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Abstract

Introduction: Efferocytosis is a crucial process by which apoptotic cells are cleared by phagocytes, maintaining immune
tolerance to self in the absence of inflammation. Peripheral tolerance, lost in autoimmune processes, may be restored by the
administration of autologous dendritic cells loaded with islet apoptotic cells in experimental type 1 diabetes.

Objective: To evaluate tolerogenic properties in dendritic cells induced by the clearance of apoptotic islet cells, thus
explaining the re-establishment of tolerance in a context of autoimmunity.

Methods: Bone marrow derived dendritic cells from non-obese diabetic mice, a model of autoimmune diabetes, were
generated and pulsed with islet apoptotic cells. The ability of these cells to induce autologous T cell proliferation and to
suppress mature dendritic cell function was assessed, together with cytokine production. Microarray experiments were
performed using dendritic cells to identify differentially expressed genes after efferocytosis.

Results: Molecular and functional changes in dendritic cells after the capture of apoptotic cells were observed. 1) Impaired
ability of dendritic cells to stimulate autologous T cell proliferation after the capture of apoptotic cells even after
proinflammatory stimuli, with a cytokine profile typical for immature dendritic cells. 2) Suppressive ability of mature
dendritic cell function. 3) Microarray-based gene expression profiling of dendritic cells showed differential expression of
genes involved in antigen processing and presentation after efferocytosis. 4) Prostaglandin E2 increased production was
responsible for immunosuppressive mechanism of dendritic cells after the capture of apoptotic cells.

Conclusions: The tolerogenic behaviour of dendritic cells after islet cells efferocytosis points to a mechanism of silencing
potential autoreactive T cells in the microenvironment of autoimmunity. Our results suggest that dendritic cells may be
programmed to induce specific immune tolerance using apoptotic cells; this is a viable strategy for a variety of autoimmune
diseases.
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Introduction

The removal of apoptotic cells -i.e. efferocytosis- is crucial in the

maintenance of immune tolerance to self. Under physiological

conditions, signals from apoptotic cells direct the activation of

antigen presenting cells toward a deactivated phenotype [1,2]. The

uptake of apoptotic cells by dendritic cells (DCs), the most potent

professional antigen presenting cells for naı̈ve T cells, avoids its

maturation resulting in the induction of specific tolerance rather

than autoimmunity [3]. However the mechanisms by which

efferocytosis induces selective immunosuppression are not fully

understood. Deregulated apoptosis or impaired clearance of dying

cells favours inflammation and DCs maturation, contributing to

chronic inflammation and autoimmune diseases [4,5].

In a previous work, we demonstrated that immunotherapy with

DC loaded with islet apoptotic cells prevented experimental type 1

diabetes (T1D) in non-obese diabetic mice (NOD). Peripheral

tolerance to b-cells, lost in autoimmune T1D [6], may be restored
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through tolerogenic DCs [7]. In fact, this experimental model

shows a deficiency in the clearance of apoptotic cells, predisposing

them to autoimmunity [8]. When apoptosis of b-cells is

experimentally reduced in NOD mice, diabetes is prevented [9],

thus indicating that the ratio apoptotic cells/removal is crucial for

the maintenance of homeostasis.

Several studies have demonstrated the feasibility of using DCs in

clinical immunotherapy [10,11]. Tolerogenic DCs may be used, as

well as blood cells or inert particles, as carriers of autoantigens

[12]. This study aims to describe the functional and molecular

changes that occur in DCs after islet cell efferocytosis, and

demonstrates that tolerogenic DCs acquire suppressive ability

which is mediated, at least in part, by an increase in the

production of prostaglandin E2 (PGE2).

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the Generalitat de Catalunya, Catalan

Government. The protocol was approved by the Committee on

the Ethics of Animal Experiments of the Germans Trias i Pujol

Research Institute (Permit DAAM 5157).

Mice
Wild-type NOD mice were obtained from The Jackson

Laboratory (Bar Harbor, ME, USA) and kept under specific

pathogen-free conditions. Only 10- to 14-wk old females were

used.

Cell Lines and Induction of Apoptosis
The NIT-1 cell line, derived from an insulinoma from NOD/Lt

mice [13], was chosen because of its expression of b-cell-specific
autoantigens (American Type Culture Collection, Manassas, VA).

The culture medium used was RPMI-1640 media with 10% FBS

(Gibco, Invitrogen, Carlsbad, CA), 100 U/ml penicillin (Normon

SA, Madrid, Spain), 100 mg/ml streptomycin (Laboratorio Reig

Jofre, Sant Joan Despi, Spain), 2 mmol/l glutamine (Sigma, St.

