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Abstract

Most cancers contain a subpopulation of highly tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating
cells (TICs). Targeting TICs may be essential to achieve cure, because of their self-renewal and tumorigenic properties as
well as their resistance to conventional therapies. Despite significant advances in TIC biology, their isolation
and identification remain largely disputed and incompletely established. In this review, we discuss the latest
developments in isolation and culturing approaches of TICs, with focus on colorectal cancer (CRC). We feature
recent findings on TIC-relevant signaling pathways and the metabolic identity of TICs, as well as their current
clinical implications. Lastly, we highlight the influence of inter- and intra-tumoral heterogeneity on TIC
function and targeting approaches.
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Background
Colorectal cancer (CRC) is one of the most frequently
diagnosed cancer types for both men and women and is
the third most common cause of cancer mortality in
Western countries [1]. Specific alterations in oncogenes
and tumor suppressors are associated with the stepwise
progression from normal colon mucosa to carcinoma,
resulting in a growth and survival advantage of the
affected cells. Notably, loss of function mutations in the
adenomatous polyposis coli (APC) tumor suppressor
gene on chromosome 5q21 are known to be among the
earliest genetic events to take place in CRC [2]. In fact,
loss of APC leads to a rapid Wnt deregulation and
acquisition of a progenitor cell phenotype in the colonic
crypt [3]. Although considerable advances have been
made on the molecular mechanisms underlying CRC, it
is still a matter of debate which mechanisms determine
CRC initiation. The discovery of stem cells in colonic
crypts supports the hypothesis that normal stem cells
might accumulate tumorigenic mutations promoting

malignant transformation, especially due to their long life-
span and their capacity to self-renew. In three break-
through studies that represent a paradigm shift in cancer
biology, cell lineage tracing within growing tumors revealed
the presence of a tumor-driving subpopulation of cells in
glioblastoma [4], squamous skin tumors [5] and intestinal
adenomas [6]. In particular, Schepers and colleagues
showed that cells positive for leucine-rich repeat-containing
G-protein coupled receptor 5 (Lgr5) - a known Wnt target
and marker for normal intestinal stem cells [7] - not only
contribute to the initial stages of adenoma growth, but also
display multipotent stem cell traits as they are able to gen-
erate all of the other cell types present in colon adenomas
[6]. By tracing the contribution of individual cancer cells to
tumor formation, these three studies provide direct experi-
mental evidence supporting the hypothesis that some tu-
mors contain a small population of cells displaying self-
renewal and tumor initiation power, along a vast majority
of cells that are non-tumorigenic. This subset of cells is re-
ferred to as tumor-initiating cells (TICs), also known as
cancer stem cells (CSCs) or CSC-like cells, and can give rise
to a heterogeneous population of cells similar in compos-
ition to the tumor of origin [8]. Many groups use the term
"CSC" that reflects the existence of a cell at the apex of a
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differentiation hierarchy within tumors. We prefer to apply
the term "TIC", which represents a functional definition as
it refers to the capacity of these cancer cells to induce
tumor formation in xenotransplantation studies. The clin-
ical relevance of TICs is further corroborated by recent
molecular classification studies, demonstrating that the ex-
pression of stem cell and mesenchymal genes denotes a
CRC subtype associated with very poor prognosis [9–14].
Despite considerable advances in TIC biology, the

isolation and identification of TICs still remain
incompletely established. While some studies focus on
an antigenic approach, others rely more on functional
characteristics that define TICs. In this review, we will
comment on the latest developments regarding isola-
tion of colon TICs with focus on tumorspheres, also
called spheroid culture (SC) models, derived from pa-
tients and cell lines. Additionally, we will discuss dif-
ferent culturing conditions (i.e. serum-containing
conditions leading to adherent cultures and serum-
deprived conditions favoring growth as spheroids, as
well as medium switch experiments) in regard to the
maintenance of TIC traits and possible TIC enrich-
ment. Next, key signaling pathways and metabolic mecha-
nisms that are involved in TIC regulation as well as their
current clinical implications will be considered. Finally, we
will highlight inter- and intra-tumor heterogeneity in can-
cer and especially in the TIC compartment and speculate
how these new findings may impact the development of
new TIC-targeting strategies.

Isolation and identification of TICs
TICs were first described during the 1990’s in studies of
leukemia stem cells [15, 16]. A few years later, TICs were
also identified in solid tumors of different origins, among
which breast [17], skin [18], brain [19, 20], pancreas [21],
lung [22] and colon [23, 24]. Controversies still exist
concerning the number of TICs within tumors. Indeed, the
true frequency of TICs in most human tumors might be
underrated due to obstacles encountered in the different
techniques, one of the hurdles being the genetic back-
ground of the immune-deficient mouse strain used for
xenotransplantation assays [25]. Nevertheless, TICs incline
to be relatively infrequent in solid tumors [26, 27], although
several exceptions exist, such as melanomas in which TICs
reach up to 25% of the tumor population [25]. Within the
TIC sub-compartment, the number of tumorigenic cells
substantially varies between patients of the same tumor
type [27]. Noteworthy, extensive stromal-niche interactions
are critical for TIC survival and growth [28]. Thus, to
accurately determine TIC frequency in human tumors,
more "humanized" models replicating the tumor’s natural
microenvironment - i.e. including a stromal and immune
cell compartment - should be employed in the future [29].

