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Abstract

Overdose prescription errors sometimes cause serious life-threatening adverse drug

events, while underdose errors lead to diminished therapeutic effects. Therefore, it is impor-

tant to detect and prevent these errors. In the present study, we used the one-class support

vector machine (OCSVM), one of the most common unsupervised machine learning algo-

rithms for anomaly detection, to identify overdose and underdose prescriptions. We

extracted prescription data from electronic health records in Kyushu University Hospital

between January 1, 2014 and December 31, 2019. We constructed an OCSVM model for

each of the 21 candidate drugs using three features: age, weight, and dose. Clinical over-

dose and underdose prescriptions, which were identified and rectified by pharmacists before

administration, were collected. Synthetic overdose and underdose prescriptions were cre-

ated using the maximum and minimum doses, defined by drug labels or the UpToDate data-

base. We applied these prescription data to the OCSVM model and evaluated its detection

performance. We also performed comparative analysis with other unsupervised outlier

detection algorithms (local outlier factor, isolation forest, and robust covariance). Twenty-

seven out of 31 clinical overdose and underdose prescriptions (87.1%) were detected as

abnormal by the model. The constructed OCSVM models showed high performance for

detecting synthetic overdose prescriptions (precision 0.986, recall 0.964, and F-measure

0.973) and synthetic underdose prescriptions (precision 0.980, recall 0.794, and F-measure

0.839). In comparative analysis, OCSVM showed the best performance. Our models

detected the majority of clinical overdose and underdose prescriptions and demonstrated

high performance in synthetic data analysis. OCSVM models, constructed using features

such as age, weight, and dose, are useful for detecting overdose and underdose

prescriptions.
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Introduction

Prescription errors that occur in hospitals cause adverse drug events (ADEs), that may occa-

sionally result in death [1]. In a recent systematic review, the frequency of prescription errors

was at least 2%, while that of preventable ADEs was estimated to be 0.4% [2]. The World

Health Organization has announced its global patient safety challenge, which aims to reduce

medication-related harm by 50% within five years by improving unsafe practices and reducing

medication errors [3]. Prescription errors related to drug overdose may result in serious life-

threatening ADEs, while those related to the underdosing of drugs may lead to diminished

therapeutic effects. Thus, it is particularly important to detect and prevent these errors before

the administration of drugs [4, 5]. Previous studies suggested that the implementation of Elec-

tronic Health Records (EHRs) with Clinical Decision Support (CDS) systems is useful for

detecting and preventing prescription errors, including overdoses and underdoses [6–13].

However, current CDS systems have two main limitations. The first issue is that most of these

systems are rule-based and can thus only detect prescription errors according to pre-pro-

grammed rules. Moreover, in the case of insufficient information from reliable sources (e.g., a

lack of pediatric dosage information in a drug label), difficulties are associated with making

rules. The second issue is that current CDS systems may raise too many false-positive alerts,

which result in medical staff habitually overriding them [14, 15]. This is called “alert fatigue.”

Therefore, the development of more precise CDS systems is urgently needed [16–19]. To over-

come these limitations, a non-rule-based novel approach is required.

In clinical practice, the majority of prescriptions are generally within the appropriate dose

range, and overdose and underdose prescriptions are extremely rare [5]. Thus, the detection of

abnormal prescriptions involves the identification of a small amount of abnormal data among

mostly normal data. This issue has been examined as unsupervised anomaly detection in the

field of machine learning [20].

Related works

To the best of our knowledge, MedAware (Raanana, Israel) is the first commercial system for

preventing prescription errors by utilizing machine learning techniques [21]. This system

enables the generation of automatic alerts by analyzing EHRs and detects overdose and under-

dose prescriptions with low false-positive rates [22–24]. Segal et al. introduced a machine

learning based CDS system (MedAware) in clinical practice and evaluated its usefulness [23].

The system analyzed 78 017 prescriptions, generated 282 alerts (0.4%), and resulted in discon-

tinuation or change in 135 prescriptions. However, this report does not provide information

about the machine learning process, probably due to commercial reasons.

