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BACKGROUND: Artificial intelligence (AI) and machine
learning (ML) are poised to transform infectious disease
testing. Uniquely, infectious disease testing is technolog-
ically diverse spaces in laboratory medicine, where mul-
tiple platforms and approaches may be required to sup-
port clinical decision-making. Despite advances in
laboratory informatics, the vast array of infectious dis-
ease data is constrained by human analytical limitations.
Machine learning can exploit multiple data streams, in-
cluding but not limited to laboratory information and
overcome human limitations to provide physicians with
predictive and actionable results. As a quickly evolving
area of computer science, laboratory professionals
should become aware of AI/ML applications for infec-
tious disease testing as more platforms are become com-
mercially available.

CONTENT: In this review we: (a) define both AI/ML,
(b) provide an overview of common ML approaches
used in laboratory medicine, (c) describe the current
AI/ML landscape as it relates infectious disease testing,
and (d) discuss the future evolution AI/ML for infec-
tious disease testing in both laboratory and point-of-care
applications.

SUMMARY: The review provides an important educational
overview of AI/ML technique in the context of infec-
tious disease testing. This includes supervised ML
approaches, which are frequently used in laboratory
medicine applications including infectious diseases, such
as COVID-19, sepsis, hepatitis, malaria, meningitis,
Lyme disease, and tuberculosis. We also apply the con-
cept of “data fusion” describing the future of laboratory

testing where multiple data streams are integrated by
AI/ML to provide actionable clinical knowledge.

Introduction

Infectious disease testing is one of the most technologi-
cally diverse spaces in laboratory medicine. Beginning
with Koch’s postulates published in 1890, infectious
disease testing has evolved from simple microscopy and
microbiological culture to modern techniques ranging
from immunoassays (e.g., direct pathogen detection, se-
rology) and MALDI–TOF–MS, to molecular diagnos-
tics (Fig. 1) (1–3). In some cases, several tests may be
used in combination to produce definitive results (e.g.,
blood culture ! MALDI–TOF–MS ! antimicrobial
susceptibility testing) (4).

In the 21st century, infectious disease testing has
heavily leveraged information technology (5). Both lab-
oratory and point-of-care (POC) platforms quickly
transmit results to electronic medical record (EMR)
systems to integrating other data streams (e.g., vitals
monitors, imaging systems, home testing devices) to
help physicians determine the best course of action. By
having all medical data stored in the EMR, it was hoped
clinical decision-making would become more efficient
(6). Unfortunately, this digitization of medical data has
created a state of “information overload” for healthcare
professionals (7) — causing data to be unintentionally
ignored, misinterpreted, and/or potentially masking
clinically significant patterns.

On average, humans can comfortably interpret and
integrate up to 4 variables at a time (8) — limiting the
value of EMR data. For example, the number of varia-
bles used for sepsis prediction, can range from a few
simple parameters (e.g., heart rate, white blood cell
[WBC] count, respiratory rate [RR], and body temper-
ature) to hundreds of time-series measurements which
could quickly overwhelm an individual (9–12).
Computers do not share these limitations since they
can handle a wider range of variables simultaneously
and recognize patterns that are not apparent to the hu-
man eye. Thus, the use of predictive analytics via artifi-
cial intelligence (AI)/machine learning (ML) could
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enhance our ability to identify clinically significant
patterns, including those for infectious diseases (13).

Artificial Intelligence and Machine Learning

Artificial intelligence is a rapidly evolving field of com-
puter science and statistics aimed at producing systems
that mimic human behavior (14, 15). In contrast, ML is
an application of AI that enables systems to automati-
cally learn from new data without explicit programming.
Machine learning algorithms ultimately enable one to
improve the predictive analytic performance for a given
task and/or acquire new skills over time when trained
with more data. Classically, ML is grouped into 3 major
categories discussed in this review (14–24): (a) super-
vised learning, including classification and regression
approaches, (b) unsupervised learning, and (c)

reinforcement learning (Fig. 2). Here we provide a gen-
eral overview of ML techniques with emphasis on appli-
cations for infectious disease testing. For more detailed
discussion on AI/ML theory and techniques, we refer
the reader to other publications (16–24).

