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Introduction: Tourette syndrome (TS) is a neuropsychiatric disorder with multiple motor

and vocal tics whose neural basis remains unclear. Diffusion tensor imaging (DTI) studies

have demonstrated white matter microstructural alternations in TS, but the findings are

inconclusive. In this study, we aimed to elucidate themost consistent white matter deficits

in patients with TS.

Method: By systematically searching online databases up to December 2020 for

all DTI studies comparing fractional anisotropy (FA) between patients with TS

and healthy controls (HCs), we conducted anisotropic effect size-signed differential

mapping (AES-SDM) meta-analysis to investigate FA differences in TS, as well as

performed meta-regression analysis to explore the effects of demographics and clinical

characteristics on white matter abnormalities among TS.

Results: A total of eight datasets including 168 patients with TS and 163 HCs were

identified. We found that TS patients showed robustly decreased FA in the corpus

callosum (CC) and right inferior longitudinal fasciculus (ILF) compared with HCs. These

two regions preserved significance in the sensitivity analysis. No regions of increased

FA were reported. Meta-regression analysis revealed that age, sex, tic severity, or illness

duration of patients with TS were not linearly correlated with decreased FA.

Conclusion: Patients with TS display deficits of white matter microstructure in the CC

and right ILF known to be important for interhemispheric connections as well as long

association fiber bundles within one hemisphere. Because the results reported in the

primary literature were highly variable, future investigations with large samples would be

required to support the identified white matter changes in TS.

Keywords: Tourette syndrome, diffusion tensor imaging, fractional anisotropy, magnetic resonance imaging,
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INTRODUCTION

Tourette syndrome (TS) is a common neuropsychiatric disorder
characterized by rigid, repetitive, and intermittent movements
and vocalizations termed tics (1). The prevalence of TS
is 0.3–1% in school-aged children (2, 3). TS patients with
behavioral comorbidities [e.g., attention deficit hyperactivity
disorder (ADHD) or/and obsessive compulsive disorder (OCD)]
are associated with impaired social function and reduced overall
life quality (2). A large number of neuroimaging studies
have detected brain functional and structural abnormalities of
TS especially involving cortico-basal ganglia-thalamo-cortical
network (4–8), which were linked to the emergence of tics
(6). In addition, widespread dysconnectivity involving parietal,
temporal, and occipital lobes and interhemispheric brain
abnormalities have also been demonstrated in TS, which may
relate to mental and behavioral changes in TS patients (9–
16). Since normal structure of white matter tracts is critical
for maintaining connections between distant brain regions,
studying white matter alterations is crucial to elucidate potential
neurobiological mechanisms underlying TS. In addition, it may
also highlight potential neuroimaging markers related to tic
severity and neurobehavioral abnormalities in TS patients (17).

Diffusion tensor imaging (DTI) is a particularly useful
technique for investigating white matter abnormalities (18),
while fractional anisotropy (FA) is widely used to measure the
degree of directionality of cellular structures within the fiber
tracts which reflect microstructural integrity of the brain (19–21).
The voxel-based analysis (VBA) and tract-based spatial statistics
(TBSS) method are commonly used to investigate whole-brain
FA differences. The VBA technique measures contiguous clusters
of significant white matter voxels with the correction of multiple
comparisons and noise. The TBSS calculates significant clusters
within white matter skeletons after isolating the central core
of white matter tracts with the highest FA (22). Further meta-
analysis has successfully combined both methods in one study
(23). Widespread white matter abnormalities of TS have been
revealed by DTI studies, but the results have been inconclusive.
Specifically, while some studies revealed decreased FA in corpus
callosum (CC) (11, 24), bilateral superior longitudinal fascicle
(11), bilateral frontal lobe (11, 25), and left external or internal
capsule region (11, 24), others identified increased FA in the
left postcentral gyrus (26) or no significant FA differences
between TS patients and healthy controls (HCs) (17, 27–29). This
inconsistency might be due to sample size, sample heterogeneity,
and/or methodological differences. Therefore, a whole-brain
meta-analysis identifying reliable neurobiological markers of TS
is of particular importance.

In this study, we performed a meta-analysis to determine
white matter abnormalities in patients with TS via anisotropic
effect size-signed differential mapping (AES-SDM) (30), which is
an effective meta-analytic technique to quantify reproducibility
of neuroimaging findings by weighting results from individual
studies and controlling for multiple moderators. This method
has been successfully applied to the study of major depressive
disorder (23), childhood maltreatment (31), and bipolar disorder
(32). For significant findings, we then conducted subgroup

meta-analysis on TBSS results and performed a meta-regression
analysis to examine effects of demographic and clinical
characteristics on the discovered white matter microstructural
alterations. We hypothesized that decreased FA was manifest in
TS patients when compared with HCs, especially in motor- or
vocal-related tracts.