TICs are defined by their self-renewal, differentiation
and tumor-initiation capacities. They have been
described to propagate tumors that are capable of recap-
itulating the heterogeneity of primary tumors [23, 24].
Different approaches are used to isolate TICs and while
some of them are based on the expression pattern of cell
surface markers, others rely more on the functional
aspects of TICs. Most importantly, after isolation of the
potential TIC-containing population, TICs are ultimately
functionally identified based on their self-renewal poten-
tial, which is one of the main properties characterizing
these cells. These assays have been extensively described
[30, 31] and are not the focus of this review. Briefly, the
self-renewal capacity is assessed in vitro by performing
sphere formation assays under clonal conditions (includ-
ing single-cell assays) and in vivo by transplantation
experiments in mice. In the latter setting, limiting dilu-
tion assays (LDA) with serial tumor transplantation and
subsequent tumor formation in secondary recipients are
considered the gold standard in TIC research as they
assess the most important biological trait of TICs, i.e. in
vivo self-renewal.

The antigenic approach
The antigenic approach takes advantage of a variety of
cell surface markers, such as prominin-1 (commonly
known as CD133), CD44, CD24, epithelial-specific anti-
gen (EpCAM/ESA), CD166, CD29 and CD49f, or a com-
bination of them (Tables 1 and 2) [7, 23, 24, 32–39].
Tables 1 and 2 summarize surface markers, either alone
or in combination, used to identify colon TICs and illus-
trate their relevance based on the observed self-renewal
capacity of TICs upon sorting for the marker of interest.
Examples for markers that gave controversial results are
CD133 and Lgr5 (Table 1). Over the last years, many
reports have challenged the view of CD133 being a
universal TIC marker [40–43]. Importantly, several in
vivo studies show that CD133+ and CD133− cells form
tumors with similar efficiency [40, 43, 44]. Over the last
years, Lgr5 has been revealed as a marker for normal
and cancerous intestinal stem cells [7, 45]. Notwith-
standing, the role of Lgr5 in CRC remains indistinct;
while some studies suggest that intestinal tumors arise
from Lgr5-positive cells [6, 45, 46], Walker and
colleagues showed that suppression of Lgr5 expression
enhances tumorigenesis [47].
Notably, culturing conditions including cell density

and passage number as well as extrinsic factors are sug-
gested to largely influence surface marker expression
([48–51] and cf. next paragraph). Furthermore, there is a
large inter-patient variability in the expression of surface
markers, with no or small expression to high positivity
for the same marker across patients [41, 42, 52–54]. This
limited overlap between the phenotype of TICs isolated
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from different patients of the same tumor type most
probably reflects the presence of heterogeneous and
biologically distinct TIC pools, which might render the
identification of TICs difficult and biased. Additionally,
as TICs represent a highly dynamic population, it will be
important to better understand the influence of the
microenvironment on the antigenic profile of TICs. This
inter- and intra-tumor heterogeneity as well as its
impact on TIC marker expression will further be
discussed in the last paragraph of this review.
Several cell surface markers including CD44, CD166

and EpCAM, are players in cell adhesion and attach-
ment, and thus have been thought to favor the survival
of tumor cells within the microenvironment [32]. As
these markers are not exclusively expressed by TICs
[55], but also by other cells, among which stromal cells,
their use to isolate TICs from tumor tissue is precarious.
Very recently, CD166 was shown to be expressed in
stromal progenitor cells within the hematopoietic niche
[56]. Furthermore, CD44, which is described to mark

colon TICs, includes multiple splice variants. Original
TIC isolations were performed by using pan-CD44 anti-
bodies [32], but recently it was shown that full length
CD44 is more widely expressed, and that TICs are better
identified with the CD44v6 splice variant [57]. Overall,
the use of surface markers in the aim to identify and
isolate colon TICs remains delicate.

The functional approaches
Label-retaining methods
There are several approaches to identify TICs based on
their functional characteristics. TICs are thought to be
relatively quiescent, displaying slow proliferative proper-
ties, and giving rise to two daughter cells by asymmetric
cell division [58]. Thus, TICs can be isolated based on
their quiescent traits through the use of lipophilic dyes,
such as PKH26 or PKH6. While a cell undergoing a slow
division effectively retains the dye, a fast dividing cell
rapidly loses or dilutes it from the membrane. TICs re-
tain the dyes for longer periods than the differentiated

Table 1 Colon TIC markers

assessment
of self-renewal

cellular system

Marker Known function References In vitro In vivo cell lines patients

CD133 Regulation of cell membrane topology [O’Brien et al., 2007] 1
[Ricci-Vitiani et al., 2007] 2
[Todaro et al., 2007] 3
[Vermeulen et al., 2008] 4
[Haraguchi et al., 2008] 5
[Ieta et al., 2008] 6
[Wang et al., 2012] 7
[Shmelkov et al., 2008] 8
[Dittfeld et al., 2009] 9
[Fan et al., 2014] 10
[Dubash et al., 2016] 11
[Qureshi-Baig et al., 2016] 12

1 ✓
2 ✓
3✓
4 ✓
6 ✓
7 ✓
8 −
9 −
10 −
11 −
12 −

1 ✓
2 ✓
3 ✓
4 ✓
5 ✓
6 ✓
8 −
9 −
10 −
11 −

6
7
9
10

3
1
2
4
5
8
10
11
12

LGR5 Cell adhesion, intestinal stem cell marker [Kemper et al., 2012] 1
[Hirsch et al., 2014] 2
[Walker et al., 2011] 3

1 ✓
2 ✓ *
3 – *

1 ✓
2 ✓

1
2
3

1

CD44 Cell adhesion and migration, cell-cell interactions,
cell signaling, leukocyte attachment and rolling

[Dalerba et al., 2007] 1
[Vermeulen et al., 2008] 2
[Du et al., 2008] 3
[Haraguchi et al., 2008] 4
[Chu et al., 2009] 5
[Yeung et al., 2010] 6
[Chen et al., 2011] 7
[Wang et al., 2012] 8
[Ohata et al., 2012] 9

2✓
3✓
5✓
6✓
7✓
8✓
9✓

1✓
3✓
4✓
5✓
6✓
7✓
9✓

7
8

1
2
3
4
5
6
9

CD44v6 CD44 variant isoform, cell migration and invasion [Todaro et al., 2014] 1 1✓ 1