Louis, MO), 1 mmol/l sodium pyruvate (Gibco), and 25 mmol/l

b-mercaptoethanol (Sigma). Apoptosis was induced by UV

irradiation (10 mJ/m2) for 1 hour (FACSCanto II, BD Bioscienc-

es, San Jose, CA) and confirmed with annexin V-PE and 7-amino-

actinomycin D labelling (7aad) (BD Pharmingen, San Diego, CA).

Dendritic Cell Generation and Efferocytosis
DCs were generated in vitro from bone marrow progenitors of

NOD mice in culture medium containing GM-CSF (1000 U/ml;

Prospec, Rehovot, Israel) as previously reported by our group [7].

The DC purity of the culture was evaluated by CD11c-PECy7

staining (BD Pharmingen). The viability was assessed by annexin

V and 7aad staining, and cells were counted by flow cytometry

(Perfect Count Microspheres, Cytognos, Salamanca, Spain).

Efferocytosis was performed by co-culturing DCs with apoptotic

NIT-1 pre-labelled with CFSE (Molecular Probes, Invitrogen,

Carlsbad, CA) at a 1:3 ratio for 2 hours. The DCs that captured

NIT-1 apoptotic cells (CD11c and CFSE positive cells) -henceforth

NITApo-DCs-, were always purified by sorting (FACSAria II, BD

Biosciences). Control DCs were either cultured in basal conditions

to obtain immature DCs (iDCs) or stimulated with LPS (100 ng/

ml; Sigma) for 24 hours to obtain mature DCs (mDCs).

T Cell Proliferation Assays
NITApo-DCs were co-cultured with isolated splenic T lym-

phocytes to determine the ability of DCs to induce T cell

proliferation after the capture of apoptotic cells. T cells were

obtained after mechanical disruption of NOD spleen and purified

by negative selection using antibodies to CD19-PE, CD16/32-PE,

CD11c-PECy7 (BD Pharmingen), CD11b-PE (ImmunoTools

GmbH, Friesoythe, Germany), and Ly-6G(Gr-1)-eFluor660

(eBioscience, CA, USA). The non-stained cell population was

purified by sorting (FACSAria II, BD Biosciences). The purity was

assessed by CD3-V450, CD8-PerCP-Cy5.5 and CD4-APC-Cy7

(BD Pharmingen) staining, whereas the viability was assessed by

annexin V and 7aad staining. iDCs, mDCs or NITApo-DCs

(10,000 cells) with 20 mg/ml of insulin (Sigma, St Louis, MO,

USA) were co-cultured with 105 T lymphocytes (1:10 ratio). After

6 days, cells were pulsed with 1 mCi of (3H)-thymidine (Perkin

Elmer, Waltham, MA, USA) for an additional 16 h. Cells were

harvested (Harvester 96, Tomtec Inc., Hamden, CT, USA) and

analyzed using a scintillation counter (1450 Microbeta, Trilux-

Wallac, Turku, Finland). T cell proliferation was expressed as

c.p.m. In another set of experiments, purified T cells were

previously labelled with CFSE and analyzed at day 7 by flow

cytometry, as previously described [14]. As a control, T

lymphocytes were cultured in basal conditions or with mitogen

stimuli (PMA, 25 ng/ml, Sigma) and Ionomycin (IO, 250 ng/ml,

Sigma).

Stability of Tolerogenic Function of DCs after
Efferocytosis
To determine the stability of the tolerogenic function of DCs,

three maturation stimuli were used in the assays. 56105 iDCs or

NITApo-DCs were cultured for 24 h with LPS (100 ng/ml;

Sigma), Poly I:C (0.5 mg/ml; InvivoGen, San Diego, CA, USA), or

Zymosan (1 mg/ml; InvivoGen). Cells were washed and counted,

and proliferation assays were performed as described above.

Results were expressed as T cell proliferation index (T cell

proliferation of each condition divided by T cell proliferation

induced by iDCs).

Cytokine Production
The Mouse Th1/Th2/Th17 kit (CBA system; BD Biosciences)

was used to assess cytokine production of cytokines by T cells.

Culture supernatants from T cell proliferation assays were

collected after 7 days and frozen at –80uC until use. IL-2, IL-4,

IL-6, IFN-c, TNF, IL-17A, and IL-10 were measured. Data were

analyzed using CBA software. The production of TGF-b
production was determined using Human/Mouse TGF-b1
Ready-SET-Go! (eBioscience).

Assessment of Classical Regulatory T Cells
The amount of CD4+, CD25+, FoxP3+ regulatory T cells

(Tregs) was assessed after T cell proliferation experiments. Briefly,

105 purified T cells were co-cultured with autologous iDCs, mDCs

or NITApo-DCs at 10:1 ratio in the presence of insulin. After 7

days, percentages of Tregs were assessed by flow cytometry after

membrane staining (CD3-V450, CD8-PerCP-Cy5.5, CD4-APC-

Cy7; BD Pharmingen and CD25-PE; eBioscience), permeabiliza-

tion/fixation (Foxp3 Fixation/Permeabilization Concentrate and

Diluent; eBioscience) and intracellular staining (FoxP3-APC;

eBioscience).