Santos et al. applied a graph centrality approach, known as density-distance-centrality

(DDC), for outlier detection to identify overdose and underdose prescriptions [25]. They

showed that DDC achieved better results than typical unsupervised machine learning tech-

niques [25]. However, they only used two features, “dose” and “daily frequency,” and did not

consider “age” and “weight,” which are critical factors for clinical dosage adjustments [25].

Recently, they developed a SaaS (software as a service) called NoHarm.ai which enables screen-

ing for non-standard prescriptions by analyzing hospital data [26].

Corny et al. proposed a hybrid CDS system based on a rule-based technique and supervised

machine learning approach [27]. They combined patient-related data (e.g., age, weight, sex)

and rule-based alerts (e.g., dosage, frequency, route) for each prescription with labeling

(binary: 1 = a pharmaceutical intervention; 0 = no pharmaceutical intervention) and used it as

training data. Using LightGBM, a gradient-boosting framework based on decision tree algo-

rithms, predicted scores at the patient level were calculated. Their hybrid CDS system showed
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higher performance than the classic CDS system (F-measure 0.74 vs. 0.61). However, in the

clinical applicability of CDS systems, it is challenging to obtain precisely labeled data for a

huge number of prescriptions. In addition, because their method starts from the rule-based

technique, it requires pre-programmed rules. If it is difficult to make rules due to insufficient

information (e.g., a lack of pediatric dosage information in a drug label), their system will not

work. Unsupervised machine learning algorithms can be used to solve these problems.

As far as we know, there have been no further attempts to detect prescription errors of over-

doses and underdoses using machine learning. In order to establish a method for detecting

drug overdose and underdose using machine learning, open discussions with detailed explana-

tions and analysis codes are necessary.

The purpose of this study was to detect extreme overdose and underdose prescriptions that

occur very rarely in clinical practice using unsupervised machine learning algorithms. We con-

structed models for each candidate drug using three features: age, weight, and dose, and evalu-

ated their usefulness for detecting overdose and underdose prescriptions.

Methods

This study was approved by the Ethics Committee of the Kyushu University Hospital (approval

number 2020–187). All data were fully anonymized before access and the ethics committee

waived the requirement for informed consent.

Investigation of clinical overdose and underdose prescriptions

Clinical overdose and underdose prescriptions, which were identified and rectified by pharma-

cists before dispensing in our hospital between January 1 and December 31, 2019, were col-

lected. Thirty-one clinical overdose and underdose prescriptions (consisting of 21 drugs) that

met the following conditions were analyzed:

• oral drugs

• more than 1000 in-hospital prescriptions between January 1, 2014 and December 31, 2019

(to ensure sufficient training data for the construction of the OCSVM model)

• based on drug labels or the UpToDate database [28], the maximum dose and minimum dose

could be defined according to age, weight, or both (to create synthetic overdose and under-

dose prescriptions to evaluate OCSVM model performance)

Data preprocessing

We extracted prescription data and weight data from EHRs between January 1, 2014 and

December 31, 2019. In terms of weight data, patients less than 0 kg or more than 300 kg were

excluded because they were considered to be input errors. In prescription data, the dose was

converted to the value corresponding to the amount of the active ingredient. Each set of pre-

scription data was linked to the closest weight data, and data that met the following conditions

were included in the analysis:

• prescriptions of 21 drugs (identified in the previous section)

• in-hospital prescriptions

• ordered in daily dose (prescription data entered by “single dose taken when needed” and

“total dose” were excluded because the actual dose taken by patient was unknown)
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• weight data existed within 90 days before or after prescription

OCSVM methodology

The OCSVM methodology was initially proposed by Schölkopf et al. [29] OCSVM requires

the majority of training data to be normal, fits a hyperplane to include the majority of training

data, and detects abnormal data as deviations from the decision boundary. First, the method

maps the training data into the feature space corresponding to a simple kernel

k xi; xj
� �

¼ F xið Þ � F xj
� �� �

ð1Þ

such as the radial basis function (RBF) kernel

k xi; xj
� �

¼ exp � gkxi � xjk
2

� �
; g > 0 ð2Þ

where γ represents a kernel coefficient.

