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Abstract

The genetic alterations that underlie cancer development are highly tissue-specific with the

majority of driving alterations occurring in only a few cancer types and with alterations com-

mon to multiple cancer types often showing a tissue-specific functional impact. This tissue-

specificity means that the biology of normal tissues carries important information regarding

the pathophysiology of the associated cancers, information that can be leveraged to

improve the power and accuracy of cancer genomic analyses. Research exploring the use

of normal tissue data for the analysis of cancer genomics has primarily focused on the

paired analysis of tumor and adjacent normal samples. Efforts to leverage the general char-

acteristics of normal tissue for cancer analysis has received less attention with most investi-

gations focusing on understanding the tissue-specific factors that lead to individual genomic

alterations or dysregulated pathways within a single cancer type. To address this gap and

support scenarios where adjacent normal tissue samples are not available, we explored the

genome-wide association between the transcriptomes of 21 solid human cancers and their

associated normal tissues as profiled in healthy individuals. While the average gene expres-

sion profiles of normal and cancerous tissue may appear distinct, with normal tissues more

similar to other normal tissues than to the associated cancer types, when transformed into

relative expression values, i.e., the ratio of expression in one tissue or cancer relative to the

mean in other tissues or cancers, the close association between gene activity in normal tis-

sues and related cancers is revealed. As we demonstrate through an analysis of tumor data

from The Cancer Genome Atlas and normal tissue data from the Human Protein Atlas, this

association between tissue-specific and cancer-specific expression values can be lever-

aged to improve the prognostic modeling of cancer, the comparative analysis of different

cancer types, and the analysis of cancer and normal tissue pairs.

Author summary

The frequency and functional impact of the genetic alterations that drive human cancer

are highly tissue-specific. This tissue-specificity implies that important information about

cancer biology can be extracted from the features of associated normal tissues. The use of

normal tissue genomic data for cancer analysis has primarily focused on paired tumor
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and adjacent normal samples. Less attention has been paid to pan-cancer approaches that

use the general characteristics of normal tissue for cancer genomic analysis. To address

this research gap, we explored the genome-wide association between the transcriptomes

of 21 solid human cancers and their associated normal tissues as profiled in healthy indi-

viduals. We found a strong association between tissue-specific and cancer-specific expres-

sion, an association that can be leveraged to improve the prognostic modeling of cancer,

the comparative analysis of different cancer types, and the analysis of cancer and normal

tissue pairs.

Introduction

The biology of human cancer is highly tissue and cell type-specific [1–5]. Most cancer driver

genes are altered in only a small number of cancer types and, for drivers that are broadly

mutated, the impact of the alteration often varies significantly between tissue types. Examples

of genes with a tissue-specific pattern of alteration include von Hippel Lindau tumor suppres-

sor (VHL) in renal cancer [6], adenomatous polyposis coli (APC) in colorectal cancer [7], and

KRAS in pancreatic, lung and colorectal cancers [8]. Examples of driver genes that are altered

in multiple cancer types but have a tissue-specific functional impact include BRCA1/BRCA2,

which are impacted by germ-line mutation but lead to cancer primarily in estrogen-sensitive

tissues (e.g., breast and ovaries) [9], and BRAF, which can be effectively inhibited in BRAF-

mutated melanoma but not in BRAF-mutated colon cancer [10]. Only a small number of

driver genes are broadly altered in many different cancers with similar functional conse-

quences, e.g., TP53 [11] and MYC [12]. The tissue specificity of cancer driver genes is due to

both cell intrinsic factors (i.e., epigenetic landscape and corresponding regulatory circuitry)

and cell extrinsic factors (cell-cell interactions in the tissue microenvironment and environ-

mental exposures). One important cell intrinsic factor is the cell type-specificity of prolifera-

tion drivers; 80–90% of the genes that drive proliferation function in only a limited number of

cell types and these genes are frequently impacted by aneuploidy in cancer [2, 3]. Examples of

cell extrinsic factors include exposure to estrogen in breast and ovarian tissue and the conse-

quent vulnerability to BRCA1/BRCA2 mutations, and exposure to UV radiation in melanoma

which leads to both increased sensitivity to the alteration of nucleotide excision repair genes

and to an increase in the number of neoantigens and improved response to immunotherapy

[4].