Efferocytosis Induces Tolerogenic Dendritic Cells
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Suppression Assays
To assess whether NITApo-DCs have immunosuppressive

functions, 105 purified splenic T lymphocytes were co-cultured

with 104 autologous mDCs in the presence of iDCs or NITApo-

DCs at different ratios (1:2, 1:1, 1:0.5, 1:0.25) for 7 days with

insulin. After 6 days, the cells were pulsed with (3H)-thymidine,

harvested and counted as described above.

Transcriptome of Dendritic Cells after Islet Cells
Efferocytosis
RNA was obtained from 56105 NITApo-DCs and sorted iDCs

using RNeasy Micro (QIAGEN, Hilden, Germany). Cells from

four different mice were used in four paired experiments.

Moreover, RNA was also obtained from NIT-1 apoptotic cells.

RNA quality (2100 Bioanalyzer, Agilent Technologies Inc., Santa

Clara, CA) was optimal for microarray experiments (RNA

integrity number .7.6 in all samples). cDNA was synthesized

with 50–100 ng of total RNA using the WT expression kit

(Ambion, Applied Biosystems, CA, USA), fragmented and labelled

with the Terminal labelling kit (Affymetrix, Inc. Santa Clara, CA),

purified (GeneChipH Sample Cleanup Module, Affymetrix), and

fragmented and checked to verify the integrity. Mouse Gene 1.0

ST Arrays (28.853 genes) were hybridized and scanned by an

Affymetrix G3000 GeneArray Scanner.

Raw expression values obtained from CEL files were pre-

processed using the Robust Multiarray Averaging method [15].

These normalized values were used for all subsequent analyses.

Experimental data have been uploaded into ArrayExpress for the

European Bioinformatics Institute (EBI, www.ebi.ac.uk/aerep/

login; Username: Reviewer_E-MEXP-3374 and accession num-

ber: xC6224PP). Data were subjected to non-specific filtering to

remove low signal and low variability genes. Conservative (low)

thresholds were used to reduce possible false negative results. The

selection of differentially expressed genes was based on a linear

model analysis with empirical Bayes modification for the variance

estimates, as described [16]. This method is similar to using a ‘t-

test’ with an improved estimate of the variance. To account for the

multiple testing probability effects arising when many tests (one

per gene) are performed simultaneously, p-values were adjusted to

obtain a strong control over the false discovery rate using the

Benjamini-Hochberg method [17]. Genes with a p-value #0.002,

adjusted p-value #0.08 and fold change (FC) $1.38 were

considered upregulated, whereas genes with FC # 21.37 were

considered downregulated. The Ingenuity Pathway Analysis (IPA)

(Ingenuity Systems H) was used to identify the canonical pathways

from the IPA library that were most significant to the data sets.

Quantitative RT-PCR
Total RNA from each sample (,100 ng) was reverse tran-

scribed with a High Capacity cDNA Reverse Transcription Kit

(Applied Biosystems). cDNA was preamplified with the TaqMan

PreAmp Master Mix Kit (Applied Biosystems), for each gene-

specific target using a pool of TaqMan Gene Expression Assays as

a source of primers. This preamplification reaction generated

approximately a 1.000- to 16.000-fold increase in each gene-

specific target without inducing any bias. The resulting preampli-

fied material was diluted and used as the starting material for the

subsequent singleplex RT-PCR, performed on a LightCyclerH 480

(Roche, Mannheim, Germany). Quantitative PCR (qPCR) assays

were performed under TaqMan universal assay conditions and

using the following TaqMan Assays: Ccr7 (Mm01301785_m1),

Ccl5 (Mm01302428_m1), Cd74 (Mm00658576_m1), Cd83

(Mm00486868_m1), Il2ra (Mm01340213_m1), Tnfrsf9

(Mm00441899_m1), Ins2 (Mm00731595_gH) and Iapp

(Mm00439403_m1). The relative quantification was determined

by normalizing the expression for each gene of interest to the

housekeeping gene Gapdh (Mm99999915_g1), as described in the

22DCt method [18].