CD24 B cell proliferation and maturation [Vermeulen et al., 2008] 1
[Yeung et al., 2010] 2
[Ke et al., 2012] 3

1✓
2✓
3✓

2✓
3✓

2
3

1

CD166 Cell adhesion and cell-cell interactions [Dalerba et al., 2007] 1 1✓ 1

EpCAM Cell adhesion, migration, signaling [Dalerba et al., 2007] 1 1✓ 1

EphB2 Position of the different cell types in the crypts [Merlos-Suárez et al., 2011] 1 1✓ 1

✓: correlation between self-renewal capacity and expression of surface marker
−: no correlation between self-renewal capacity and expression of surface marker
*: studies based on gene silencing
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daughter cells [59, 60]. Bromodeoxyuridine (BrdU) label-
ing is based on a similar label retention approach. TICs
retain more BrdU compared to differentiated cells as it
dilutes in dividing cells [39].

Side-population assay
Another functional trait of TICs is that they display a
lower Hoechst dye staining pattern. It is known that an
increased expression of membrane proteins of the ATP-

binding cassette (ABC) family, which pump various
small molecules (such as cytotoxic drugs and dyes) out
of cells, is in part responsible for the dye efflux [61]. The
resulting fraction displaying a lower Hoechst gradient is
called side population (SP). Whereas some studies
speculate that SP cells in CRC contain an increased TIC
fraction [62, 63], others could not associate SP cells with
enriched TIC properties, such as clonogenic and multi-
potent differentiation potential [64]. Over decades, the

Table 2 Colon TIC marker combinations

assessment of self-renewal cellular system

Marker combinations References In vitro In vivo cell lines patients mouse

CD166+/CD44+ [Dalerba et al., 2007] 1 1✓ 1

EpCAMhigh/CD44+ [Dalerba et al., 2007] 1
[Kai et al., 2009] 2

2✓ 1✓
2✓

2 1

CD24high/CD29+ [Ghazvini et al., 2013] 1 1✓ 1

CD133+/CD44+ [Haraguchi et al., 2008] 1
[Chen et al., 2011] 2

1✓ 1✓
2✓

1
2

1

CD133+/CD49f+
[Haraguchi et al., 2013] 1 1✓ 1

CD44+/CD49f+

CD24+/CD44+ [Yeung et al., 2010] 1 1✓ 1✓ 1

CD44+/CD133− [Wang et al., 2012] 1 1✓ 1

CD133+/CD24+ [Vermeulen et al., 2008] 1 1✓ 1

CD133+/CD24-

[Vermeulen et al., 2008] 1
[Haraguchi et al., 2008] 2

1 −
2 −

2 − 2 1
2

CD133+/CD44-

CD133+/CD44+

CD133+/CD166-

CD133+/CD166+

CD166+/CD44+

[Muraro et al., 2012] 1 1 − 1 − 1CD24+/CD44+

CD44+/CD166+/EpCAMlow

[Collura et al., 2013] 1 1 − 1CD44+/CD166+/EpCAMhigh

CD133+/CD26+/CD44+
CD133+/CD26+/CD44-

[Pang et al., 2010] 1

1✓ 1✓ 1

CD133+/CD26-/CD44+

CD133+/CD26-/CD44-

CD133-/CD26+/CD44+
CD133-/CD26+/CD44-

CD133-/CD26-/CD44+

CD133-/CD26-/CD44- 1 − 1 − 1

✓: correlation between self-renewal and expression of surface markers
−: no correlation between self-renewal and expression of surface markers
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use of SP assays to identify TICs has come along with
questionable interpretations (reviewed in [65]). The SP
phenotype is not exclusive to stem cells and has also
been described in various differentiated cells in adult
tissue [66–68]. Thus, caution is required while applying
this assay for the identification of TICs. Especially,
tumor and stromal cell compartments need to be
discriminated and diploid versus aneuploid cell popula-
tions should be considered for the analysis [65].

Isolation of TICs based on autofluorescence
Miranda-Lorenzo and colleagues recently presented a
novel strategy for the isolation and identification of TICs
across different human tumor types, including CRC [53].
Their approach was based on cells with an autofluores-
cent subcellular compartment that displayed essential
TIC-specific properties, such as self-renewal, long term
tumorigenicity and invasiveness in vivo. The distinct
autofluorescent population of self-renewing and highly
tumorigenic TICs harbored an inherent ability to con-
centrate the fluorescent vitamin riboflavin in intracellu-
lar vesicles that were coated with ATP binding cassette
subfamily G member 2 (ABCG2), an ATP-dependent
transporter. Even if this small subset of autofluorescent
cells display TIC properties, a functional role for the
accumulation of riboflavin in autofluorescent vesicles
could not be established in regard to TIC biology [53].
This assay might represent a new approach to identify
TICs; however, it needs to be validated by other TIC
studies. Noteworthy, stromal cells such as macrophages
display high autofluorescence [69], which may limit the
use of this assay.