MACHINE LEARNING TECHNIQUES

Laboratory medicine data often favor the use of super-
vised learning for ML applications largely due to the
large amount of information and types of data (e.g., im-
age versus numerical values versus text) available in this
discipline (11, 14, 16, 25, 26). It must be noted, how-
ever, that as more studies use AI/ML, and computing
power and portability increases, these predictive analyt-
ics will quickly evolve over time.

The type of data also influences which ML meth-
ods are used (14). Example of ML methods include

Fig. 1. Infectious disease testing domains. Four common techniques used for infectious disease testing. Examples of testing
platforms, and common infectious targets are identified below the visual depiction of each testing method. Abbreviations: AST,
antimicrobial susceptibility testing; AU, arbitrary units; CMIA, chemiluminescent microparticle immunoassay; ELISA, enzyme-
linked immunosorbent assay; HIV, human immunodeficiency virus; ID, identification; LAMP, loop-mediated amplification; m/z,
mass/charge ratio; SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2.
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parametric techniques such as logistic regression, while
nonparametric methods include neural network and non-
neural network approaches such as linear regression, logis-
tic regression, naı̈ve Bayes, gradient boosting machine/
decision tree, k-nearest neighbor (k-NN), support vector
machine (SVM), and random forest (RF) (Fig. 3).

Machine Development Tools

Traditional AI/ML development requires substantial
expertise and time. Programming languages used for
various AI/ML tools include Python and R (1, 11, 14,
25, 26). Often, developers may take months to train
and test a single supervised algorithm. This process
could be further prolonged if there is a need to deter-
mine the best feature combinations to include or ex-
clude in their models. Additionally, given the rapidly
moving AI/ML landscape, not all data scientists may be
comfortable with all methods. For example, some data
scientists may prefer one technique versus another (e.g.,
SVM vs neural networks)—potentially creating bias
and/or limiting the potential for discovery of better per-
forming ML algorithms. Alternately, a priori determina-
tion of feature set combinations impacts ML model
performance.

Due to these potential limitations, automated ML
platforms have gained popularity (11, 25, 26). These
“Auto-ML” platforms allow users to import train and
test data, which are then automatically run through the
whole process of feature selection, model building, and

validation. An AI/ML programming task that could take
a single data scientist months now takes a few hours.
Examples of automated ML platforms include H2OAI
AutoML, Microsoft ML.NET, Tree-based Pipeline
Optimization Tool, Machine Intelligence Learning
Optimizer, and AutoSKLearn (11, 17, 25).

Machine Learning Applications for Infectious
Disease Testing

AI/ML is poised to transform not only bedside medi-
cine, but also the field of infectious disease testing. In
particular, infectious disease testing has seen a surge in
miniaturization, automation, and increasing computing
power, creating a unique opportunity to exploit AI/ML.
We can categorize the applications into 3 categories:
(a) laboratory diagnostics, (b) clinical prognosis, and (c)
clinical diagnostics. Application examples are discussed
next.

LABORATORY DIAGNOSTICS

Novel 2019 coronavirus infectious disease (COVID-
19). The COVID-19 pandemic resulted in a substantial
demand for molecular testing in the USA (27, 28). Early
in the pandemic, molecular capacity was not sustainable
and impacted the US response in controlling the spread
of severe acute respiratory syndrome (SARS)-coronavirus
(CoV)-2 infections. Asymptomatic spread of COVID-19
further increased demand for testing (29).

Alternative testing approaches using MALDI–
TOF–MS have been proposed as a low-cost, rapid, and
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Fig. 2. Machine learning categories. Machine learning is subdivided into supervised, unsupervised, and reinforcement learning
categories. These categories are further divided into classification, regression, feature selection/clustering, dimensionality reduc-
tion, and policy-based methods.
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high-throughput solution to alleviate demand on molec-
ular testing (26, 30). Briefly, MALDI–TOF–MS detects
ionizable proteins from respiratory samples such as ante-
rior nares swabs, producing hundreds or even thousands
of MS spectra peaks per samples. The use of AI/ML pro-
vides means to identify MALDI–TOF–MS profiles spe-
cific to COVID-19. Recent studies have used a neural
network approach to analyze MALDI–TOF–MS spectra
that achieved a sensitivity and specificity of 100% and
96%, respectively, with an area under the receiver operat-
ing characteristic (ROC) curve of 0.99 when using 487
peaks that span 1993.91 to 199 590.89 m/z (26). It must
be also noted that these published MALDI–TOF–MS
methods currently detect the host response to COVID-
19, rather than the virus itself.