METHOD

Inclusion of Studies
We searched relevant studies fromPubMed,Medline, andWeb of
Science published up to December 2020 with keywords “Tourette
syndrome” or “Gilles de la Tourette syndrome” plus “diffusion
tensor imaging” or “DTI” or “fractional anisotropy” or “FA” or
“white matter.” We also manually checked the reference lists of
the retrieved articles for additional relevant studies. All studies
included in this meta-analysis are according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (33).

The inclusion criteria were as follows: (1) studies in which
patients were diagnosed according to Diagnostic and Statistical
Manual of Mental Disorders, 4th Edition (DSM-IV); (2) studies
that compared whole-brain FA alteration between patients with
TS and HCs; (3) studies that used the VBA or TBSS approach
for DTI data analysis; (4) studies whose results were based on
Montreal Neurological Institute (MNI) or Talairach coordinates;
and (5) studies that were published in English in a peer-
reviewed journal.

The exclusion criteria were as follows: (1) case reports or
reviews; (2) studies with < 10 participants in either TS or HC
group; and (3) peak coordinates could not be retrieved from the
published article or after contacting the authors.

Quality Assessment and Data Extraction
Two authors (C.M.Y. and L.Y.) independently searched the
literature, assessed the quality of the retrieved articles, and
extracted and cross-checked the data. In cases of disagreement,
a third author helped to reach consensus. We assessed study
quality using a 12-point checklist (see Supplementary Material)
which was divided into three categories: participants (items 1–
4), methods for image acquisition and analysis (items 5–10), and
results and conclusions (items 11 and 12). Each item was given a
score of 1, 0.5, or 0 to indicate whether the criteria were fully met,
partially met, or unfulfilled, respectively, and any study scoring
> 6.0 was included in the meta-analysis.

We extracted the following variables from each selected study:
the characteristics of the participants and their illness (sample
size, mean age of participants, sex, symptom severity, and
drug status); magnetic resonance methodology (magnetic field
strength, acquisition voxel size, number of diffusion directions,
and type of analysis); statistical methodology (statistical
threshold and correction methods for multiple comparisons);
and 3D coordinates (for voxel-level quantitative meta-analyses).

Voxel-Wise Meta-Analysis: AES-SDM
We analyzed FA differences in white matter between patients
with TS and HCs following the standardized process of

Frontiers in Neurology | www.frontiersin.org 2 September 2021 | Volume 12 | Article 659250

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yang et al. White Matter in Tourette Syndrome

AES-SDM (www.sdmproject.com) (30) and the detail flow chart
was showed in Supplementary Figure 1. Briefly, the AES-SDM
technique uses effect size to combine reported peak coordinates
that are extracted from statistical parametric maps, which
recreates original maps of the effect size of FA difference in white
matter between patients and controls. The created maps were
visualized by MRIcron software (www.mricro.com/mricron/)
overlaid on a high-resolution brain template generated by
the International Consortium for Brain Mapping. To allow
combination of VBA and TBSS studies, we adopted the
TBSS template included in AES-SDM, which has been used
and described by Wise and colleagues (32). All analytical
processes followed the SDM tutorial (https://www.sdmproject.
com/software/tutorial.pdf) and related publication (30). We
adopted the default AES-SDM thresholds (anisotropy = 1.0; full
width at half maximum = 20mm, voxel p = 0.005, peak height
Z = 1, cluster extent = 10 voxels) (34). The AES-SDM results
are represented on a 3D-rendered brain, removing part of the
left or right hemisphere and highlighting areas of the brain with
significant FA alterations (35).

Jackknife Sensitivity Analysis and
Subgroup Analysis
To assess the robustness of the findings, we conducted a
systematic whole-brain voxel-based jackknife analysis, in which
we iteratively repeated the analysis, excluding one dataset at
a time to establish the extent to which the results could be
replicated. If a brain region remained significant in all or most
of the combinations of studies, we considered the finding to be
highly replicable (36). This was done both for combining studies
with TBSS and VBA and for studies with TBSS alone. We did
not performmeta-analysis in other subgroups (i.e., VBAmethod,
adults, adolescents, medicated patients, and drug-free patients)
due to the lack of sufficient samples to draw reliable conclusions.