Alternative approaches based on the metabolic identity of TICs
An emerging strategy to identify TICs is based on meta-
bolic and bioenergetic differences between TICs and
their non-tumorigenic counterparts. Indeed, emerging
evidence indicates that cellular metabolism and stemness
are strongly intertwined processes [70]. Embryonic and
adult stem cells have a reduced number of mitochondria
and display a decreased oxygen consumption rate, thereby
displaying a rather glycolytic than oxidative metabolite
and gene expression signature [71, 72]. During differenti-
ation, stem cells undergo a "metabolic shift" from active
glycolysis to enhanced aerobic mitochondrial respiration
[73]. As TICs and stem cells are known to share common
properties (i.e. their self-renewal and differentiation abil-
ities), it seems reasonable to assume that TICs are also
subject to metabolic reprogramming. Although pancreatic
[74] and glioma [75] TICs were found to mainly rely on
mitochondrial respiration, many studies on other cancer
types, including osteosarcoma [76], melanoma [77], as
well as lung [78], breast [79], and liver [80] cancer agree
that TICs preferentially display a glycolytic phenotype and

reduced mitochondrial activity. Opposing results were
found for CRC and hence the metabolic status of colon
TICs is still under debate [81]. While Song and colleagues
state that high activity of mitochondrial metabolism is
required for growth of colon TICs [82], Schell et al. stress
that TICs actively suppress oxidative phosphorylation by
inhibiting pyruvate import [83].
These conflicting findings may arise from differences

in TIC isolation and cultivation techniques; microenvi-
ronmental stimuli, such as nutrient starvation, oxidative
stress or hypoxia, influence the metabolic state of TICs
[84, 85]. Tumor hypoxia has been shown to further po-
tentiate the glycolytic phenotype of TICs. Besides inducing
the expression of glycolytic genes, hypoxia-inducible factor
1α (HIF-1α), is known to actively suppress mitochondrial
respiration by promoting pyruvate dehydrogenase kinase 1
(PDK1), ultimately resulting in repressed pyruvate
dehydrogenase (PDH) and reduced TCA cycle activity [86].
Along similar lines, we recently showed that hypoxic
culture conditions result in microRNA-210-induced meta-
bolic reprogramming of colon TICs from mitochondrial
respiration to increased lactate production. This glycolytic
phenotype correlated with enhanced tumorigenicity and
self-renewal capacity of colon TICs [85]. Taken together,
controversy remains concerning the precise bioenergetic
identity of TICs. Thus, a better metabolic characterization
of tumorigenic and non-tumorigenic cancer cells may lead
to more reliable TIC-specific identification methods in the
future.
Another approach relies on the difference in the alde-

hyde metabolism that exists between TIC and cancer
cells. Aldehyde dehydrogenases (ALDHs) are a family of
cytosolic isoenzymes that are responsible for oxidizing
intracellular aldehydes, leading to the oxidation of
retinol to retinoic acid and protecting the organism from
damage induced by active aldehydes [87]. In particular
the assessment of aldehyde dehydrogenase 1 (ALDH1)
activity has been widely used to identify TICs in various
cancer types [87]. Although ALDH1 activity assays show
controversial results in the context of pancreatic TICs
[53], ALDH1+ CRC cells are reported to display
increased TIC traits, especially increased self-renewal
capacity and tumorigenicity, compared to the ALDH1−

fraction [36, 41].

Spheroid culture systems
TICs are able to self-renew and display anchorage-
independent growth in form of spheroids, a trait that
can be used to enrich for TICs in various cancer types
[18, 19, 21, 24, 42, 52, 88–91]. Most often, 3D in vitro
SC systems that use low-adherent conditions include the
use of serum-free medium supplemented with specific
growth factors to allow for TIC enrichment. These
models are often referred to as tumorspheres or spheroid
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culture (SC) systems, in which differentiated and non-
malignant cells undergo anoikis due to the lack of adher-
ence [92]. Importantly, SC conditions allow to efficiently
eliminate non-malignant cell types, such as fibroblasts, that
are present in the freshly resected primary tumor tissue
and that may outcompete and eventually outgrow cancer
cells under serum-containing conditions [23, 24, 42, 43].
This assay has however some disadvantages as it imposes
the use of specific culture conditions with consequences
on the cancer cell phenotype. Indeed, it is not clear
whether the applied conditions select for TICs that origin-
ally exist or merely drive cancer cells to adapt a cancer
stem cell phenotype. In addition, controversies still exist on
whether SCs comprise a homogenous population enriched
in undifferentiated cells [89, 93] or rather a large range of
morphologically different entities, which show inter- and
intra-sphere molecular heterogeneity, including variable
expression of markers [91, 94]. These questions might
soon be addressed by applying modern technologies such
as imaging flow cytometry combined with single cell
sequencing. Albeit some exceptions exist [95], most studies
report that cells derived from SCs display a high self-
renewal capacity in vitro, which correlates with a
pronounced tumor-initiating capacity upon injection of
low cell doses into immune-depressed mice [24, 42, 96].
Additionally, long-term passaging of cells under spheroid
culture conditions further allows for the enrichment in
colon TICs over time [42, 91]. Furthermore, SCs have been
shown to faithfully preserve key characteristics of the
original patient tumors, including gene expression profiles,
tumor heterogeneity and tumor morphology, as well as
relevant mutations [24, 42, 54, 88, 90, 91].

Chemoresistance
TICs have been described to display extensive chemore-
sistance characteristics. In fact, TICs are able to evade
DNA damage by reducing the production of ROS and by
enhancing the activity of DNA checkpoint kinases [97, 98].
Furthermore, TICs appear to express high levels of ATP-
binding cassette (ABC) transporters, potentially excreting
antitumor drugs, and thus contributing to treatment resist-
ance [99–102]. These latter properties represent the under-
lying principle of the SP assay that has been described
earlier. Additionally, functional chemoresistance capacity
should be considered as a supplementary feature displayed
by TICs, rather than a stringent functional property and
thus might not be used as a method for TIC isolation.

Organoids
Over the last years, intestinal epithelial organoid cultures
have emerged as a new system to expand and study
intestinal crypts [103]. Organoids allow intestinal stem
cells to maintain both their self-renewal capacity and
differentiation hierarchy, similar to how it is observed in

the adult intestine in vivo. The use of patient-derived
organoids from CRC tumors and tumor-associated
normal tissue, constituting an ideal matched control,
further enables the testing of a range of therapeutic
compounds in a patient-relevant model. Finally, long-
term organoid cultures of primary CRC cells might
prove a suitable system to study colon TIC biology in a
more physiologically relevant setting and thus their use
may lead to advancement in CRC treatment.

