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PURPOSE. Researchers have hypothesized that treatment with cyclosporine A (CyA),
interleukin-1 receptor antagonists (IL-1RA; e.g., anakinra), P2Y2 receptor agonists (e.g.,
uridine triphosphate; UTP), and rebamipide may alleviate human meibomian gland
dysfunction (MGD) and/or dry eye disease. Investigators have also proposed that
prostaglandin analogues (e.g., bimatoprost) may induce MGD. Our goal was to determine
whether these compounds directly influence human meibomian gland epithelial cell
(HMGEC) function.

METHODS. Multiple concentrations of each compound were tested for effects on immortalized
(I) HMGEC morphology and survival. Nontoxic dosages were used for our studies.
Immortalized HMGEC were cultured in the presence of vehicle, CyA, IL-1RA, UTP,
rebamipide, or bimatoprost for up to 6 days in various media. Experiments included positive
controls for proliferation (epidermal growth factor and bovine pituitary extract), differenti-
ation (azithromycin), and signaling pathway activation (insulin-like growth factor 1). Cells
were analyzed for neutral lipid staining, lysosome accumulation, lipid composition, and
phosphatidylinositol-3-kinase/Akt (AKT), phosphorylation.

RESULTS. Our findings demonstrate that CyA, IL-1RA, UTP, rebamipide, and bimatoprost had no
effect on the proliferation; neutral lipid content; lysosome number; or levels of free
cholesterol, triglycerides, or phospholipids in IHMGECs. Cylosporine A, IL-1RA, rebamipide,
and bimatoprost significantly reduced the phosphorylation of AKT, as compared to control.
Of interest, tested doses of CyA above 8 nM killed the IHMGECs.

CONCLUSIONS. Our results show that CyA, IL-1RA, UTP, rebamipide, and bimatoprost do not
influence the proliferation or differentiation of IHMGEC. However, with the exception of UTP,
these compounds do decrease the activity of the AKT signaling pathway, which is known to
promote cell survival.
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Dry eye disease (DED) is one of the most frequent reasons

for patient visits to eye care practitioners throughout the

world, and afflicts over 40 million people in the United States

alone.1–3 Dry eye disease is characterized by a vicious cycle of

tear film hyperosmolarity and instability, and leads to increased

ocular surface friction, stress, inflammation, and damage, as

well as visual impairment.2,3 The primary cause of DED is

obstructive meibomian gland dysfunction (MGD).4,5 Meibo-

mian gland dysfunction, in turn, is due to hyperkeratinization of

the external duct epithelium and a reduced meibum quality

(i.e., elevated viscosity), resulting in lipid insufficiency and a

heightened evaporation of the tear film.4,6

Three drugs have been approved by regulatory agencies in

several countries for the treatment of DED. These include

cyclosporine A (CyA), an immunosuppressant compound7;

diquafosol (diuridine-50-tetraphosphate), a P2Y2 receptor ago-

nist8; and rebamipide, a quinolinone derivative.9 These agents

have been reported to alleviate the symptoms and/or signs of

DED.7–26

In contrast, there is no drug approved for the treatment of

MGD. Recently, investigators have proposed that topical

therapy with CyA,27–29 diquafosol,14,30 or an interleukin-1

receptor antagonist31 (IL-1RA, anakinra) may be helpful in

ameliorating obstructive MGD and its associated evaporative

DED. Our goal was to determine whether these compounds

directly influence human meibomian gland epithelial cell

(HMGEC) function.

Toward that end we examined whether CyA, anakinra, and

the P2Y2 receptor agonist uridine-5 0-triphosphate (UTP, a

diqufosol analogue) regulate the proliferation, differentiation,

lipid composition, and signaling in immortalized (I) HMGECs.