Prostaglandin E2 Quantification
Based on microarray results, we assessed the production of

Prostaglandin E2 (PGE2) by NITApo-DCs, iDCs and NIT-1

apoptotic cells as controls. With this purpose, supernatants of

different cultures were collected after 24 hours of culture and

frozen at –80uC until use. The assessment of PGE2 was performed

by ELISA (PGE2 EIA Kit-Monoclonal; Cayman Chemicals, Ann

Arbor, MI). Limit of detection: 80% B/B0:15 pg/ml. Sensitivity:

50% B/B0:50 pg/ml. Results were expressed as an index (pg

PGE2/10
6 cells). In order to validate the results, gene expression

level was assessed by qRT-PCR using the following TaqMan

Assays: Ptgs1 (Mm00477214_m1), Ptgs2 (Mm00478374-m1),

Alox15 (Mm00507789_m1) and Ltc4s (Mm00521864_m1) as

described above.

Role of PGE2 in Suppression Assays
To confirm the role of PGE2 in suppressive function of

NITApo-DCs (see above, Suppression Assays), T cell proliferation

experiments were performed using a specific-COX2 inhibitor (NS-

398, Sigma) that inhibits PGE2 production. NS-398 was added to

co- suppression assays at 10 mM. T cell proliferation was measured

using (3H)-thymidine and expressed as c.p.m. as described above.

Moreover, to determine if the mechanism depends on cell-cell

contact, supernatants from NITApo-DCs cultures, in which PGE2

concentration was previously measured by ELISA (PGE2 EIA Kit-

Monoclonal; Cayman Chemicals), were added to suppression

assays instead of NITApo cells in a final concentration of 50 and

250 pg/ml.

Statistical Analysis
Statistics was performed using the Prism 5.0 software (Graph-

Pad software Inc., San Diego, CA). For paired data, a non-

parametric Wilcoxon test was performed. Otherwise, Mann

Whitney test was used. A p-value ,0.05 was considered

significant.

Results

Impairment of DCs to Stimulate Autologous T cell
Proliferation after the Capture of Apoptotic Cells Even
after Proinflammatory Stimuli
A key feature of tolerogenic DCs is their low capacity for

priming T cells. Autologous T cell proliferation assays were

performed to assess the ability of efferocytosis to generate

tolerogenic DCs. DCs generated from bone marrow progenitors

were .80% pure, based on staining for the DC marker CD11c,

and viability was always .90%. After purification by sorting,

NITApo-DCs were .99% pure, and viability was .86%. T cell

purity and viability were always over 90% and 95% respectively

(data not shown). We observed that the capture of apoptotic cells

by DCs significantly impairs T cell proliferation when compared

with immature DCs (Figure 1A). After LPS stimulus, NITApo-

DCs induce a T cell proliferation percentage similar to that of

non-stimulated NITApo-DCs (Figure 1A), and statistically differ-

ent to T cell proliferation induced by mDCs previously activated

with LPS. We used (3H)-thymidine to validate these results and to

determine the effect of two additional proinflammatory stimuli -

Efferocytosis Induces Tolerogenic Dendritic Cells
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Poly I:C and Zymosan- to simulate both viral infection and

inflammation, respectively (Figure 1B). The results indicate that

the proliferation of T cells induced by NITApo-DCs does not

increase, not even after the effect of these proinflammatory stimuli.

Cytokine Profile after Efferocytosis is Similar to iDCs, and
Stable after LPS Stimulus
Cytometric Bead Array (CBA) analysis showed that NITApo-

DCs display a cytokine profile (IFN-c, IL-17A, IL-10, IL-6 and

Figure 1. Impaired ability of DCs to stimulate autologous T cell proliferation after the capture of apoptotic cells, even after
proinflammatory stimuli and changes cytokine profile. A) Top: Autologous proliferation of T cells (% proliferation using CFSE) after
stimulation induced by immature DCs (iDCs, white circles) and by DCs loaded with NIT-1 apoptotic cells (NITApo-DCs, black circles) with insulin
(20 mg/ml) at a ratio of 1:10 for 7 days. iDCs and NITApo-DCs were previously activated with inflammatory stimulus LPS (100 ng/ml, squares) during
24 h. Lines show the mean of six independent experiments for each condition. Bottom: A representative flow cytometry histogram is shown from six
experiments performed. B) Autologous T cell proliferation (c.p.m. for 3H thymidine assay) induced by iDCs and mDCs (white circles and squares) and
NITApo-DCs (black circles and squares) with insulin (20 mg/ml) at a ratio of 1:10 for 7 days. iDCs and NITApo-DCs were previously activated with
proinflammatory stimuli LPS (100 ng/ml), Poly I:C (P(I:C), 0.5 mg/ml) and Zymosan (Zy, 1 mg/ml) during 24 h. Lines show the mean of three
independent experiments represented as T cell proliferation index (T cell proliferation of each condition divided by T cell proliferation induced by
iDCs, mean). C) Cytokine production in T cell proliferation experiments. Levels of IL-17A, IL-10, IFN-c, TNF and IL-6 were measured in supernatants
from autologous T cell proliferation experiments induced by iDCs and mDCs (white bars) or by NITApo-DCs (black bars) in basal conditions or in the
presence of LPS for 24 hours. Results are expressed as mean+SEM from four independent. Double-sided Wilcoxon test was used for the evaluation of
statistical significance (* P,0.05). ,d means values below the standard.
doi:10.1371/journal.pone.0063296.g001
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TNF) similar to iDCs (Figure 1C). In contrast, the production of