The influence of different culture conditions on
TIC traits
It is still not clear to which extent different culture con-
ditions (i.e. serum-deprived conditions favoring growth
as spheroids and serum-containing conditions leading to
adherent cultures) influence TIC features. While some
studies in CRC could show that self-renewal capacity is
increased in SCs compared to adherent counterpart
cultures [24, 90], others did observe similar functional
properties of TICs between both culturing conditions
[41, 104–107]. Calvet and colleagues, suggest that SCs
enrich for TICs in a cell line-dependent manner [106].
Colon spheres derived from the Caco-2 cell line lose sev-
eral TIC properties compared to their parental adherent
counterpart [107]. Similarly, SCs derived from the CRC
cell line HCT116, were described to follow a more
stochastic than hierarchal organization [108]. These
conflicting observations may be explained by the
dynamic regulation of TIC properties. Noteworthy, TIC
features, including marker expression, are largely influ-
enced by extrinsic factors such as culturing conditions
[48–51]. It may be assumed that the loss of expression
of a given marker does not alter the tumorigenic poten-
tial of TICs. Alternatively, dedifferentiation events could
induce the formation of a specific TIC subpopulation
with an antigenic profile that is similar to non-
tumorigenic cells whereas the functional phenotype is
retained [109]. In yet another scenario, acquired muta-
tions and clonal evolution of TICs might lead to the
generation of specific sub-clones. These subpopulations
may show reduced tumorigenic potential while main-
taining TIC-like surface marker expression. Modern
technologies, such as single cell sequencing or cell
lineage tracing, are currently being used to further inves-
tigate these issues.
To further interrogate the influence of different cultur-

ing conditions on TIC features, we have compared cells
derived from traditional CRC cell lines or tumor biop-
sies, cultured either as SCs (i.e. serum-deprived culture
conditions with growth factors) or as regular adherent
cultures (i.e. serum-containing culture conditions),
respectively [42]. In comparison to adherent counterpart
cultures, SC-derived cells display a decreased expression
of the differentiation marker CK20 and an increased
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expression of stemness proteins, such as sex determining
region Y-box 2 (Sox2), octamer-binding transcription
factor 4 (Oct4), Nanog as well as Lgr5, a property which
is common to both stem cells and their tumorigenic
counterparts [110]. By seeding single cells per well and
monitoring sphere formation over time, we demon-
strated that SCs derived from traditional CRC cell lines
and tumor tissue show high self-renewal capacity.
Nevertheless, even after long-term culture in TIC-
enriching conditions, SCs that are transferred to differ-
entiating culture conditions (i.e. serum-containing
conditions) still have the capacity to adhere and mor-
phologically resemble differentiated cell populations or
the parental cell lines. Likewise, when long-term SC-
derived adherent differentiated cultures are reversed to
TIC conditions (i.e. serum-deprived conditions), they are
able to form spheres to a similar extent as the initial SCs
[42]. It could further be observed that spheroids and the
spheroid-derived adherent differentiated cultures display
similar self-renewal capacity and equally form tumors in
immune-deficient mice [42, 43]. Additionally, clonal ana-
lysis of individual lentivirally marked clones in spheroid
cultures and adherent counterparts revealed no systematic
differences in contributing clone numbers [43]. These
findings suggest that self-renewal and tumor-initiation
capacity of TICs might not be restricted to phenotypically
immature spheroid cells, and furthermore underlines the
high plasticity of cancer cells that are able to reacquire
stem-cell traits even after long differentiation processes, a
feature that needs to be closely examined for the develop-
ment of TIC-specific therapies [111] (Fig. 1).
In a study by Collura and colleagues, an extensive

characterization of 25 established CRC cell lines was
performed and it was shown that SCs do not seem to
present enhanced TIC traits in regard to tumor-initiating
potential but display chemoresistance ability, compared to
adherent cultures [101]. Similarly, we demonstrated that
primary SC-derived cells display chemoresistance to 5-
fluorouracil (5-FU), compared to adherent differentiated
cells in different experimental settings [42]. It would now
be important to extend these data to an in vivo setting.
Interestingly, SCs from established cell lines were more
sensitive to chemotherapy than primary SCs derived from
patients, highlighting that primary tumorspheres maintain
pronounced chemoresistance and thus more closely
reflect patient response [42]. It may be speculated that
certain observed TIC features, such as higher chemoresis-
tance, are due to phenotypic differences that occur in the
TIC compartment over long periods of cell culture. In this
context, we have reported that original patient tumor
material and primary established cultures share a similar
mutational profile, which is also present in the respective
adherent counterparts, excluding the possibility that the
observed resistance of TICs to chemotherapeutics is due

to differences in mutations that have arisen over time or
after application of different culture conditions [42]. We
might further hypothesize that primary patient-derived
SCs harbor increased expression of ABC transporters or
Lgr5, compared to adherent cultures or to cell-line derived
SCs. Alternatively, intra-tumoral heterogeneity might be
lost in cell-line derived TIC cultures whereas primary
established cultures, used at early passages, could better
retain this clinically relevant feature.
Besides differing in means of chemoresistance, SCs

further differ from their adherent counterparts in terms
of proliferation rate. We observed that spheres derived
from differentiated cultures were bigger in size (correlat-
ing with a more proliferative phenotype), compared to
spheres from SCs. This observation might emphasize the
slow-proliferative and potentially stem-like properties of
TICs specifically in SCs compared to the adherent
counterparts [42], possibly providing SCs with a che-
moresistance advantage. Taking the new findings into
consideration, SCs seem to represent a superior model
to adherent differentiated counterparts for screening of
new CRC therapies. The superiority of the SC model is
mainly due to the resistance to chemotherapeutics,
which is especially retained in primary tumor-derived
SCs and which more closely reflects the therapeutic
response observed in patients.