Antimicrobial susceptibility testing (AST). Antimicrobial
resistance is one of the top 10 global public health
threats defined by the World Health Organization (31).

The inappropriate use of antimicrobial therapy fuels the
persistence of existing drug resistant organisms, and the
development of multidrug resistant strains. Currently,
detection of resistant organisms relies on microdilution
in vitro AST or molecular approaches (32).
Microdilution AST involves exposing a known concen-
tration of cultured microbes to antimicrobials
to determine a minimum inhibitory concentration.
Molecular approaches target specific genes to rapidly de-
termine genotypic resistance rather than determining
in vitro susceptibility to antimicrobials.

The application of AI/ML for AST has been
reported for MALDI–TOF–MS techniques (32). For
MALDI–TOF–MS, ML (e.g., neural networks, SVM,
RF, k-NN) is used to analyze spectra representing ioniz-
able proteins (mostly ribosomal proteins) from cultured
bacteria. In one study, SVM was used to differentiate
methicillin resistant Staphylococcus aureus versus methi-
cillin sensitive S. aureus with an accuracy of 85% (33).

Fig. 3. Machine learning techniques. Machine learning methods discussed in this review. Data points are shown in different
colors to describe their classification (e.g., red, with disease; black, without disease; gray, classification not defined). In the last
row, the convolutional neural network example is analyzing a matrix of data.
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In another study, 5 different ML algorithms (k-NN,
RF, SVM, naı̈ve Bayes, and logistic regression) were
used to identify carbapenem resistant versus sensitive
Klebsiella pneumonia MALDI–TOF–MS spectra,
achieving an accuracy of over 93% (34).

Malaria. Detection of Plasmodium species remains chal-
lenging due to the unique nature of the parasite (35).
Microscopic examination with thin and thick smears
requires experienced personnel. Rapid antigen testing is
available but may not detect or easily differentiate be-
tween Plasmodium subspecies. Machine learning techni-
ques have been proposed to microscopically analyze
blood smears, including at the point of care via smart-
phone-based applications. In a study using neural net-
work, SVM, and k-NN approaches, the investigators
were able to produce models that achieved a sensitivity
and specificity as high as 99.5% and 99.1% with an ac-
curacy of 99.2% using a smartphone based slide imag-
ing software (35).

Lyme disease. Lyme disease is the most common vector-
borne infectious disease in North America and Europe
(36). Timely diagnosis is necessary to prevent progres-
sion, especially if the early disease presentation is missed.
Current Lyme disease tests, however, exhibit poor sensi-
tivity (<50%) for early presenters. One group has pro-
posed a multiplex POC sero-diagnostic test targeting
antigens OspC, BmpA, P41, ErpD, Crasp1, OspA,
DbpB, VlsE, P35, and Mod-C6 enhanced by ML to
improve clinical performance, with a reported sensitivity
of 90.5% and specificity of 87.0% (37).

CLINICAL PROGNOSIS

Hepatitis B virus infection. Hepatitis B virus has resulted
in over 250 million chronically infected individuals
worldwide (38). At present, hepatitis B surface antigen
and hepatitis B core antigen are the primary biomarkers
for predicting virological relapse. Unfortunately, these
methods still exhibit poor performance. The use of
ML to predict early virological relapse following discon-
tinuation of therapy has shown promise. A supervised
ML approach has been used to predict early virological
relapse using soluble immune markers profiles (39).
Optimal ML models using a combination of interleukin-
2, monocyte induced interferon gamma, regulation on
activation normal T-cell expressed and secreted, stem cell
factor, and tumor necrosis factor related apoptosis-
inducing ligand produced the highest predictive values
for early virological relapse following treatment cessation.

Hepatitis C virus (HCV) infection. Serology and molecu-
lar approaches remain the gold standard for HCV
screening. Detection of strains resistant to direct-acting

antivirals, however, as well as predicting chronic HCV
infection progression, has proven challenging (40). In
one study, SVM was used to analyze HCV genomes to
determine which patients could produce sustained viral
response, producing an accuracy 95.4% (40). Another
study employed longitudinal ML models incorporating
laboratory (i.e., albumin, platelet, aspartate aminotrans-
ferase, alanine transaminase, alkaline phosphatase, alpha
fetoprotein), and existing scoring (i.e., MELD, Ishak)
data to predict chronic HCV infection progression (41).
The area under the ROC curve for optimal RF models
predicting fibrosis progression was 0.79, while models
predicting clinical progression achieved an area under
the ROC curve of 0.86.