TGFb was higher in iDCs than in NITApo-DCs, in which TGFb
concentration was below the limit of detection. IL-2 and IL-4 were

not detected in any condition of the assay. This cytokine profile

induced by NITApo-DCs was stable after proinflammatory

stimulus (LPS). T cells co-cultured with DCs matured with LPS,

displayed a biological, although non significant, increase of IL-17,

IFN-c, TNF and IL-6. As expected, the production of TGFb was

inhibited after LPS stimulation in mDCs.

CD4+ CD25+ FoxP3+ Classical Regulatory T Cells Subset
is not Increased after DC Efferocytosis
In vitro proliferation assays demonstrated that T cell hypore-

sponsiveness induced by NITApo-DCs was not due to an increase

in CD4+ CD25+ FoxP3+ regulatory T cells. As shown in Figure 2,

the percentage of proliferating classical regulatory T cells induced

by NITApo-DCs was not higher than those induced by iDCs or

mDCs.

Efferocytosis Promotes Suppressive Effects in Dendritic
Cells
The suppressive effects of NITApo-DC on the capacity of DCs

to induce T cell proliferation after efferocytosis were determined.

The percentage of proliferating T cells stimulated with mDCs was

not affected by the presence of iDCs at different ratios (from 1:2 to

1:0.25). In contrast, when NITApo-DCs were added to T cells

cultured with mDC, we observed a reduction in T cell

proliferation (Figure 3) in a dose-dependent manner up to

79.6% reduction at a ratio of 1:2, when compared to T cell

proliferation induced by mDCs (p,0.05). In this condition, the

effect depended on the dose of NITApo-DCs, showing significant

differences at 1:2 and 1:1 ratios.

Gene Expression Profile of DCs after Efferocytosis
Microarray analysis was performed with sorted NITApo-DCs

and iDCs. Bioinformatic analysis was performed, taking into

account genes that showed a p value ,0.002, adjusted p value

,0.083. 278 genes out of the 28,853 mouse genes represented in

the gene chip were differentially expressed in NITApo-DCs when

compared to iDCs. In addition, 177 (64%) out of these 278 genes

were downregulated, and the remaining 101 (36%) were

upregulated.

We analyzed several categories and molecules related to

immune tolerance to diabetogenic autoantigens (Table 1). Differ-

entially expressed genes from the immune system were mainly

downregulated and involved in antigen processing, presentation

and coestimulation (Table S1). We found a downregulation in

Figure 2. CD4+ CD25+ FoxP3+ classical regulatory T cells subset in not increased by DCs after efferocytosis. Top: Percentage of
proliferating CFSElow, CD3+, CD4+,CD25+, FoxP3+ regulatory T cells in autologous T cell proliferation assays with immature DCs (iDCs, white circles),
mature DCs (mDCs, white squares) and DCs loaded with apoptotic cells (NITApo-DCs, black circles) with insulin (20 mg/ml) at a ratio of 1:10 for 7 days.
Plots show the mean (line) of four independent experiments. Double-sided Wilcoxon test was used for the evaluation of statistical significance.
Bottom: Representative FACS plots showing CD25+ FoxP3+ regulatory T cells gated on CFSElow, CD3+, CD4+.
doi:10.1371/journal.pone.0063296.g002
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chemokine and chemokine receptor gene expression involved in T

cell recruitment. In contrast, chemokine genes involved in

phagocytosis and phagocyte recruitment were upregulated. Other

categories with genes with altered expression were natural

immunity, immunoregulation, transcription factors and signalling;

this fits well with an inhibition of DC maturation and T cell

coestimulation/activation. In addition to these changes in the

expression of genes with immune response function, genes in the

metabolism category showed expression changes after apoptotic

cell uptake (Table S1). The eicosanoids biosynthesis from the

arachidonic acid pathway was altered: two genes involved in the

PGE2 synthesis pathway (Ptgs2 and Ptges) were upregulated, and

two other genes involved in leukotriene synthesis from arachidonic

acid (Alox14 and Ltc4s) were downmodulated. Specific transcripts

for islet cells were found increased in DCs after the engulfment of

apoptotic cells, some of them being T1D autoantigens (Cpe, Iapp,

Ins1, Ins2, Sst, Tspan7). Validation by qRT-PCR of the eight

selected targets confirmed the microarray findings (Figure S1). As

expected, Ins2 and Iapp expression were not found in iDCs before

efferocytosis of apoptotic islet cells.