The secretagogue UTP is analogous to diquafosol and elicits

similar actions on the ocular surface.12,19,22 For comparative

purposes, we also tested the effects of rebamipide and

bimatoprost on HMGECs. Bimatoprost, a prostaglandin F2a
analogue, is an antiglaucoma (i.e., Lumigan) and eyelash

lengthening (i.e., Latisse) drug that has been reported to

induce MGD and DED.32–37
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MATERIALS AND METHODS

Cell Culture

Immortalized HMGECs were grown in keratinocyte serum-free
medium (Life Technologies, Grand Island, NY, USA), as
previously described.38–40 Cells were treated with three doses
of CyA, UTP, rebamipide, bimatoprost (all purchased from
Santa Cruz Biotechnology, Dallas, TX, USA), or recombinant
human IL-1RA (PeproTech, Rocky Hill, NJ, USA). Dosages
tested were based upon literature reports evaluating the effects
of CyA,41–44 P2Y2 agonists,45,46 rebamipide,47–50 IL-1RA,51–55

and bimatoprost56–58 on various primary and immortalized
cells (Table). During these preliminary experiments IHMGECs
were observed for morphologic changes and cell survival for
up to 7 days. Based upon the results of these studies, we then
selected the highest concentration for each drug that did not
have a dramatic effect on cell survival or morphology. Because
all cells were killed by the CyA doses tested, we used the
lowest dose found in the literature for subsequent experi-
ments. The following nontoxic doses were selected for all
further studies: CyA, 8 nM; UTP, 100 lM; rebamipide, 1 nM; IL-
1RA, 10 lg/mL; and bimatoprost, 10 lM (Table). To determine
effects of each agent on proliferation, cells were cultured for 6
days with drug or vehicle and counted using a hemocytometer.
As a positive control, 5 ng/mL epidermal growth factor (EGF)
and 50 lg/mL bovine pituitary extract (BPE; Life Technologies)
were added to the culture medium.39

Lipid Analyses

Differentiation effects were observed in IHMGECs cultured in a
1:1 mixture of Dulbecco’s modified Eagle’s medium and Ham’s
F-12 (DMEM/F12; Mediatech, Inc., Manassas, VA, USA), supple-
mented with 10% fetal bovine serum (FBS; Life Technologies)
and 10 ng/mL EGF for 5 days. Cells were exposed to LysoTracker
Red DND-99 (Life Technologies) for 30 minutes, fixed in 4%
paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA,
USA), stained with LipidTOX green neutral lipid stain, and
mounted using ProLong Gold antifade reagent with 40,6-
diamidino-2-phenylindole (DAPI) (both from Life Technologies).
Slides were viewed using an Eclipse E800 fluorescent micro-
scope and images captured with NIS-Elements Basic Research
software, version 4.2 (Nikon Instruments, Melville, NY, USA).
Azithromycin (AZM; 10 lg/mL; Santa Cruz Biotechnology) was
used as a positive control for the accumulation of neutral lipids
and lysosomes in IHMGECs.59–63

To identify alterations in specific lipid species, the lipid
fraction was isolated from samples containing equivalent cell
numbers, as previously described.61,62 In brief, lipid extracts
were developed on a silica gel high-performance thin-layer
chromatography (HPTLC) plate (EMD Millipore, Billerica, MA,
USA) and compared to cholesterol oleate (Nu-Chek Prep,
Elysian, MN, USA), free cholesterol (FC), triolein (both from

Sigma-Aldrich Corp., St. Louis, MO, USA), phosphatidyletha-
nolamine (PE), phosphatidylinositol (PI), and phosphatidylcho-
line (PC) (all from Avanti Polar Lipids, Alabaster, AL, USA)
standards. Nonpolar lipid separation was achieved with
benzene:hexane (65:35, vol/vol), while polar lipids were
separated using chloroform:methanol:water (65:25:4) followed
by benzene:hexane (65:35). Bands were visualized using
published techniques.64 Plates were heated, submerged in
acetic acid:sulfuric acid:water (5:0.5:95) with 0.5% CuSO4,
then charred. Densitometry calculations on scanned images
were performed using ImageJ software (http;//imagej.nih.gov/
ij/; provided in the public domain by the National Institutes of
Health, Bethesda, MD, USA). Azithromycin (10 lg/mL) was
utilized as a positive control for the accumulation of free
cholesterol and phospholipids, and a reduction in the content
of triglycerides, in IHMGECs.59,61–63