Analysis of Heterogeneity and Publication
Bias
Heterogeneity refers to between-study variations. We conducted
a between-study heterogeneity analysis of individual clusters
using a random-effects model with Q statistics, with thresholds of
p= 0.005, peak Z = 1.00, and a cluster extent of 10 voxels. Areas
showing significant heterogeneity overlapping with the main
findings were explored using meta-regression analyses to search
for the sources of between-study variability. We also assessed
publication bias by testing funnel plots via the Egger test in which
any result showing p < 0.05 was regarded as having a significant
publication bias.

Meta-Regression Analysis
To characterize potential effects of key demographic and clinical
variables on white matter, we performedmeta-regression analysis
using age, percentage of male patients, symptom severity [Yale
Global Tic Severity Scale (YGTSS) (37)], and illness duration as
independent variables in each study. The results were weighted
by the square root of the sample sizes. To minimize spurious
relationships, we selected a more conservative threshold of
p = 0.0005 as used in previous studies (23, 30), requiring

abnormalities to be detected both in the slope and in one of
the extremes of the regressors, and discarded findings in regions
other than those detected in the main analysis. We displayed
the main output for each variable in a map of regression slope.
Finally, we visually inspected regression plots to discard fittings
that were obviously driven by too few studies (36).

Fiber Tracking
The DTI query software allows placement and interactive
manipulation of box-shaped region of interest (ROI) to display
pathways passing through specific anatomic areas, making it
easier to explore and interpret white matter pathways (38).
We used this technique to display the most probable white
matter tracts passing through clusters of voxels that showed
significant FA group differences with an atlas of human white
matter anatomy (39). The white matter tracts were mapped using
streamline tracking techniques as well as filtered by tract length
and ROI centered on the coordinates of significant clusters.

RESULTS

Included Studies and Sample
Characteristics
The search strategy identified 310 potentially relevant studies,
eight of which met our inclusion criteria. The flow chart for study
inclusion is shown in Figure 1. A total of 168 patients with TS
(mean age 20.0 years) and 163 HCs (mean age 20.1 years) were
included. The clinical and demographic data from all included
studies are summarized in Table 1. Among eight studies, five
recruited 106 patients who were either never medicated or
without medication at the recruitment point. Due to high
comorbidity rate, only 45 patients in three studies had one
diagnosis, and the others were simultaneously diagnosed with
ADHD, OCD, anxiety disorder, or depression. FA alterations
involved a total of 33 coordinates in the included studies. The
quality scores, ranging from 10.5 to 12 (mean score 11; Table 1;
Supplementary Table 1), demonstrated that the included studies
were of high quality, ensuring a more exhaustive and accurate
meta-analysis. The technical details and main findings of all
included studies are summarized in Table 2.

Pooled Meta-Analysis of All Included
Studies
Pooled meta-analysis revealed two regions of decreased FA in TS
patients compared with HCs: the white matter of the CC [MNI
−10/−24/26, splenium of CC (SCC) Z = −1.573, p < 0.001]
and right inferior longitudinal fasciculus (ILF, MNI 40/−76/−2,
Z = −1.594, p < 0.001) (Table 3; Figure 2). White matter tracts
traversing through these voxels were displayed in a bounding
box size of 6.0 × 6.0 × 6.0 mm3 with DTI query software
(Figure 2). No significant FA increase was found in patients with
TS compared with HCs.

Subgroup Meta-Analysis
The subgroup meta-analysis of TBSS method included six
datasets that compared 134 patients with TS to 128 HCs.
Decreased FA in the CC was significant in the subgroup analysis
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FIGURE 1 | Flow diagram for the identification and exclusion of studies. N, number; FA, fractional anisotropy.

TABLE 1 | Demographic and clinical characteristics of the participants in the eight studies included in the meta-analysis.