To separate the data from the origin, the following dual problem was solved

min
a

1

2

X

ij

aiajk xi; xj
� �

ð3Þ

subject to

0 � ai �
1

nl
;
X

i

ai ¼ 1: ð4Þ

Here, αi is a Lagrange multiplier, ν defines the maximum fraction of outliers in training

data, l is the number of points in the training dataset. The resulting decision function can be

expressed as

f xð Þ ¼
X

i

aik xi; xð Þ � r ð5Þ

where the offset ρ can be obtained as

r ¼
X

j

ajk xj; xi
� �

: ð6Þ

In OCSVM, we employed the implementation available in scikit-learn 0.22.1 [30]. We used

the RBF as a kernel trick. The performance of OCSVM with the RBF kernel is strongly influ-

enced by two hyperparameters: ν and γ. The incidence of clinical overdose and underdose pre-

scriptions for each drug was between 0.01% and 0.44% (S1 Table). Therefore, we set the ν
value to 1% (0.01) in the present study. The hyperparameter γ affects the influence area of the

support vectors on the classification. In general, increasing the value of γ implies adjusting the

frontier closer to the training data and improving recall. However, a marked increase in γ
causes overfitting of the model to the training data and deteriorates precision. The hyperpara-

meter γ was set to “scale,” which is the default setting in scikit-learn 0.22.1, and calculated as

follows:

g ¼
1

f � v
ð7Þ

where f is the number of features and v represents the variance in the dose of training data.
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Experiment 1: Evaluation of OCSVM model performance for clinical

overdose and underdose prescriptions

Age, weight, and daily dose were extracted as features from the prescription data between Jan-

uary 1, 2014 and December 31, 2019. We used these prescription data as training data and con-

structed an OCSVM model for each drug (total of 21 models). In each clinical overdose and

underdose prescription (total of 31 prescriptions), age, weight, and daily dose were standard-

ized by removing the mean and scaling to unit variance based on the training data using the

StandardScaler module in scikit-learn and we applied it to the OCSVM model. The OCSVM

model returned the signed distance to the separating hyperplane and predicted whether each

prescription was normal (positive value, inside the decision boundary) or abnormal (negative

value, outside the decision boundary).

Experiment 2: Evaluation of OCSVM model performance for synthetic

overdose and underdose prescriptions

To ensure sufficient data for the evaluation of OCSVM model performance, we created syn-

thetic overdose and underdose prescriptions and conducted a five-fold cross-validation analy-

sis for each drug. The maximum dose and minimum dose according to age, weight, or both

were defined based primarily on drug labels and secondarily on UpToDate (when there was

insufficient information in the drug labels). The entire dataset (prescription data between Jan-

uary 1, 2014 and December 31, 2019) was randomly divided into five folds, and four folds of

the dataset were used as training data. From one-fold of the dataset, we randomly selected 50%

that were within the maximum and minimum doses and used them as normal prescriptions.

Regarding the other 50% of the dataset, we artificially changed the daily dose to 2 times the

maximum dose for synthetic overdose prescriptions and to 0.1 times the minimum dose for

synthetic underdose prescriptions. Data (age, weight, and daily dose) on normal prescriptions

and synthetic overdose and underdose prescriptions were standardized based on training data

and applied to the OCSVM model of the corresponding drug. To evaluate OCSVM model per-

formance, we used the following metrics:

• True positives (TP): the number of synthetic overdose or underdose prescriptions correctly

predicted as abnormal

• False positives (FP): the number of normal prescriptions incorrectly predicted as abnormal

• True negatives (TN): the number of normal prescriptions correctly predicted as normal

• False negatives (FN): the number of synthetic overdose or underdose prescriptions incor-

rectly predicted as normal

Precision ¼
TP

TPþ FPð Þ
ð8Þ

Recall ¼
TP

TPþ FNð Þ
ð9Þ

F‐measure ¼
2 � precision � recall
precisionþ recallð Þ

ð10Þ

Random selection was repeated 10 times, and the average value was calculated to obtain

robust results. The overall performance of OCSVM models was evaluated based on the average
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of the metrics for 21 drugs. We changed the γ value logarithmically from 2−6 to 26 and exam-

ined its influence on the OCSVM model performance.

To plot graphs, we used GraphPad Prism ver.8.4.1 for Windows (GraphPad Software, San

Diego, CA, USA) for a line plot and Matplotlib 3.1.1, scikit-image 0.16.2, and MATLAB ver-

sion 9.10.0.1602886 (The MathWorks Inc, Natick, MA, USA) for a three-dimensional plot

[31, 32].