TIC-targeting approaches and clinical implications
The tumor-initiating and chemoresistant features of
TICs highly encourage the development of specific TIC-
targeting treatments. Conventional cancer therapies do
not discriminate between TICs and rapidly growing can-
cer cells. Whereas temporary regression of the tumor
mass might be achieved through targeting differentiated
cancer cells, TICs can remain mostly unharmed. New
tumors may arise through the tumor-promoting effects
of TICs, thereby leading to a rapid relapse of the malig-
nancy. TIC-specific antitumor treatments might be
unable to induce rapid shrinkage of the tumor bulk, but
instead may eliminate the capacity of TICs for long-term
growth, ultimately leading to tumor growth arrest [112].
The identification of differences in metabolic regula-

tion between differentiated cancer cells and TICs has led
to the development of several new TIC-specific treat-
ment strategies, such as oxidative stress-based therapies,
nitric oxide synthase inhibition, or blockade of aerobic
glycolysis [113]. TIC self-renewal is known to be
dependent on low levels of ROS [114]. The detoxifying
enzyme ALDH1, which is often considered to be a reli-
able TIC marker, was shown to protect colon TICs
against excessive oxidative stress [36]. Accordingly,
pharmacological repression of ALDH might kill TICs by
selectively inducing ROS production in these cells.
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Consistently, Chiba et al. could show that the application
of disulfiram, a selective ALDH inhibitor, resulted in
diminished self-renewal activity and a reduced number
of liver TICs [115]. Besides, TICs were shown to display
increased nitric oxide (NO) synthesis levels [116] and
tumorigenic capacity; and growth of colon TICs could
be reduced by using specific inhibitors of inducible nitric
oxide synthase (iNOS) [117].
Another promising approach to specifically eradicate

TICs might be to target their glycolytic phenotype. The
anti-diabetic drug metformin has recently been tested in
the context of CRC [118] and strong experimental
evidence suggests that metformin, due to its interference

with glucose homeostasis, selectively eliminates osteo-
sarcoma [119], glioblastoma [120], and breast [121]
TICs. Along the same line, we observed that hypoxia
promotes the self-renewal capacity of colon TICs by
activating microRNA-210 and by repressing TCA cycle
activity [98]. Interestingly, high lactate levels originating
from enhanced glycolysis are known to exert several
pro-tumorigenic functions. Besides generating an acidic
microenvironment, which is commonly associated with
increased metastasis formation [122], hypoxia-induced
lactate is known to reduce the activity of pH-sensitive T
cells, thereby contributing to the immune evasion of
tumor cells [123]. Moreover, high lactate levels are

Fig. 1 TICs display pronounced plasticity: self-renewal as well as tumor-initiation capacities of TICs are not restricted to phenotypically immature cells.
Spheroid cultures display increased chemoresistance and expression of stemness markers, as well as reduced proliferation, compared to adherent dif-
ferentiated counterparts. However, both spheroids and adherent counterparts have comparable self-renewal capacities and can lead to similar tumor
formation when low cell numbers (10 cells per injection) are injected subcutaneously into immune-deficient mice
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thought to generate TICs with a stem cell-like gene
expression profile [80]. Importantly, we and others have
shown that targeting lactate production efficiently
represses the tumorigenic potential of TICs [78, 85],
further strengthening the position of lactate as an im-
portant oncometabolite and highlighting the therapeutic
relevance of glucose metabolism.
TICs display many features of embryonic or tissue stem

cells, and preferentially demonstrate persistent activation
of one or more highly conserved signal transduction path-
ways involved in development and tissue homeostasis
[124–126] (Table 3). By aiming at the regulation of TIC
maintenance and self-renewal processes, it might be
possible to target this rare subpopulation [8, 127]. Accord-
ingly, pathways such as Wnt/β-catenin, Notch, TGF-β,
JAK/STAT and Hedgehog, which govern TIC growth and
survival, are being addressed for therapeutic purposes
[124–127] (Table 4). Wnt ligands that are produced from
cells in the stem cell microenvironment serve as a self-
renewal signal for normal stem cells and their tumorigenic
counterparts and might therefore be interesting candi-
dates to target TIC-relevant mechanisms [126, 127]. For
instance, OMP-18R5, a monoclonal antibody currently in
clinical trial phase I, was shown to impair the self-renewal
capacity of TICs by targeting the Wnt receptor FZD7 and
to inhibit the growth of breast, pancreatic, and colon can-
cer [128]. Multiple trials involving Wnt/β-catenin inhibi-
tors combined with current therapies are in progress
(https://clinicaltrials.gov).
An alternative approach to target TICs is to induce

their differentiation. For this, bone morphogenetic pro-
tein 4 (BMP4) has been described to induce differenti-
ation and to stimulate apoptosis in colon TICs. BMP4
acts by reducing β-catenin activation through inhibition
of the PI3K/AKT pathway and activates Wnt-negative
regulators [129, 130]. Similarly, delta-like canonical
Notch ligand 4 (DLL4), which is an important

component of the Notch pathway, contributes to stem
cell self-renewal and vascular development. Notch path-
way blockade through an anti-DLL4 antibody, which is
in clinical trial phase II, has been shown to abolish re-
lapse after chemotherapy in vivo [131, 132].
Another TIC-specific strategy is addressing survival

pathways of colon TICs by inhibiting the interleukin 4
(IL-4) signal transduction pathway with an anti-IL-4
neutralizing antibody or an IL-4 receptor alpha antagon-
ist to sensitize TICs to 5-FU and oxaliplatin. This effect
was mainly achieved through a down-regulation of anti-
apoptotic proteins, like cFLIP, BCL-xL and PED [90, 133].
The hedgehog pathway plays a role in maintaining