SDS-PAGE and Immunoblots

Immortalized HMGECs were cultured in DMEM/F12 medium
containing 10% FBS for 6 days, then starved in 1% FBS overnight
before treatment with drugs or 10 nM recombinant human
insulin-like growth factor-1 (IGF-1; National Hormone and
Peptide Program, Torrance, CA, USA) for 15 minutes. Subse-
quently, cells were lysed in Laemmli buffer (Bio-Rad Laborato-
ries, Hercules, CA, USA) supplemented with 1% protease
inhibitor cocktail, 200 lM sodium orthovanadate, and 5% b-
mercaptoethanol (all from Sigma-Aldrich Corp.). Lysates were
denatured at 958C for 10 minutes, separated by SDS-PAGE on
10% Tris/glycine precast gels (Life Technologies), and trans-
ferred to polyvinylidene difluoride (PVDF) membrane. Mem-
branes were incubated with primary antibodies specific for
phospho-phosphoinositide 3-kinase-protein kinase B (p-AKT)
(1:4000, rabbit) or b-actin (1:10,000, mouse; both from Cell
Signaling Technology, Danvers, MA, USA), followed by horse-
radish peroxidase (HRP)-conjugated goat anti-rabbit IgG or Fc-
specific goat anti-mouse IgG secondary antibodies, diluted
1:5000 (Sigma-Aldrich Corp.). Blocking and antibody incubation
were performed in Tris-buffered saline containing 5% bovine
serum albumin and 0.1% Tween 20. Proteins were visualized
with Pierce ECL Western Blotting Substrate (Thermo Fisher
Scientific, Rockford, IL, USA) using a G-Box gel documentation
station (Syngene, Frederick, MD, USA). Image analysis and
densitometry were performed using GeneSys software (Syn-
gene). In these studies, IGF-1 served as a positive control.59

RESULTS

Influence of CyA, UTP, Rebamipide, IL-1RA, and
Bimatoprost on the Proliferation of IHMGECs

To determine whether CyA, UTP, rebamipide, IL-1RA, and
bimatoprost modulate the proliferation of IHMGECs, we

TABLE. Drugs and Vehicles Used in the IHMGEC Experiments

Drug

Literature

Dosage Range

Concentrations Tested

in Preliminary Studies

Dose Used

for Studies

Drug Vehicle for

Cell Cultures

CyA 8 nM–10 lM8–11 10 nM, 0.5 lM, 10 lM† 8 nM 0.1% ethanol in medium, 1:10 dilution

UTP* 10–100 lM6,7 10, 50, 100 lM 100 lM Water, 1:10 dilution

Rebamipide 0.01 nM–2 mM15–18 1 nM, 1 lM, 1 mM 1 nM 0.01% DMSO in PBS, 1:1000 dilution

IL-1RA 100 ng/mL–500 lg/mL1–5 100 ng/mL, 1 lg/mL, 10 lg/mL 10 lg/mL 0.1% BSA in PBS, 1:10 dilution

Bimatoprost 0.01 lM–1.4 mM12–14 0.1 lM, 10 lM, 1 mM 10 lM Ethanol, 1:1000 dilution

DMSO, dimethyl sulfoxide.
* The literature dosage range also includes concentrations for the P2Y2 analogue diquafosol.
† The 10 lM concentration was insoluble and not used.

Human Meibomian Gland Epithelial Cells IOVS j August 2016 j Vol. 57 j No. 10 j 4288



cultured cells with these drugs or their vehicles in serum-free
media for 5 days (n¼ 3 wells/drug or vehicle/experiment; n¼
3 experiments/drug). We also compared their effect, if any, to
that of EGF plus BPE, a combination known to stimulate
IHMGEC proliferation.39 As shown in Figure 1, and in contrast
to EGF plus BPE exposure, neither these drug treatments nor
their vehicles had any significant influence on the proliferation
of IHMGECs.