Experiment 3: Comparative analysis with unsupervised outlier detection

algorithms

To compare model performance between OCSVM and other unsupervised outlier detection

algorithms, we used the following methods.

• Local outlier factor (LOF): It measures the local density deviation of a given data point with

respect to its neighbors [33]. The LOF score of an observation is equal to the ratio of the

average local density of k-nearest neighbors and its own local density. It depends on hyper-

parameters: k (number of neighbors) and contamination (proportion of outliers in the data

set).

• Isolation forest (ISO): It isolates observations by randomly selecting a feature and then ran-

domly selecting a split value of the selected feature [34]. The number of splitting required to

isolate a sample is equal to the path length from the root to the terminating node. This path

length is a measure of normality and decision function. It depends on hyperparameters: esti-

mators (number of base estimators in the ensemble) and contamination.

• Robust covariance (RC): Assuming gaussian distribution, it estimates the inlier location and

covariance without being influenced by outliers [35]. The Mahalanobis distances obtained

from this estimate are used to measure deviation. It depends on the hyperparameter of

contamination.

We used synthetic overdose and underdose prescriptions created in Experiment 2 and con-

ducted a five-fold cross-validation analysis using OCSVM, LOF, ISO and RC. We changed the

value of hyperparameters as shown in Table 1, and the best F-measure was compared between

algorithms.

Results

Experiment 1: Evaluation of OCSVM model performance for clinical

overdose and underdose prescriptions

Details regarding the clinical overdose and underdose prescriptions that were prevented by

pharmacists in 2019 are shown in Table 2. Thirty-one (20 overdose and 11 underdose)

Table 1. Hyperparameters evaluated to find the best F-measure.

Algorithm Hyperparameter Value

OCSVM γ 2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 1, 2, 4, 8

ν 2−10, 2−9, 2−8, 2−7, 2−6, 2−5, 2−4

LOF k 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

contamination 2−10, 2−9, 2−8, 2−7, 2−6, 2−5, 2−4

ISO estimators 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

contamination 2−10, 2−9, 2−8, 2−7, 2−6, 2−5, 2−4

RC contamination 2−10, 2−9, 2−8, 2−7, 2−6, 2−5, 2−4

https://doi.org/10.1371/journal.pone.0260315.t001
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prescriptions of 21 drugs were analyzed. To assess the degree of the deviation of clinical over-

dose and underdose prescriptions, the ratio to the maximum or minimum dose was calculated

(Table 2). Regarding clinical overdose prescriptions, the median (range) of the ratio to the

maximum dose was 1.88 (1.25–14.49). In the case of clinical underdose prescriptions, the

median (range) of the ratio to the minimum dose was 0.13 (0.001–0.65). Twenty-seven out of

31 clinical overdose and underdose prescriptions (87.1%) were detected as abnormal by the

OCSVM models.

Table 2. Details of clinical overdose and underdose prescriptions and detection results by OCSVM models.