stemness and self-renewal of TICs via the B lymphoma
Mo-MLV insertion region 1 homolog, polycomb ring
finger (BMI-1) [134], which is known to regulate the
self-renewal of TICs in CRC [135]. BMI-1 forms an es-
sential component of the polycomb regulatory complex 1
(PRC1). PRC1 has an important role in the organization
of chromatin structure, which, in turn, regulates the
expression of genes involved in stem cell behavior [136].
Inhibition of the hedgehog signaling pathway decreases
TIC stemness via BMI-1 downregulation and, at the same
time, reduces TIC chemoresistance via downregulation of
ABCG2 [134]. Furthermore, treatment of primary CRC
xenografts with a BMI-1 inhibitor was shown to result in
the loss of colon TICs with long-term and irreversible
impairment of tumor growth in mice [135].
Along the same lines, inhibitor of DNA binding (ID) 1

and 3 were shown to function together to influence the
self-renewal of colon TICs through cell-cycle restriction
driven by the cell-cycle inhibitor p21 [96]. Regulation of
p21 by ID1 and ID3 was presented as a central mechan-
ism preventing the accumulation of excess DNA damage
and subsequent functional exhaustion of TICs in CRC.
Furthermore, abolishment of ID1 and ID3 increased sen-
sitivity of these cells to chemotherapy [96].
The Signal Transducer and Activator of Transcription

3 (STAT3), a mediator activated by members of the
janus kinase (JAK) family, is known to play a role in the
regulation of TICs. STAT3 cooperates together with
NANOG and OCT4 and initiates transcription of stem-
ness genes required for modulating pluripotency [137].
The STAT3 signaling pathway is implicated in the clono-
genic and tumorigenic potential of prostate [138], colon
[139] and breast TICs [140]. ALDH+ and CD133+ colon
TICs exhibit a higher level of STAT3 phosphorylation
compared to ALDH−, CD133− or unsorted cells [139]
and targeting the STAT3 signaling pathway was recently
shown to reduce ALDH+ breast TICs [140]. In addition,
blockade of STAT3 activity leads to the inhibition of tumor
growth and tumor-initiating potential in CRC [139].
The transforming growth factor-β (TGF-β) signaling

pathway is one of the most commonly altered pathways in

Table 3 Signaling pathways implicated in TIC regulation

Signaling Pathways Property References

Wnt/β-catenin Self-renewal [111, 126, 127, 152–155]

BMI-1 Self-renewal,
stemness

[135, 156–158]

ID1/ID3 Self-renewal [96, 159]

Hedgehog Self-renewal,
stemness

[127, 134, 160–162]

Notch Self-renewal [127, 131, 132, 163–165]

JAK/STAT Self-renewal,
stemness,
tumorigenic
potential

[138–140, 166–171]

TGF-β EMT, stemness,
dual role in CRC

[10, 125, 172]
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human cancers. This pathway regulates cell proliferation,
differentiation, migration, apoptosis and reportedly stem
cell maintenance and function [141]. It is important to
mention that TGF-β has a dual role and can switch from
being a tumor suppressor to a tumor promoter, depending
on the cell type and microenvironmental signals [141].
Thus, targeting TGF-β signaling for clinical development
should be done with caution. Besides, aiming at targeting
the immune cell response has emerged as a potential
strategy to target TICs in various cancer types. This ap-
proach has been used in the context of CRC [142], acute
myeloid leukemia (AML) [143] and human bladder cancer
[144]. The resulting blockade of the immunoglobulin-like
CD47 protein rendered the subpopulation of TICs suscep-
tible to innate and adaptive immune system clearance by
restoring phagocytosis by macrophages [143, 144].

Inter- and intra-tumor heterogeneity: future
challenges for TIC-specific treatments
Recent large-scale sequencing studies have revealed dif-
ferent molecular subtypes of CRC [9–14], demonstrating
that it is not a uniform disease but a plethora of dispar-
ate tumor types and subtypes. This inter-tumoral hetero-
geneity, consisting of differences between individual
patients, presents a significant hurdle to the eradication
of cancer and led to the implementation of personalised
medicine in the clinics. Besides this interpatient variability,
intra-tumor heterogeneity denotes the coexistence of
different populations of tumor cells that diverge in their
genetic, phenotypic or behavioral characteristics within a
given primary tumor [145]. Genetic, epigenetic as well as
microenvironmental cues, which favor the growth of some

cancer cells and the attrition of others, are thought to be
the origin of such intra-tumor heterogeneity [145, 146].
Furthermore, spatial and temporal heterogeneity are com-
mon attributes in CRC and other tumor types. Thus, biop-
sies of small tumor pieces may not reflect the wide range
of alterations found in the tumor as a whole. Altogether,
inter- and intra-tumor heterogeneity is thought to largely
contribute to therapy failure and disease progression
[145]. Latest molecular biology tools, such as barcode
sequencing, single cell analysis, lineage tracing, or whole-
genome sequencing might help to face the challenge of
dissecting both inter- and intratumor heterogeneity.
Recent studies have illustrated that clonal evolution is

also occurring within the TIC population itself, with
tremendous regulatory impact on self-renewal and
tumor-initiation potential [147]. Indeed, mutational ana-
lysis of lymphoid leukemia cells demonstrated that indi-
vidual tumors contain subclones that are genetically
different but evolutionarily related [148]. Accordingly,
therapeutic targeting of TICs turns out to be more chal-
lenging than was initially anticipated, as TICs are not
static and genetically homogeneous entities. Along this
line, Dieter and colleagues have shown the existence of
three different types of TICs in primary human CRC,
among which a rare subset of cells that maintain tumor
growth in serial transplantation, one subset with limited
self-renewal capacity and finally a more latent subtype that
is only present in secondary recipients [52]. Additionally,
by using lentiviral lineage tracing in combination with in
vivo serial transplantation experiments, Kreso and col-
leagues could detect functional diversity among colon
TICs that were derived from the same subclone: while