References No. (male) Age [year (mean ± SD)] Illness duration

[year (mean ± SD)]

Severity (YGTSS)

(mean ± SD)

Statistical threshold Medication % Quality

scores

TS HCs TS HCs

Sigurdsson et al. (27) 28 (25) 30 (28) 14.5 ± 3.8 14.1 ± 2.9 NA 33.0 ± 15.3 p < 0.05 (FWE) 29 11

Wen et al. (11) 27 (20) 27 (20) 9.0 ± 3.4 10.7 ± 3.3 1.8 ± 1.4 46.5 ± 18.0 p < 0.05 (TFCE) Drug naïve 10.5

Müller-Vahl et al. (25) 19 (19) 20 (20) 30.4 ± 11.0 31.7 ± 10.9 NA 28.8 p < 0.001 (FWE) Drug naïve/drug free 10.5

Jeppesen et al. (28) 24 (NA) 18 (NA) NA NA 4.6 ± 1.9 17.5 ± 11.1 p < 0.05 (TFCE) Drug free 10

Liu et al. (29) 21 (20) 20 (17) 7.9 ± 2.0 8.1 ± 2.3 1.8 ± 0.6 41.7 ± 12.5 p < 0.05 (TFCE) Drug naïve/drug free 12

Govindan et al. (17) 15 (12) 14 (6) 11.6 ± 2.5 12.3 ± 3.2 NA 13.7 p < 0.05 (MC) 67 11

Neuner et al. (24) 19 (13) 19 (12) 30.1 ± 10.8 28.9 ± 8.5 NA 52.0 ± 16.7 p < 0.05 (FWE) 58 11.5

Thomalla et al. (26) 15 (13) 15 (13) 34.5 ± 8.9 34.6 ± 9.1 26.5 ± 8.5 42.0 ± 16.0 p < 0.001 (FDR) Drug naïve/drug free 11.5

TS, Tourette syndrome; HCs, healthy controls; No., number; SD, standard deviation; NA, not applicable; YGTSS, Yale Global Tie Severity Scale; FWE, family-wise error; TFCE,

threshold-free cluster enhancement; FDR, false-discovery rate; MC, multiple comparison.

(MNI−10/−22/26, Z =−1.605, p < 0.001), while changes of the
right ILF was not found (Table 4).

Jackknife, Heterogeneity, and Publication
Bias Analysis
Whole-brain jackknife sensitivity analysis showed that decreased
FA in CC in patients was highly replicable, being preserved
in all but one combination (24); decreased FA in the right
ILF remained significant in all but two combinations (11, 25)
(Table 5). In the TBSS subgroup, the FA reduction in the CC was
preserved in all combinations (Supplementary Table 2).

In the pooled meta-analysis, none of the regions with
altered FA (Table 3) showed statistically significant heterogeneity
between studies. Funnel plots demonstrated that the main

findings were driven by at least six studies (Figure 3). Analysis of
publication bias showed that the Egger test was non-significant
for the CC (p= 0.832) and right ILF (p= 0.747).

Meta-Regression Analysis
Age, sex, tic symptom severity (YGTSS), and illness duration
were not significantly associated with TS-related white matter FA
changes from the meta-regression analysis.

DISCUSSION

To our knowledge, this is the first quantitative meta-analysis
integrating DTI studies in patients with TS. Voxel-wise meta-
analysis using AES-SDM in the present study supported
that patients were associated with decreased FA in CC and
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TABLE 2 | Technical details and main findings of the eight studies included in this meta-analysis.

References Field Acquisition

voxel (mm3)

No. of

directions

Coordinate

system

No. of

coordinates

Type of

analysis

Main findings of FA

Sigurdsson et al. (27) 3 T 1 × 1 × 2 32 MNI 0 TBSS Negative

Wen et al. (11) 3 T 1 × 1 × 1 30 MNI 12 TBSS Decreased FA in the body of corpus callosum,

forceps major, right inferior longitudinal fasciculus,

right inferior fronto-occipital fasciculus, right

corticospinal tract, left frontal lobe subgyral, left

anterior thalamic radiations, and bilateral superior

longitudinal fasciculus

Müller-Vahl et al. (25) 1.5 T NA 12 MNI 11 VBA Decreased FA in the bilaterally in the medial frontal

gyrus, the pars opercularis of the left inferior frontal

gyrus, the middle occipital gyrus, the right cingulate

gyrus, and the medial premotor cortex

Jeppesen et al. (28) 3 T 1 × 1 × 1 15 MNI 0 TBSS Negative

Liu et al. (29) 1.5 T NA 15 MNI 0 TBSS Negative

Govindan et al. (17) 3.0 T 3 × 3 × 3 6 MNI 0 TBSS Negative

Neuner et al. (24) 1.5 T 2 × 2 × 2 30 MNI 9 TBSS Decreased FA in the corticospinal tract, the corpus

callosum and long association fiber pathways such

as the inferior fronto-occipital fascicle and the

superior longitudinal fascicle as well as in the

uncinate fascicle

Thomalla et al. (26) 3 T 2 × 2 × 2 24 MNI 1 VBA Increased FA in the mesial part of the left central and

postcentral gyrus

No., number; FA, fractional anisotropy; MNI, Montreal Neurological Institute; TBSS, tract-based spatial statistics; VBA, voxel-based analysis.