CLINICAL DIAGNOSTICS

Meningitis. Meningitis results in 36 000 hospitalizations
annually in the USA, costing between $234 and $310
million per year (42). Detection and differentiation of
viral versus bacterial meningitis has been augmented by
molecular platforms. Unfortunately, molecular tests still
rely on invasive collection of cerebrospinal fluid (CSF).
More traditional tests including CSF Gram stain and
measurement of CSF WBC, glucose, and protein con-
centrations can provide rapid results, but are not always
sensitive or specific. Several investigators have studied
the use of AI/ML to enhance detection of meningitis
(43, 44). One of these studies described a neural
network-based approach based on 6 features including
lymphocyte count, blood glucose, and age that pro-
duced an accuracy of 86.3% (44). The second study
reported improved performance using naı̈ve Bayes, neu-
ral network, and genetic programming techniques with
age, race, sex, WBC, blood glucose, CSF glucose/pro-
tein/leukocytes (if available) as features (43). Naı̈ve
Bayes and neural network techniques exhibited sensitiv-
ity/specificity of 98%/98% and 99%/100%, respec-
tively. The AI/ML approach produced an algorithm
that achieved a sensitivity of 100% and 99%.

Sepsis. Sepsis is defined as life-threatening organ dys-
function caused by a dysregulated host response to in-
fection (45). Early recognition of sepsis is critical to
survival (46). Unfortunately, parameters for recognizing
sepsis are not always sensitive nor specific. The systemic
inflammatory response syndrome criteria introduced in
1992 is a major foundation of both past and present
sepsis criteria (47). Although updated in more recent
times (48, 49), the systemic inflammatory response syn-
drome criteria remain the same and focus on abnormal
body temperature, RR, HR, and WBC count: parame-
ters that are hardly specific for infection. Subsequent
sepsis criteria have attempted to improve specificity by
including other elements such as indicators of organ
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dysfunction, but resulted in far too many variables to ac-
count for by a single human.

Electronic Health Record sepsis ML algorithms: Since
EMR systems serve as the central repository of data, the
use of AI/ML and statistical algorithms have been used
to predict sepsis (49, 50). Sensitivity and specificity are
reported to be 87% for statistical (non-AI/ML) algo-
rithms with an area under the ROC curve of 0.94 when
using 15 features (i.e., age, gender, blood pressure, HR,
temperature, oxygen saturation, RR, WBC count,
microbiological culture results, lactate, high sensitivity
C-reactive protein, procalcitonin, arterial blood gas, use
of vasopressors, and use of antibiotics). Application of
AI/ML in sepsis has improved prediction performance
(51, 52) including its use in more challenging popula-
tions such as burn patients (53, 54). Using heart rate,
body temperature, hemoglobin, blood urea nitrogen,
and total CO2 as features with k-NN, sensitivity, and
specificity was observed to be 95.8% and 87.8%, re-
spectively, with an area under the ROC curve of 0.96
for predicting burn sepsis (53).

Sepsis host-response ML approaches: Expanding from
traditional indicators of sepsis, other investigators have
used ML to predict sepsis using a multi-RNA host-re-
sponse approach. One study described a 29-host-
mRNA based blood test that combined ML with a less
than 30-min turnaround time POC test (55). This tech-
nique used a neural network based that achieved an area
under the ROC curve of 0.92 and 0.91 for identifying
individuals enrolled within 36 h of admission with
bacterial or viral infections, respectively (56).

Tuberculosis. Tuberculosis remains a global healthcare
problem. The use of AI/ML techniques has been stud-
ied for over a decade to aid in the diagnosis of tubercu-
losis, including the use of neural networks and SVM
(57, 58). Support vector machines incorporating CD4
counts, human immunodeficiency virus status, purified
protein derivative status, chest pain, weight loss, coughs,
night sweats, fever, shortness of breath, total hemoglo-
bin, platelet count, WBC count, neutrophil count, lym-
phocyte count, erythrocyte sedimentation rate, alanine
aminotransferase, alkaline phosphatase, and lactate de-
hydrogenase concentration as features have exhibited
100% sensitivity and specificity (58). The investigators
leading these studies, however, concede that future
investigations are needed to determine the generalizabil-
ity of this technique given the sample size.