Suppressive Effects of Dendritic Cells after Efferocytosis
Involve Prostaglandin E2 Production
Based on microarray results we examined the production of

PGE2 by NITApo-DCs by ELISA. The concentration of PGE2

was significantly increased in the supernatant of NITApo-DCs

cultures when compared to iDCs (p,0.05) (Figure 4A). However,

the concentration of PGE2 in the supernatant of NIT-1 cells after

the induction of apoptosis was very low, thus ruling out that the

increase in PGE2 production comes from these cells. These results

agree with microarray data and were validated by qRT-PCR

(Figure 4B). The expression of Ptgs2 gene (encoding for COX-2)

was significantly higher (p,0.05) in DCs after efferocytosis.

Furthermore, the expression of Ptgs1, Alox15 and Ltc4s genes -

encoding for COX-1, Arachidonate 15-lipoxygenase and Leuko-

triene C4 synthase respectively- was significantly lower in DCs

after the capture of apoptotic cells (p,0.05).

To demonstrate the role of PGE2 in the suppressive function of

NITApo-DCs (see above), T cell proliferation experiments were

performed using a specific-COX-2 inhibitor (NS-398) that inhibits

PGE2 production. First, we confirmed that NS-398 inhibits the

production of PGE2 (data not shown). By inhibiting the activity of

COX-2, the effect of efferocytosis on DCs in T cell proliferation

was reverted (p,0.05) (Figure 4C), reaching similar levels of T cell

proliferation induced by mDCs. NS-398 had no effect on T cell

proliferation induced by mDCs. These results indicate that PGE2

is involved in the suppression ability of NITApo-DCs. Finally, we

tested the effect of the supernatant of NITApo-DCs cultures in the

suppression of T cell proliferation induced by mDCs. We found

that the addition of supernatant from NITApo-DCs (50 and

250 pg/ml of PGE2) to T cell proliferation cultures significantly

decreases T cell proliferation (Figure 4D), reaching levels of

suppression similar to those induced by NITApo-DCs with similar

PGE2 concentration (34.5%, 50.1% and 60.6% respectively).

Moreover, a high concentration of pure PGE2 added to the

cultures (50 ng/ml) resulted in an inhibition .90.9% (data not

shown). These data confirm the role of PGE2 released by DCs in

the suppressive effects of efferocytosis in a cell-cell contact

independent way.

Discussion

Apoptotic cells serve a dual purpose: they prevent the spreading

of cellular debris into the extracellular milieu, and when engulfed

by antigen presenting cells, such as DCs, they contribute to the

maintenance of self-tolerance through the presentation of autoan-

tigens in an active ‘suppressive’ process that constitutes a silencer

event [19]. DCs can be modified ex-vivo, targeted with different

antigen delivery systems and used as ‘vaccines’ to induce or restore

tolerance [20]. A greater understanding of the tolerogenic

mechanisms is important for therapeutic purposes to prevent

autoimmune processes. In this study we provide evidence that

immature DCs from NOD mice -a spontaneous model of

autoimmune diabetes- engulf apoptotic islet cells thus resulting

in tolerogenic functions and immunosuppressive ability through

PGE2 production.

The strongest evidence linking efferocytosis with tolerance to

self is the association of autoimmune diseases and defective

apoptotic cell clearance [21,22]. We previously demonstrated that

peripheral tolerance may be restored by the administration of

dendritic cells loaded with islet apoptotic cells in experimental

autoimmune diabetes [7]. T1D prevention in NOD mice was

achieved only when DCs were loaded with apoptotic islet cells but

not with fibroblasts, hence confirming the antigen specificity of

immunotherapy. In general, tolerance re-establishment could be

induced by the deletion or anergy of autoreactive T lymphocytes

after class I and class II presentation [23,24], by the expansion of B

and T regulatory cells [25,26] or by alternative mechanisms. DCs

have a crucial role in diabetes in NOD mice, a well-established

model of T1D that shares multiple characteristics with human

disease [27]. However, we have to keep in mind the limitations of

the NOD mouse model and the intrinsic defects in dendritic cells

[28].