TABLE 3 | Clusters of fractional anisotropy reductions in all patients with TS relative to HCs.

Region MNI coordinates SDM p-value No. voxels Cluster breakdown

x, y, z Z-value uncorrected (voxels)

Corpus callosum −10, −24, 26 −1.573 < 0.001 114 Corpus callosum (114)

Right inferior

network, inferior

longitudinal fasciculus

40, −76, −2 −1.594 < 0.001 27 Right inferior longitudinal fasciculus (19);

right middle occipital gyrus, BA 19 (6);

right inferior occipital gyrus, BA 19 (1)

(undefined), BA 19 (1)

TS, Tourette syndrome; HCs, healthy controls; MNI, Montreal Neurological Institute; SDM, signed differential mapping; No., number; BA, Brodmann area.

right ILF. These results were robust under jackknife analysis.
Clinical parameters including age, sex, tic severity, and illness
duration, did not show significant association with white matter
microstructural alterations.

The decreased FA in CC (mainly SCC) was found in TS
patients compared with HCs in the present study, which is
consistent with numerous previous studies (9–11). For example,
it has previously been shown that FA values in the posterior
portions of the CC (including SCC) were significantly lower
in monozygotic twins of TS patients (9). Another structural
study for deep white matter tracts revealed decreased FA in
right SCC, and greater alterations were correlated with more
severe tic symptoms in patients (11). The CC is the largest
fiber bundle of the human brain connecting the left and right
cerebral hemispheres while the SCC predominantly connects
bilateral parietal and temporal areas (40). In line with our
findings, Worbe et al. (14) suggested that patients with complex
tics were associated with cortical thinning in parietal regions
by showing that cortical thinning in parietal and temporal
cortices was correlated negatively with the tic severity. Moreover,

temporo-parietal junction (TPJ) is a functionally defined region
pivotal to social cognition (41), and the dysfunction of TPJ
could bring negative influence on conscious human experience
and impact mental health (42). Task-fMRI studies (12, 13)
on mental state judgments have demonstrated abnormal task-
related activity in the right TPJ in patients, which was further
shown to be related to the tic symptom. Therefore, the FA
reduction in the SCC in the current study suggested impaired
parietal and temporal interhemispheric connectivity, which
might lead to neurocognitive deficits in mental and physical
aspects of individuals with TS.

As the primary inhibitory neurotransmitter in the brain, g-
aminobutyric acid (GABA) has been increasingly recognized
to be involved in the pathophysiology of TS (43). Current
evidence suggested that the tic symptom of TS was associated
with dysfunction of GABA (44, 45), while GABAergic drugs have
been shown to improve tics in a safe and effective way (46, 47).
With the measurement of in vivo brain GABA non-invasively,
a magnetic resonance spectroscopy (MRS) study demonstrated
that GABA concentrations within the supplementary motor
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FIGURE 2 | Results of pooled meta-analysis. Decreased FA of the CC (a) and right ILF (b) in TS patients compared with HCs and cluster-related white mater diffusion

tensor tracts. Regions with blue color area showed lower FA in TS, red dots represent the peak coordinate. FA, fractional anisotropy; TS, Tourette syndrome; HCs,

healthy controls; CC, corpus callosum; ILF, inferior longitudinal fasciculus.

TABLE 4 | Clusters of fractional anisotropy reductions in TBSS method studies.

Region MNI coordinates SDM p-value No. voxels Cluster breakdown

x, y, z Z-value uncorrected (voxels)

Corpus callosum −10, −22, 26 −1.605 < 0.001 143 Corpus callosum (142)

Left median network, cingulum (1)

TBSS, tract-based spatial statistics; MNI, Montreal Neurological Institute; SDM, signed differential mapping; No., number.

TABLE 5 | Results of jackknife analysis in all included studies.

Discarded study Decreased FA

Corpus

callosum

Right inferior network, inferior

longitudinal fasciculus

Govindan et al. (17) Yes Yes

Müller-Vahl et al. (25) Yes No

Jeppesen et al. (28) Yes Yes

Liu et al. (29) Yes Yes

Neuner et al. (24) No Yes

Sigurdsson et al. (27) Yes Yes

Thomalla et al. (26) Yes Yes

Wen et al. (11) Yes No

Total 7/8 6/8

FA, fractional anisotropy.

area (SMA) was linked to the pathogenesis of tics in TS and
correlated with FA values within the CC (48). Furthermore,
GABA concentrations within the SMA could be predicted by
tic severity and FA values in the CC. Based on these findings,
we suggested that decreased FA in the CC observed in our
meta-analysis might provide new insight into treatment target
in patients with TS. Future studies are needed to articulate the
specific role of CC in GABA-related mechanisms underlying TS.