Given the significant tissue-specificity of cancer, the pattern of gene activity within normal

tissue carries important information about the developmental trajectory of associated cancers

and how those tumors will respond to therapeutic interventions. Efforts to leverage this infor-

mation for the analysis of cancer genomics data have primarily focused on the analysis of

paired tumor and adjacent normal tissue samples from repositories such as The Cancer

Genome Atlas (TCGA) [13]. Analyses of paired tumor/normal data includes the work by

Huang et al. exploring cancer prognosis prediction using data from adjacent normal samples

[14] and research by Hu et al. investigating the pattern of relative gene expression between

tumors and adjacent normal tissue [15]. Although the use of paired normal tissue data can

improve the analysis of tumor data, this approach has two important limitations. First, adja-

cent normal tissue is impacted by the tumor microenvironment so is not accurate reflection

of the biology of that tissue in a healthy individual. This so-called field cancerization effect

explains why genomic data from adjacent normal tissue can independently predict cancer sur-

vival and, in some cases, provide superior performance relative to models based on tumor-
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was accessed from the GDC Data Portal. TCGA

PANCAN RNA-seq data was accessed from the file

"GDC-PANCAN.htseq_fpkm.tsv.gz", which can be

downloaded from https://gdc-hub.s3.us-east-1.

amazonaws.com/download/GDC-PANCAN.htseq_

fpkm.tsv.gz; TCGA phenotype data was accessed

from the file “GDC-PANCAN.basic_phenotype.tsv”,

which can be downloaded from https://gdc-hub.s3.

us-east-1.amazonaws.com/download/GDC-

PANCAN.basic_phenotype.tsv.gz. For HPA, the

HPA staff provided normal tissue gene expression

data in the file "HPA.normal.FPKM.GDCpipeline.

csv"; this data was specially normalized by the HPA

group as FPKM using a pipeline similar to that

employed by GDC for the TCGA data (this data was

generated for the "Human Pathology Atlas" paper);

this file is available at https://hrfrost.host.

dartmouth.edu/CancerNormal/HPA.normal.FPKM.

GDCpipeline.csv. Prognostic p-vlaues for each

gene in each cancer type were retrieved from the

HPA file "pathology.tsv.zip" downloaded from

https://www.proteinatlas.org/download/pathology.

tsv.zip. The Hallmark collection pathways were

downloaded from version 7.0 of the Molecular

Signatures Database (MSigDB) (as downloaded

from http://software.broadinstitute.org/gsea/

downloads.jsp). Gene set testing of the Hallmark

pathways was performed using the pre-ranked

version of the CAMERA method (the cameraPR() R

function in the limma package).

Funding: Funding for HRF provided by National

Institutes of Health grants K01LM012426,

R21CA253408, P20GM130454 and P30CA023108.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009085
https://gdc-hub.s3.us-east-1.amazonaws.com/download/GDC-PANCAN.htseq_fpkm.tsv.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/GDC-PANCAN.htseq_fpkm.tsv.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/GDC-PANCAN.htseq_fpkm.tsv.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/GDC-PANCAN.basic_phenotype.tsv.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/GDC-PANCAN.basic_phenotype.tsv.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/GDC-PANCAN.basic_phenotype.tsv.gz
https://hrfrost.host.dartmouth.edu/CancerNormal/HPA.normal.FPKM.GDCpipeline.csv
https://hrfrost.host.dartmouth.edu/CancerNormal/HPA.normal.FPKM.GDCpipeline.csv
https://hrfrost.host.dartmouth.edu/CancerNormal/HPA.normal.FPKM.GDCpipeline.csv
https://www.proteinatlas.org/download/pathology.tsv.zip
https://www.proteinatlas.org/download/pathology.tsv.zip
http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp


derived data [14]. The second limitation is the fact that data from adjacent normal tissue sam-

ples is often not available.

The limitations of paired tumor/normal data analysis motivate the exploration of associa-

tions between the general features of normal tissues, as measured in healthy individuals, and

the characteristics of the cancer types that can develop in those tissues. While many research-

ers have investigated the association between normal tissue biology and cancer development

in the context of specific cancer types and the associated cancer drivers (e.g., the association

between estrogen sensitive tissues, BRCA1/BRCA2 mutations and cancer development [9,