During normal cell turnover, apoptotic cells are removed by

phagocytes, but also by other cell types including epithelial cells

[29]. In the absence of inflammation, antigen presenting cells will

not receive maturation stimuli, and after islet cell efferocytosis,

they should enter the afferent lymph node and inhibit autoreactive

T cell activation. This has important implications for the design of

Figure 3. Suppressive effects of NITApo-DCs on mDCs ability to
induce T cell proliferation. Autologous T cell proliferation (c.p.m. for
3H thymidine assay) induced by mature DCs (mDCs, white bar) in the
presence of immature DC (iDCs, white bars) or DCs loaded with NIT-1
apoptotic cells (NITApo-DC, grey bars) with insulin (20 mg/ml) at
different ratios (from 1:2 to 1:0.25) for 7 days. Percentage of inhibition is
given on top of histogram bars. Results from six independent
experiments. Bars and squares represent means and individual
experiments respectively. Double-sided Wilcoxon test was used for
the evaluation of statistical significance (* P,0.05).
doi:10.1371/journal.pone.0063296.g003
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therapies to re-establish tolerance using DCs as carriers of

autoantigens. In fact, in NOD mice, the DCs injected intraper-

itoneally migrate to peritoneal lymph nodes, particularly in the

pancreatic lymph nodes, and the cell signal remains up to one

week [30].

These DCs that in vivo induce tolerance, were in vitro charac-

terized in T cell proliferation assays. The whole T cell response

was analyzed because DCs present exogenous antigens to CD4+ T

cell subset and efficiently cross-present exogenous antigens to

CD8+ T cells. The results confirm the impairment of autologous T

cell response after efferocytosis. We are well aware of the low T

cell proliferation index in basal conditions, probably due to

experimental design which uses NOD mice, and the whole T cell

repertoire instead of islet specific systems, as described [31].

Moreover, the tolerogenic function acquired by DCs after

efferocytosis is stable and resistant to inflammation; this is a very

important feature to take into account for future therapy design. In

terms of cytokine secretion, a low IL-6, TNF-a, IFN-c and IL-17

phenotype partially mediates their effect in re-establishing

peripheral tolerance. IL-12 production was not determined

because a defect in the secretion of this cytokine has been

described in bone marrow DCs of NOD mice [32]. It has been

reported that the blockade of IL-17 prevented diabetes in NOD

mice [33]. Nevertheless, the absence of TGF-b secretion, together

with low IL-10 production, both cytokines related to immune

suppression, suggests that the mechanism of immunological

tolerance mediated by classical regulatory T cells is not involved

in the process. In fact, an increase of CD4+ CD25+ FoxP3+

regulatory T cells was not observed thus suggesting that the

induction of tolerance is not dependent on the increase in this T

cell subset, as described in other tolerance assays [34].

Interestingly, we found that efferocytosis promotes the suppres-

sion of mature DC function, a described mechanism of tolerance

[35]. Our results demonstrated that the effect was dose dependent

thus indicating that there is an active mechanism of suppression by

tolerogenic DCs. Microarray data support this mechanism and

show overexpression of two genes related to the pathway of PGE2

synthesis (Ptgs2 and Ptges). PGE2 depresses cellular immunity [36],

inhibits T-cell proliferation [37], induces T regulatory cell function

[38], and contributes to insulitis suppression in NOD mice [39]. It

is well known that the removal of apoptotic cells by macrophages is

crucial for the active suppression of inflammation, through several

mechanisms that involve PGE2 [40]. We observed that PGE2

produced after efferocytosis decrease T cell proliferation induced

by mature DCs. This suppressive effect is dose dependent and cell-

cell contact independent. The blockade of PGE2 production has

no effect on T cell proliferation induced by mDCs but avoids the

suppressive function of DCs after efferocytosis, thus confirming

that PGE2 is responsible for this effect. Furthermore, the genes

involved in the synthesis of leukotriene from arachidonic acid,

such as Alox15 and Ltc4s, were downmodulated after efferocytosis.

Leukotrienes are mediators of inflammation and their excessive

production has been associated with inflammatory and autoim-

mune disorders [41]. Since prostaglandins activate the peroxisome

proliferator-activated receptor (PPAR) c-dependent pathway [42],
these molecules may contribute to the tolerogenic potential of

these cells. Ingenuity analysis of microarray data showed that the

canonical pathway of the PPAR is altered in DCs after

efferocytosis. This transcription factor is responsive to the lipid

status of the cell and has a determinant role in the engulfment of

apoptotic cells, negatively regulating DC maturation and avoiding

the autoimmune attack against dying cells [43].

Gene expression profiles of tolerogenic DCs have been

previously reported [44,45,46]. However, the transcriptome of

DCs after efferocytosis was still unknown. In this study we revealed

new altered suppression pathways that confirm DCs tolerogenic

phenotype. The decrease in the expression of antigen processing,

presentation and coestimulation related genes was confirmed. The

immune response gene profile indicates that DCs remain

immature, but not inactive, after efferocytosis. Endocytosis-related

genes were found upregulated, a feature of tolerogenic DCs [47].