Drug name (strength) Age Weight (kg) Dose (/day) O/Ua Ratio to max/minb OCSVMc

Acetaminophen fine granule (500 mg/g) 64 49.6 3 mg U 0.02 +

68 51.1 3 mg U 0.02 +

Ambroxol hydrochloride dry syrup (15 mg/g) 0 3.6 1.05 mg U 0.65 -

0 2.6 8 mg O 1.71 -

1 10.8 90 mg O 4.63 +

Amlodipine besylate tablet (5 mg/tablet) 71 74.9 20 mg O 2.00 +

Aprepitant capsule (80 mg/capsule) 59 51.6 160 mg O 1.28 +

Aspirin tablet (100 mg/tablet) 81 43.0 10 000 mg O 2.33 +

Calcium carbonate tablet (500 mg/tablet) 5 8.4 0.75 mg U 0.001 +

Carvedilol tablet (10 mg/tablet) 13 31.4 55 mg O 1.38 +

70 55.8 200 mg O 5.00 +

Celecoxib tablet (200 mg/tablet) 54 59.1 800 mg O 1.33 -

Codeine phosphate powder (10 mg/g) 51 52.7 6 mg U 0.20 +

69 61.2 6 mg U 0.20 +

85 49.9 4 mg U 0.13 +

Furosemide fine granule (40 mg/g) 0 0.46 40 mg O 14.49 +

13 30.0 0.25 mg U 0.02 -

Lactulose syrup (0.65 g/ml) 82 42.6 1.95 g U 0.20 +

Levothyroxine sodium hydrate tablet (25 μg/tablet) 1 10.7 250 μg O 3.89 +

Nicorandil tablet (5 mg/tablet) 66 38.7 75 mg O 2.50 +

Nifedipine sustained release tablet (10 mg/tablet) 47 69.5 140 mg O 1.75 +

Omeprazole tablet (10 mg/tablet) 4 10.9 20 mg O 2.00 +

Phenobarbital powder (100 mg/g) 66 53.8 500 mg O 1.25 +

Rabeprazole sodium tablet (10 mg/tablet) 20 48.5 70 mg O 1.75 +

58 74.8 70 mg O 1.75 +

68 48.4 100 mg O 2.50 +

Rivaroxaban tablet (15 mg/tablet) 57 54.0 45 mg O 1.50 +

Spironolactone fine granule (100 mg/g) 13 30.0 0.05 mg U 0.002 +

74 47.5 500 mg O 2.50 +

Trimethoprim sulfamethoxazole granuled (80 mg/g) 0 3.5 1.6 mg U 0.23 +

Ursodeoxycholic acid granule (50 mg/g) 2 12.0 540 mg O 1.50 +

a O, overdose; U, underdose.
b max, maximum dose; min, minimum dose defined by drug labels or UpToDate. The ratio to the maximum dose is shown for overdose. The ratio to the minimum dose

is shown for underdose.
c “+” indicates detected, “-” indicates not detected as abnormal prescriptions, respectively.
d Dose is the value equivalent to trimethoprim.

https://doi.org/10.1371/journal.pone.0260315.t002
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Experiment 2: Evaluation of OCSVM model performance for synthetic

overdose and underdose prescriptions

The performance of the OCSVM model for synthetic overdose and underdose prescriptions

for each drug is shown in Table 3.

We plotted each prescription data and the decision boundary of the OCSVM model for

acetaminophen fine granules in Fig 1. The results showed that the majority of normal prescrip-

tions were inside the decision boundary, and all synthetic overdose prescriptions and most

synthetic underdose prescriptions were outside the decision boundary.

The overall performance of the OCSVM models for synthetic overdose and underdose pre-

scriptions is shown in Table 4.

The influences of the hyperparameter γ on the OCSVM model performance for synthetic

overdose and underdose prescriptions are shown in Fig 2A and 2B. Precision and recall were

inversely related, that is, the smaller the γ value, the higher the precision; and the larger the γ
value, the higher the recall.

Experiment 3: Comparative analysis with unsupervised outlier detection

algorithms

The optimized hyperparameters and model performance of OCSVM, LOF, ISO and RC for

synthetic overdose and underdose prescriptions are shown in Table 5.

Table 3. OCSVM model performance for detecting synthetic overdose and underdose prescriptions for each drug.

Drug name (strength) Data (n) Synthetic overdose prescriptions Synthetic underdose prescriptions

Precision Recall F-measure Precision Recall F-measure

Acetaminophen fine granule (500 mg/g) 5869 0.986 1.000 0.993 0.986 0.969 0.977

Ambroxol hydrochloride dry syrup (15 mg/g) 4067 0.991 0.949 0.969 0.971 0.288 0.443

Amlodipine besylate tablet (5 mg/tablet) 37 796 0.991 0.997 0.994 0.991 1.000 0.996

Aprepitant capsule (80 mg/capsule) 14 436 0.989 1.000 0.995 0.989 1.000 0.995

Aspirin tablet (100 mg/tablet) 38 736 0.991 1.000 0.995 0.991 1.000 0.995

Calcium carbonate tablet (500 mg/tablet) 5049 0.987 0.974 0.981 0.987 0.932 0.958