The present meta-analysis also identified significantly
decreased FA in the right ILF in patients with TS compared
with HCs. Previous DTI study combined both TBSS and

FIGURE 3 | Results of funnel plot analysis to test for publication bias. For the

pooled meta-analysis, the Egger’s test and funnel plots revealed no significant

publication bias (A) in the corpus callosum (Z = 0.75, t = 0.22, df = 6, p =

0.832) and (B) in the right inferior network, inferior longitudinal fasciculus (Z =

1.14, t = 0.34, df = 6, p = 0.747).

atlas-based ROI analysis demonstrated a reduction of FA in
the right ILF in TS patients, which was negatively associated
with tic severity (11). The ILF is widely accepted as a direct
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connection between the occipital cortex and the temporal lobe
(49) and is functionally correlated with thought disorders, visual
emotion, and cognitive impairments (50). In addition, Latini and
colleagues demonstrated that the ILF played an important role in
integrating information of visual, memory, and emotions (51),
where deficits of visual memory in TS were found to be related
to occipital dysfunction (15), and cognitive disturbances were
correlated with abnormal brain activity in temporal areas (16).
The peak of altered FA located in the right middle and inferior
occipital gyrus. There were several studies that provided evidence
of gray matter alteration in the occipital brain region in patients
with TS, including changed cortical thickness, cortical sulcus,
and cortical curvature in occipital gyrus (52), and the abnormal
functional connectivity was also found in the occipital area in
patients with TS (53). In sum, our finding of the decreased FA
in ILF (mainly in the occipital part) might underlie the deficits
in visual emotional modulation and cognitive processing in
patients with TS.

We conducted subgroup analysis confined to the TBSS
method. Compared with the pooled meta-analysis, the subgroup
revealed FA reduction only in the CC with larger clusters, but not
in the right ILF. This finding was consistent with the previous
study showing that TBSS may detect white matter abnormalities
more accurately than VBA (32). The VBA method was not
conducted in the subgroup analysis because there were only two
original studies. Nevertheless, it was still worth noting that one of
the VBA study also showed abnormal FA involving the posterior
part of the CC (26). Hence, the FA reduction in the CC might
be regarded as a stable indicator in TS and the TBSS technique
was recommended to explored white matter microstructural
abnormalities in this disorder.

The meta-regression analysis revealed that there were no
significant associations between white matter microstructural
alterations and examined demographic and clinical variables.
Consistent with our findings, Plessen et al. have investigated the
small size (on the midsagittal slice) and reduced FA values of CC
in children with TS, respectively (10, 54). The results were not
influenced by medication or comorbid illnesses. Furthermore,
there were no significant correlations between reduction of FA
in TS and the severities of tic symptoms (10). However, some
studies provided evidence for a close relationship between the
white matter microstructure of CC and tic severity (25, 55).
Considering the small sample size for the included studies
and potential confounding factors, the meta-regression analysis
may result in negative results and future studies are needed
for replication.

LIMITATION

This study has some limitations. Firstly, like most voxel-based
meta-analyses, our study was based on summarized data
(i.e., coordinates and effect sizes from published studies) rather
than raw image files from original data (34), which may limit the
precision of the spatial location of the observed effects. Second
due to the high comorbidity rate of the included samples, the
influences of medication treatment and comorbidities (e.g.,
ADHD or/and OCD) cannot be removed. As a result, future

meta-analysis research is warranted when sufficient data on
medication-naive patients without comorbidities are available
in the literature. Thirdly, subgroup analysis was not able to
be conducted comparing adults vs. adolescents and medicated
patients vs. drug-free subjects, and therefore specific effects of
age and medication status on the white matter microstructure
need to be investigated in the future.

CONCLUSION

The present meta-analysis of DTI studies identified robust
white matter deficits in the CC and right ILF in patients
with TS, providing a strong evidence for disturbances in the
interhemispheric connections and long association fiber bundles
in the right hemisphere in TS. Because of limited studies in
the literature, future investigations with larger sample size are
warranted to provide further evidence for the white matter
changes in TS.
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