The downregulation of CCL5, imprint of DC maturation, can be

a regulatory effect of PGE2 as previously described [48]. This fact,

toghether with the decreased expression of CCL17 and CCL22

genes both related to T cell recruitment, may alter the lymphocyte

subsets recruited by tolerogenic DCs. The expression of chemo-

kine receptor genes related to DCs migratory function was

downregulated, in apparent contrast to the previously described

upregulation of CCR7 after efferocytosis [3]. Our results can be

explained by the reported dissociation between CCR7 membrane

expression and mRNA amounts [49].

It is well known that DCs pulsed with apoptotic cells can induce

anti-viral and anti-tumor antigen specific immunity [50]. This is in

apparent contradiction to our results and could be explained by

differences on the antigenic content of apoptotic cells and their

connection with autoimmunity. The avidity of anti-tumoral T

Table 1. Differentially expressed genes related to immune tolerance to diabetogenic autoantigens.

Categories P val Genes

Adhesion ,0.001330 Adora3, Cd34, Cd69, Cldn1, Pdpn

Antigen Presentation ,0.000757 Cd74, Il4i1, H2-Ab1, H2-DMb2, H2-Eb1, H2-M2, Rab27a

Chemokines ,0.001271 Ccl12, Ccl17, Ccl2, Ccl22, Ccl3, Ccl4, Ccl5, Ccl7, Ccr2, Ccr7, Cx3cl1, Cxcl1, Cxcl5, Cxcr2,
Ppbp

Coestimulation ,0.001957 Cd80, Cd83, Cd86

Cytokines ,0.000001 Il1a, Il2ra, Tnf, Tnfsf4

Immunoregulation ,0.000215 Ly9, Serpinb2, Serpinb8, Slamf6, Slamf7

Islet cells ,0.000190 Cpe, Iapp, Ins1, Ins2, Sst, Tspan7

Metabolism ,0.001269 Alox15, Cacnb3, Fscn1, Ltc4s, Ptges, Ptgs2

Natural Immunity ,0.001838 Cd209a, Cd300e, Marco, Mrc1

Signaling ,0.000975 Jak2, Mapk13, Pik3cg, Samsn1

Transcription Factor ,0.000022 Irf4, Nr4a3, Stat4, Xbp1

doi:10.1371/journal.pone.0063296.t001
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Figure 4. Effect of prostaglandin E2 produced by NITApo-DCs on T cell proliferation. A) Quantification of the PGE2 by ELISA in culture
supernatants of immature DCs (iDCs, white circles), DCs loaded with apoptotic cells (NITApo-DCs, black circles) and apoptotic NIT-1 cells (NITApo,
black triangles). ELISA data are represented as pg/106 cells. Plots show the mean (line) of five independent experiments. B) Quantitative RT-PCR
results for Ptgs1, Ptgs2, Alox15 and Ltc4s genes in iDCs (white circles) and in NITApo-DCs (black circles). Gene expression signals were normalized to
gapdh. Plots show the mean (line) of six independent experiments. C) Autologous T cell proliferation (c.p.m. for 3H thymidine assay) induced by
mDCs (white bars) in the presence of NITApo-DC (grey bars) with insulin (20 mg/ml) at a ratio of 1:1 for 7 days. NS-398, specific-COX2 inhibitor (10 mM)
was added to block PGE2 production and reverse the suppressive effect of NITApo-DCs. Percentage of inhibition is given on top of histogram bar.
Results from five independent experiments. D) Autologous T cell proliferation (c.p.m. for 3H thymidine assay) induced by mDCs (white bar) in the

Efferocytosis Induces Tolerogenic Dendritic Cells

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e63296



lymphocytes should be higher than that of autoreactive T cells that

escape from central tolerance [51].

In conclusion, the tolerogenic behaviour of DCs after the uptake

of apoptotic cells suggests a mechanism of silencing potential

autoreactive T cells in the microenvironment of autoimmunity.

This mechanism is mediated, at least in part, through PGE2

production. In this context, efferocytosis is an active silencer event

in DCs and not a passive lack of maturation and cytokine

production. In summary, DCs seem to recognize apoptotic cells as

a source of autoantigens and induce regulatory mechanisms in the

islet milieu to maintain peripheral tolerance to self. The

importance of this physiological mechanism in the prevention of

autoimmunity may play a critical role as a booster shot in specific

immune tolerance.

Supporting Information

Figure S1 Quantitative RT-PCR validates the micro-
array results. Histograms represent quantitative RT-PCR

results for the selected genes in DCs (iDCs, white bars) and in

DCs after the engulfment of NIT-1 apoptotic bodies (NITApo-

DCs, black bars). Gene expression signals were normalized to

GAPDH. Results from eight independent experiments. One-sided

Wilcoxon’s test was used for the evaluation of statistical

significance. Symbols * and ** mark statistically significant

differences, p,0.05 and p,0.01. Data with values below limit

of detection are marked with ,d.
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