Effect of CyA, UTP, Rebamipide, IL-1RA, and
Bimatoprost on Lipid and Lysosome Accumulation
in IHMGECs

To examine whether CyA, UTP, rebamipide, IL-1RA, and
bimatoprost influence lipid and lysosome accumulation in
IHMGECs, we treated cells with these drugs, their vehicles, or
AZM for 5 days and then processed samples for histologic and
biochemical procedures (n¼ 3 wells/treatment/experiment; n

¼ 3 experiments/drug). As demonstrated in Figure 2, none of
these drugs or their vehicles had any effect on the accumu-
lation of neutral lipids (i.e., LipidTOX staining) or lysosomes
(i.e., LysoTracker staining) in IHMGECs. Similarly, these drug
and vehicle treatments did not influence the expression of free
cholesterol, triglycerides, or phospholipids (Fig. 3). For
comparison, AZM increased the appearance of intracellular
neutral lipids and lysosomes, elevated the levels of free
cholesterol and phospholipids, and reduced the content of
triglycerides (Figs. 2, 3).

Impact of CyA, UTP, Rebamipide, IL-1RA, and
Bimatoprost on AKT Signaling in IHMGECs

To assess whether CyA, UTP, rebamipide, IL-1RA, and
bimatoprost alter the activity of a cell survival mediator, we
evaluated whether these drugs influenced AKT signaling. Such
a signal, as indicated by AKT phosphorylation, promotes cell
growth, proliferation, and survival.65

As illustrated in Figure 4, we discovered that CyA,
rebamipide, IL-1RA, and bimatoprost significantly reduced
the phosphorylation of AKT as compared to control. Uridine
triphosphate and the drug-specific vehicles had no effect,
whereas IGF-1 significantly increased p-AKT levels (Fig. 4).

DISCUSSION

Our results demonstrate that CyA, IL-1RA, UTP, rebamipide,
and bimatoprost have no effect on the proliferation; neutral
lipid content; lysosome number; or levels of free cholesterol,
triglycerides, or phospholipids in IHMGECs. Further, our data
show that CyA, IL-1RA, rebamipide, and bimatoprost signifi-
cantly decrease the phosphorylation of AKT, a mediator of cell
survival, and that tested CyA concentrations above 8 nM kill
the IHMGECs. Our findings do not provide any evidence for a
positive impact of CyA, IL-1RA, UTP, rebamipide, or bimato-
prost on HMGEC function.

Researchers have reported that CyA ameliorates certain
signs and/or symptoms of DED.7,11,24,26 These include
improvements in Ocular Surface Disease Index scores, tear
film breakup times (TBUT), and Schirmer tests and/or goblet
cell densities, as well as a reduction in corneal fluorescein
staining.24,26,66,67 The proposed mechanism(s) of CyA action
have ranged from anti-inflammatory effects on the ocular
surface,7 to neuroendocrine influence in the lacrimal gland,68

to a decrease in action potential generation by corneal cold
nerve terminals (Kovacs I, et al. IOVS 2012;53:ARVO E-Abstract
1795). Researchers have also hypothesized that CyA treatment
may be effective for the therapy of MGD,27–29 and have found
that CyA may reduce the number of orifice inclusions in
patients with symptomatic MGD.28 Given that CyA did not
promote the function of HMGECs in our study, it may be that
this compound indirectly targets the glandular external duct
plugging by suppressing the release of conjunctival proin-
flammatory mediators that may influence the keratinization
process. It is unlikely that CyA does this directly, because this
compound is known to induce hyperkeratinization.69,70

Investigators have also reported that P2Y2 agonists
suppress specific signs and/or symptoms of DED.8,12,14,19–22

These actions, whether by UTP or diquafosol, are mediated
through guanosine triphosphate binding protein-coupled
receptors that stimulate goblet cell mucin release and
conjunctival chloride transport.8,12,19,71–77 This latter effect
promotes an increase in fluid flow across the conjunctiva and
thereby increases tear volume.8,22,78 The treatment result is a
partial or consistent improvement in DED biomarkers, such as
ocular surface staining, TBUT, Schirmer test scores, and
symptoms.8,14,21 Because researchers identified P2Y2 recep-