Machine Learning Best Practices

Machine learning algorithm performance is dependent
on the quality of data used for training and testing.

Challenges include the ability for laboratories and/or
clinical services to generate, collect, standardize, and
quality control data that can be used in AI/ML.
Overcoming these challenges will pave the way for opti-
mal training and testing of candidate ML algorithms
with datasets to increase overall performance.
Developers and investigators also should be not tied to a
single ML method or even particular features since this
can bias analyses. A stepwise approach to develop ML
for laboratory medicine applications has been discussed
(16). Step 1 involves assessing the quality and accessibil-
ity of the data, followed by Step 2, which requires
method validation to identify optimal AI/ML model(s).
Once optimal AI/ML models have been identified, Step
3 involves determining their ability to work for other
secondary and tertiary datasets (generalizability). Finally,
Step 4 involves evaluating the data in more “real world”
conditions to further assess performance and refine
(go back to Step 2) as needed to achieve a desirable
outcome.

Future Applications

The future of infectious disease diagnostics will involve
the fusion of multiple data streams (i.e., vital signs, host-
response biomarkers, traditional laboratory tests, etc.)
with AI/ML to produce high quality clinically actionable
results. This concept of “data fusion” is not new and is al-
ready prevalent in normal everyday life. Data fusion (in
contrast to data integration) is the process of gathering
data from multiple sources to produce more sophisticated
models and better understand a disease or problem (59,
60). For example, data fusion of data from geofenced and
connected smart devices (e.g., watches, tablets, cellular
phones, etc.) provide a means to enhance the user experi-
ence while helping them to predict customer needs (60).
Semiautonomous and autonomous vehicles also leverage
this concept (61). In the context of infectious disease test-
ing, AI/ML could enhance clinician and patient experi-
ence through integrating in vitro diagnostic testing with
information from the EMR, in the form of data fusion,
to facilitate predictive analytics (Fig. 4).

POC infectious disease testing represents another
potential area that could be transformed by AI/ML By
design, POC devices reside in a decentralized ecosys-
tem—necessitating operation in a network-centric
manner to gather a substantial amount of medical
information (62). Wearable POC devices (e.g., smart
watches), in particular, can now monitor oxygen satura-
tion, and provide one-lead electrocardiogram and heart
rate. Diabetics are now able to directly record discrete or
continuous blood glucose concentrations, body weight,
and blood pressure into their smart phones (63), stored
in a centralized application (e.g., Apple HealthKit,
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Google Fit), and upload their data to compatible EMR,
producing a valuable collection of persistent patient data
that could be analyzed by AI/ML to predict disease.
Such an example has been employed through the recent
FDA emergency use authorization of the COVID Plus
Monitor (Tiger Tech Solutions) that identifies patients
who may exhibit signs of SARS-CoV-2 infection (64).

Conclusion

Artificial intelligence and ML will transform infectious
disease testing. The use of AI/ML for sepsis manage-
ment highlights the power of this technology for mining
EMR data and prompting clinical action with better
sensitivity and specificity compared to traditional
approaches. Machine learning shows promise for a range of
infectious disease applications such as COVID-19, hepati-
tis, malaria, Lyme disease, and tuberculosis. However, AI/
ML should be implemented in a systematic and rational
way to ensure data quality is not compromised, and model
development is performed with minimal bias. The use of
automated ML platforms is also an exciting development
where thousands of candidate models could be automati-
cally trained and tested across a range of feature combina-
tions and allowing developers to quickly identify optimal
algorithms for further development. Ultimately, the future
of AI/ML infectious disease testing may revolve around
concepts of “data fusion” to not only integrate multiple
data streams, but also convert vast amounts of heteroge-
nous data into actionable knowledge.

Nonstandard Abbreviations: AI, artificial intelligence; ML, machine
learning; POC, point-of-care; EMR, electronic medical record; WBC,
white blood cell; RR, respiratory rate; k-NN, k-nearest neighbor;
SVM, support vector machine; RF, random forest; COVID-19, novel
2019 coronavirus infectious disease; SARS-CoV-2, severe acute respi-
ratory syndrome-coronavirus-2; ROC, receiver operating characteris-
tic; AST, antimicrobial susceptibility testing; HCV, hepatitis C virus;
CSF, cerebrospinal fluid.
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