Carvedilol tablet (10 mg/tablet) 3603 0.983 1.000 0.991 0.983 1.000 0.991

Celecoxib tablet (200 mg/tablet) 13 205 0.989 0.992 0.991 0.989 1.000 0.994

Codeine phosphate powder (10 mg/g) 4104 0.985 1.000 0.993 0.985 0.957 0.970

Furosemide fine granule (40 mg/g) 3366 0.988 0.930 0.958 0.958 0.251 0.397

Lactulose syrup (0.65 g/ml) 3243 0.987 1.000 0.993 0.986 0.940 0.962

Levothyroxine sodium hydrate tablet (25 μg/tablet) 15 467 0.991 0.996 0.993 0.990 0.924 0.956

Nicorandil tablet (5 mg/tablet) 5669 0.986 1.000 0.993 0.986 1.000 0.993

Nifedipine sustained release tablet (10 mg/tablet) 2088 0.976 1.000 0.988 0.976 1.000 0.988

Omeprazole tablet (10 mg/tablet) 5965 0.986 0.994 0.990 0.986 1.000 0.993

Phenobarbital powder (100 mg/g) 2399 0.978 0.703 0.817 0.969 0.479 0.638

Rabeprazole sodium tablet (10 mg/tablet) 54 423 0.989 1.000 0.995 0.989 1.000 0.995

Rivaroxaban tablet (15 mg/tablet) 2022 0.980 1.000 0.990 0.980 1.000 0.990

Spironolactone fine granule (100 mg/g) 11 379 0.987 0.879 0.930 0.968 0.346 0.510

Trimethoprim sulfamethoxazole granulea (80 mg/g) 5683 0.990 1.000 0.995 0.944 0.178 0.298

Ursodeoxycholic acid granule (50 mg/g) 7669 0.986 0.825 0.899 0.973 0.418 0.584

Data represent the average values of ten repeats of five-fold cross-validation.
a Dose is the value equivalent to trimethoprim.

https://doi.org/10.1371/journal.pone.0260315.t003
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Discussion

In our investigation of clinical overdose and underdose prescriptions, 12 out of 31 prescrip-

tions were for children or infants, and 9 out of 21 drugs were in powder or liquid forms

(Table 2). These results suggest that it is important to take “age” and “weight” into consider-

ation when detecting overdose or underdose prescription errors that occur in clinical settings.

In a previous study, in which the detection of overdose and underdose prescriptions was

attempted using a graph centrality approach and typical unsupervised machine learning tech-

niques, only “dose” and “daily frequency” were used as the features [25]. Although difficulties

are generally associated with comparing the findings of the aforementioned study to the pres-

ent results due to the use of different methods, their model showed lower performance (F-

measure: 0.68) [25]. In the present study, we demonstrated for the first time that by using the

three simple features of “age,” “weight,” and “dose,” OCSVM models detected the majority of

Fig 1. Decision boundary of the OCSVM model and individual data for acetaminophen fine granules. Data are

represented as standardized values.

https://doi.org/10.1371/journal.pone.0260315.g001

Table 4. Overall performance of OCSVM models for synthetic overdose and underdose prescriptions.

Precision Recall F-measure

Synthetic overdose prescriptions 0.986 0.964 0.973

Synthetic underdose prescriptions 0.980 0.794 0.839

Data represent the average values of 21 drugs.

https://doi.org/10.1371/journal.pone.0260315.t004
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clinical overdose and underdose prescriptions (Table 2). Furthermore, the model demon-

strated high performance in the synthetic data analysis (Table 4).

Difficulties are associated with obtaining sufficient clinical overdose and underdose pre-

scription data to evaluate OCSVM model performance. Therefore, we defined maximum and

minimum doses based on drug labels or UpToDate information and created synthetic over-

dose and underdose prescriptions. The factors of synthetic data (maximum dose × 2 or mini-

mum dose × 0.1) were set according to the ratio of the clinical overdose to the maximum dose

(median [range]: 1.88 [1.25–14.49]) or that of the clinical underdose to the minimum dose

(0.13 [0.001–0.65]), as shown in Table 2, and were considered to be clinically feasible and of

reasonable value.

In the analysis of OCSVM model performance (Table 3), all drugs showed high precision

(> 0.94), which suggests that the low false-positive rate in our model avoided “alert fatigue.”