FIGURE 1. Drugs or vehicles do not alter IHMGEC survival or proliferation. Cells were exposed to treatments or vehicles for 5 days in keratinocyte
serum-free medium (KSFM) and counted using a hemocytometer. Cells were exposed to drugs or vehicles at different times under the same
conditions. (A) Cell counts from three experiments (mean 6 standard error) are shown. (B) One representative of three control experiments is
shown. The combination of epidermal growth factor (EGF, 5 ng/mL) and bovine pituitary extract (BPE, 50 lg/mL) is known to induce IHMGEC
proliferation. **P < 0.01, ***P < 0.001, respectively, compared to all other conditions.
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tors in ductal epithelial cells of rat, rabbit, and primate
meibomian glands,79,80 a recent study was performed to
evaluate topical diquafosol for the treatment of MGD.30

However, this 4- to 16-month-long study included no placebo-
treated controls, which make it impossible to determine
whether the P2Y2 agonist elicited an effect in humans. Based
upon our findings, if diquafosol does influence the human
meibomian gland, the effect might involve ductal, but not
acinar, epithelial cells.

In contrast, a recent study with Cu,Zn–superoxide dis-
mutase-1 knockout mice reported that 2 weeks of topical
diquafosol treatment increased the number of lipid droplets,
the acinar unit density, and keratins 4 and 13 staining in
meibomian glands (Ikeda K, et al. IOVS 2016;57:ARVO E-
Abstract 2869). However, given that this study also contained
no placebo-treated controls, it is not clear whether these
results are due to diquafosol or the vehicle.

Topical rebamipide has been reported to reduce various
signs and/or symptoms of DED.9,10,13,15–18,23,25 These respons-
es include an increase in mucin expression and optical quality
and a reduction in corneal fluorescein staining, ocular surface
inflammation, and foreign body sensation.10,13,16,18,23,81–88

Given that MGD is the most common cause of DED,4,5 we
hypothesized that part of rebamipide’s effect could involve
promoting meibomian gland function. Our results, though, do
not show a stimulatory effect of this quinolinone derivative on
HMGECs.

Investigators have hypothesized that topical IL-1RA may
have therapeutic benefit as a treatment for desiccating,89

aqueous-deficient,90 and MGD-associated evaporative31 DED.
Mouse experiments have shown that IL-1RA may improve
ocular surface integrity, increase tear secretion, and suppress
corneal inflammation,89,90 and a human trial discovered that IL-
1RA (i.e., anakinra) reduced corneal epitheliopathy in patients
with MGD-related DED.31 However, this latter study did not
observe any IL-1RA–associated change in meibomian gland
secretion quality or the number of expressible glands as
compared to baseline or placebo. This lack of a stimulatory
effect of IL-1RA on the meibomian gland was also found in our
present study. The rationale for administering IL-1RA is unclear,
given that the levels of IL-1RA protein are increased in the tear
film of MGD patients with evaporative DED91 and in the
conjunctiva of patients with aqueous-deficient DED.92

FIGURE 2. Drugs do not alter lipid accumulation or lysosomal expression in IHMGEC. Cells were treated for 5 days in DMEM supplemented with
10% FBS and 10 ng/mL EGF, then stained for lysosomes (LysoTracker Red) and neutral lipid (LipidTOX, green). All images 3400 magnification.
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Lastly, given that prostaglandins have been reported to

induce MGD and DED,32–37 we hypothesized that bimatoprost,

a prostaglandin F2a analogue, may exert a direct action on

HMGECs. But like CyA, rebamipide, and IL-1RA, bimatoprost

had no effect on the IHMGEC function other than decreasing

the phosphorylation of AKT. In contrast, our control com-

pounds, including EGF plus BPE, AZM, and IGF-1, all induced

the anticipated alterations in the proliferation; neutral lipid

content; lysosome number; levels of free cholesterol, triglyc-

erides and phospholipids; and signaling pathway activity in

IHMGECs. Overall, our findings suggest that treatment with

CyA, IL-1RA, P2Y2 agonists, or rebamipide may not be effective
for stimulating the function of HMGECs.
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