Table 4 TIC-targeting drugs under clinical investigations. Adapted from [81, 125, 173–175]

Target molecules Therapeutics Disease Clinical trial Company

Undisclosed TIC inhibitor BB1608 CRC Entering
phase III

Boston Biomedicals, Inc

Telomerase inhibitor IMETELSTAT Broad range Phase II Geron Corporation

CD133 Dendritic cell-based vaccine ICT-121 Glioblastoma Entering
phase I

ImmunoCelllular
Therapeutics Ltd

Focal adhesion kinase
inhibitor

VS6063 Advanced solid tumors Phase I
completed

Verastem and Pfeizer

Wilms Tumor 1 Peptides from Wilms Tumor 1 (FPI-01) Leukemia and
mesothelioma

Phase II Formula
Pharmaceuticals

EphA3 Human monoclonal antibody (KB004) binds
EphA3

Leukemia Phase I KaloBios
Pharmaceuticals, Inc.

Notch pathway Anti-DLL4 (demcizumab) (OMP-21 M18) Solid tumors Phase II OncoMed

Anti-Notch2/3 (OPM-59R5) Solid tumors Phase I

Wnt pathway Anti-Fzd7 (OMP-18R5, vantictumab, binds 5
Frizzled receptors)

Solid tumors Phase I

Truncated Frizzled 8-Fc fusion protein
(OMP-54 F28)

Advanced solid tumors Phase I

Undisclosed cancer stem
cell antigen

Peptides vaccine (SL401 and SL701) Advanced leukemia and
advanced brain cancer

Phase I/II
completed

Stemline Therapeutics
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some cells displayed long-term self-renewal potential and
were detected in every transplant, others were less persist-
ent, losing their proliferative capacity over time [149].
Most intriguing was probably the existence of a dormant
subclonal species that became dominant following
chemotherapy [149]. It will now be important to link
these different functional phenotypes to a genomic
and transcriptomic profile. High throughput sequen-
cing platforms will for instance allow clinicians to
better understand patient tumors and thus elaborate
improved treatment approaches that aim exploiting
subclonal-specific alterations. In this regard the orga-
noid technology is of great interest, as recent studies
have shown that organoids 1) recapitulate the proper-
ties of the original tumor 2) are amenable to high-
throughput drug screening and most importantly 3)
allow for the implementation of personalized medi-
cine [103]. Indeed, multiple organoid cultures can be
established from single cells of individual tumor
clonal lineages present in the primary tumor [150].
Outgrowing clones may thereby be identified by applying
sequencing approaches and treated in vitro with both
standard cancer therapies and therapies tailored to the
specific genetic program [147]. In the future, this strategy
may demonstrate whether individual clones are sensitive
to given therapies and could allow clinicians to decide for
appropriate follow-up treatment regimens. Such ap-
proaches might help to identify and successfully eradicate
the totality of pertinent tumor clones, ultimately prevent-
ing disease progression and relapse.
Additionally, inter- and intra-tumor heterogeneity

arises from the high plasticity of TICs. Indeed, TIC
traits, among which the expression of TIC-specific
markers, are thought to be reversible. Flow cytometry
experiments coupled to Markov model predictions have
highlighted that different purified breast cancer cell pop-
ulations display extensive plasticity and always return to
a phenotypic proportion equilibrium over time [151]. In
addition, epigenetic changes could directly influence
marker expression [49]. Future studies that systematic-
ally address the expression of TIC markers, combined
with genomic and transcriptomic profile analysis of
single cells will help elucidating the controversies re-
garding TIC markers. Importantly, recent evidence
shows that TICs are highly influenced by the tumor
microenvironment [28]. Stromal cell-secreted factors,
such as Wnt cascade modulators and TGF-β signals
have been shown to restore the TIC phenotype in more
differentiated tumor cells [111], thereby increasing TIC
frequency [10], both in vitro and in vivo. These observa-
tions are in line with the dynamic model, which suggests
that TIC features might get restored in a subset of
cells after specific TIC eradication, contributing to
disease relapse when therapy is arrested [112]. A better

understanding of how TICs interact with their micro-
environment will thus be crucial for the successful de-
velopment of TIC-specific therapies.

Conclusion
Enormous progresses have been made over the last years
in TIC research. However, comprehensive understanding
on how to specifically isolate and target the aggressive
subset of TICs still needs to improve. Many studies have
supported spheroid cultures to be an appropriate mean
to enrich for a cell population that displays TIC charac-
teristics. Notwithstanding, xenotransplantation of cells
performed in limiting dilution conditions and subse-
quent tumor formation after serial transplantation in
multiple secondary recipients is considered the gold
standard in TIC research. Recent evidence illustrates
patient-derived spheroid cultures to be a better model to
test for CRC therapies than adherent counterparts, not
because of enhanced self-renewal potential, but princi-
pally because these cultures successfully maintain their
resistance to chemotherapeutics. Importantly, several re-
cent studies have unraveled a high plasticity of TICs, a
phenomenon that needs to be closely examined for the
development of TIC-targeted therapies. Additionally, the
metabolic identity of TICs is an emerging field of re-
search and targeting TIC metabolism seems to represent
a promising approach for the development of new TIC-
specific treatments. To conclude, the development of
strategies that exploit the unique characteristics of TICs,
without neglecting the impact of inter- and intra-tumor
heterogeneity, will hopefully result in the specific eradi-
cation of TICs, thereby eventually preventing disease
progression and recurrence. Lastly, it is important to
mention that the CSC and clonal evolution concepts are
not, as initially suggested, mutually exclusive and thus
efficient therapies will include targeting both popula-
tions, the fast-diving tumor cells as well as TICs.
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