Regarding synthetic overdose prescriptions, recall was> 0.82 for 20 out of 21 drugs and 0.703

for phenobarbital powder (Table 3). Among synthetic underdose prescriptions, recall

was> 0.92 for 15 out of 21 drugs, but< 0.48 for six drugs, including phenobarbital powder

Fig 2. Influence of hyperparameter γ on overall performance of OCSVM models. (A) Analysis for synthetic overdose prescriptions. (B) Analysis for

synthetic underdose prescriptions.

https://doi.org/10.1371/journal.pone.0260315.g002

Table 5. Comparative analysis with unsupervised anomaly detection algorithms.

Algorithm Optimized hyperparameters Precision Recall F-measure

Synthetic overdose prescriptions OCSVM γ = 2−1, ν = 2−6 0.980 0.969 0.973

LOF k = 40, contamination = 2−5 0.968 0.932 0.942

ISO estimators = 30, contamination = 2−4 0.897 0.746 0.784

RC contamination = 2−4 0.874 0.763 0.781

Synthetic underdose prescriptions OCSVM γ = 2, ν = 2−5 0.934 0.919 0.918

LOF k = 60, contamination = 2−4 0.931 0.879 0.895

ISO estimators = 20, contamination = 2−4 0.785 0.404 0.498

RC contamination = 2−4 0.706 0.312 0.375

Data represent the average values of 21 drugs.

https://doi.org/10.1371/journal.pone.0260315.t005
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(Table 3). In our hospital, phenobarbital powder is often used in quantities outside the dose

range described in the drug label or UpToDate, particularly when administered to infants and

children (age: 0–5), with careful therapeutic drug monitoring being implemented before drug

administration. In the prescription data for phenobarbital powder, 9.6% was above the maxi-

mum dose, while 3.9% was below the minimum dose (S2 Table), which may have resulted in

low recall and F-measure values. These results indicate that because of its inherent nature, the

machine learning approach may not have the capacity to detect prescriptions that are not rare,

but that also require attention, such as the confirmation of blood concentrations. This issue

may be resolved by adding drug blood concentrations to the features of the OCSVM model.

Regarding the overall performance of OCSVM models, excellent results were obtained for

synthetic overdose prescriptions. However, the performance was slightly lower for synthetic

underdose prescriptions (Table 4). Clinically, patients at a high risk of developing ADEs are

sometimes administered drugs at lower doses than the minimum dose described in the drug

label or UpToDate. Additionally, even if only one dose is prescribed for a drug that is adminis-

tered multiple times daily (e.g., dosing only after dinner on the start date), our model recog-

nized it as a daily dose. These factors may have limited the detection of synthetic underdose

prescriptions.

γ-dependent changes in the metrics are shown in Fig 2. F-measure peaked when γ was 2−1

for synthetic overdose prescriptions and 21 for synthetic underdose prescriptions. Therefore,

setting γ approximately between 0.5 and 2.0 was considered to be appropriate. Moreover,

adjustments of γ for each drug (high γ setting to prioritize recall for high-risk drugs, and low γ
setting to prioritize precision for low-risk drugs) may enhance the utility in clinical settings.

In comparative analysis with unsupervised outlier detection algorithms, OCSVM showed

the best F-measure for synthetic overdose and underdose prescriptions. Because LOF also

showed high performance, OCSVM and LOF were considered as suitable algorithms for

detecting overdose and underdose prescriptions.

This study considered age and weight, which are the main factors affecting dosage. Careful

evaluation of several other factors related to the dose of individual drug, such as renal function

(creatinine clearance), drug blood concentrations, and other laboratory parameters, may

improve the model’s utility in further studies. To verify the results, we need to show that our

model has high detection performance even for different data sets (e.g., prescription data

obtained from other hospitals). The results of the present study may have implications for

development of a CDS system based on our method in real clinical settings. In future studies,

the efficacy of the system should be evaluated for its utility in alerting medical staff and subse-

quent benefits in treatment, in comparison with the current rule-based systems.

Conclusions

In the present study, we revealed that OCSVM models, constructed using three features: age,

weight, and dose, detected the majority of clinical overdose and underdose prescriptions.

Moreover, the models demonstrated high performance in the synthetic data analysis. These

results suggest that our model is a useful CDS system for detecting prescription errors related

to overdoses and underdoses. Further prospective studies are needed to assess the performance

of the OCSVM model in real-world settings.
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