clontech) and the 
Advantage 2 PCR kit (Clontech). One μ l of the ERCC Spike-In Control Mix (Ambion) in a 1:10,000 dilution 
in C1 Loading Reagent was added to the lysis mix for the OSNs. cDNA was harvested and quantified with the 
Bioanalyzer DNA High-Sensitivity kit (Agilent Technologies). Nextera libraries were prepared using the Nextera 
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XT DNA Sample Preparation Kit and the Nextera Index Kit (Illumina) following the instructions in the Fluidigm 
manual. Multiplexed libraries were pooled, and paired-end 100-bp sequencing was performed on one flow–cell 
(two lanes) of an Illumina HiSeq 2500.

RNA-seq data processing and alignment. Sequencing data were aligned with STAR 2.361 to the GRCm38 
mouse reference genome plus the ERCC spike-in sequences, with options–outFilterMultimapNmax 1000–out-
FilterMismatchNmax 4–outFilterMatchNmin 100–alignIntronMax 50000–alignMatesGapMax 50500–outSAM-
strandField intronMotif–outFilterType BySJout. The genome annotation used was from the Ensembl mouse genome 
database, version 72 (http://jun2013.archive.ensembl.org/info/data/ftp/index.html). The GTF file was modified 
to replace all the gene models for olfactory and vomeronasal receptors with those reported in11. Additionally, the 
set of transcripts reported for Trpc2 contain both short and long isoforms of the gene; the long isoforms represent 
a fusion with a different gene and were therefore removed (ENSMUST00000084843, ENSMUST00000094129, 
ENSMUST00000094130, ENSMUST00000106950, ENSMUST00000123372, ENSMUST00000125197, 
ENSMUST00000139104, ENSMUST00000140395, ENSMUST00000141646, ENSMUST00000142629, 
ENSMUST00000143839, ENSMUST00000146450, ENSMUST00000153176). Finally, the gene Gm20715, a pre-
dicted gene that undergoes nonsense mediated decay, was also removed from the GTF file because it overlaps with 
Olfr1344; this overlap causes all the reads aligned to the OR to be deemed ambiguous. BAM files were processed 
using SAMtools62.

Gene expression estimation and data analysis. The number of fragments uniquely aligned to each 
gene was obtained using the HTSeq 0.6.1 package, with the script htseq-count, mode intersection-nonempty63. All 
multi-mapped fragments were discarded. Raw counts were normalized to account for sequencing depth between 
samples, using the procedure implemented in the DESeq2 package64. For the single-cell data, ERCC spike-ins were 
not included for data normalization. Normalized counts for all datasets analyzed are provided in Supplementary 
Data S1-3. Data analysis, statistical testing and plotting was carried out in R (http://www.R-project.org); all the 
heatmaps were produced with the gplots package using the log10 transformed normalized counts +  165. To decon-
volve bimodal distributions into two normal-like distributions (Fig. 5B, Supplementary Fig. S3A), Gaussian mixture 
models were used, through the expectation-maximization algorithm of the mixtools Bioconductor package66.

Differential expression analysis. To test for differential expression we used DESeq2 1.4.5 with standard 
parameters. When applied to the single-cell data, the parameter minReplicatesForReplace was set to Inf to turn 
off the automatic outlier replacement. Genes were considered differentially expressed if they had an adjusted 
p-value of 0.05 or less (equivalent to a false discovery rate of 5%). All results from the DE analyses are provided in 
Supplementary Data S1-3; the columns contain the following data: baseMean corresponds to the mean normal-
ized expression value for the gene across all samples; log2FoldChange is the fold change between the two groups 
tested, log2 transformed; lfcSE corresponds to the standard error associated with the fold change estimation; stat 
is the Wald statistic; pvalue is the p-value of the test; and padj is the p-value after adjusting for multiple testing 
(Benjamini-Hochberg). Genes that have both their pvalue and padj set to NA contain outliers; genes with only 
their padj set to NA were filtered prior to the test because their normalized counts were too low.

Allelic discrimination of OR genes. To determine the allele expressed for each OR, the Mouse Genomes 
Project database release 1410 was queried (http://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1410)67 to obtain 
all the SNPs for 129P2 that overlap OR gene models. These positions were visualized on IGV and the numbers of 
fragments containing each nucleotide were extracted.

More information is available in the Supplementary Methods.
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