16, 17]), only a limited number of researchers have explored the genome-wide association

between normal tissue and cancer gene activity across multiple cancer types. The most promi-

nent recent investigation into the general relationship between normal tissue and cancer gene

activity is the work by the Uhlen et al. [18], who analyzed the association between gene expres-

sion in human solid tumors profiled by the TCGA and the corresponding normal tissues pro-

filed by the Human Protein Atlas (HPA) [19]. Although the work by Uhlen et al. evaluated a

large number of tumor types and normal tissues, the analysis focused on the association

between mean gene expression in tumors and mean expression in the corresponding normal

tissue, which revealed that the transcriptomes of normal tissues and cancers form two distinct

clusters with each normal tissue more similar to other normal tissues than to the correspond-

ing cancer type (see Uhlen et al. Fig S1). Successful use of normal tissue data for cancer

genomics analysis was limited to liver cancer, where it was found that genes with elevated

expression in normal liver tissue are favorably prognostic in liver cancer and genes whose

expression was not specific to liver tissue are unfavorably prognostic. A similar liver-specific

analysis was conducted by Li et al. [20], which revealed a concordant finding regarding the

prognostic power of liver-specific genes.

To address the gap in effective pan-cancer approaches for leveraging normal tissue gene

activity for the analysis of cancer genomics data, we explored the genome-wide association

between the transcriptomes of 21 solid human cancers and their associated normal tissues as

profiled in healthy individuals. While the average gene expression profiles of normal and

cancerous tissue may appear distinct, as found by Uhlen et al. [18] with normal tissues more

similar to other normal tissues than to the associated cancer types, when transformed into rela-

tive expression values, i.e., the ratio of expression in one tissue or cancer relative to the mean

in other tissues or cancers, the close association between gene expression in normal tissues

and related cancers is revealed. As we demonstrate through an analysis of tumor data from

TCGA and normal tissue data from the HPA, this association between tissue-specific and can-

cer-specific expression values can be leveraged to improve the prognostic modeling of cancer,

the comparative analysis of different cancer types, and the analysis of cancer and normal tissue

pairs.

Materials and methods

The results presented in this paper are based on bulk RNA-seq data from TCGA for 21 human

solid cancers and from the HPA for the associated 18 normal human tissues (see Table 1 below

for a list of the cancer types and matching normal tissues; additional information about these

TCGA cancer types can be found in Table A in S1 Text). These cancer types were selected

based on the availability of gene expression data for the corresponding normal tissues in the

HPA. A similar set of 17 TCGA cancer types and paired normal tissues were selected for the

analysis by Uhlen et al. [18]. In contrast to Uhlen et al., we have separately analyzed the three

renal cancer types (kidney chromophobe, kidney renal clear cell carcinoma, and kidney renal
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papillary cell carcinoma), separately analyzed colon cancer and rectal cancer, and separately

analyzed lung adenocarcinoma and lung squamous cell carcinoma.

TCGA and HPA RNA-seq data, normalized as FPKM+1 values, were used to compute sev-

eral statistics that capture different aspects of gene activity and prognostic value. So that readers

can more easily follow the main results presented below, a concise definition of these statistics

is included in Table 2. More detailed information regarding the data sources, computation of

the statistics in Table 2 and generation of other tables and figures can be found in S1 Text. A

companion website for this paper (https://hrfrost.host.dartmouth.edu/CancerNormal/) pro-

vides access to files that hold the statistics in Table 2 for all analyzed normal tissues and cancers

as well as a specially processed version of the HPA RNA-seq data.

Results and discussion

Association between gene activity in normal and neoplastic tissue

Fig 1 illustrates the projection of the 21 analyzed cancer types and 18 corresponding normal

tissue types onto the first two principal components (PCs) from a principal component analy-

sis (PCA) of mean expression values, i.e., PCA of a matrix that contains all ci,j and ni.j statistics.

A scree plot of PC variances and projections onto PCs 3–8 are included as Figs A and B in S1

Text. As seen in Fig S1 from the Ulhen et al. [18] paper, cancers and normal tissues cluster sep-

arately in the space of the first 2 PCs according to gene expression data (i.e., cancers are more

similar to each other than to the corresponding normal tissues), with the separation primarily

driven by PC 1. Liver cancer and normal liver tissue are noticeable outliers in this projection

Table 1. The 21 analyzed TCGA cancer types and corresponding HPA normal tissues. The ‘Cancer/normal correlation’ column contains the Spearman rank correlation

between the mean gene expression values in the TCGA cancer samples (i.e., the ci,j statistics) and the mean expression values in the associated HPA normal tissue (i.e., the

ni.j statistics). The ‘Most correlated’ column lists the HPA normal tissue whose mean expression had the highest rank correlation with cancer mean expression. A value of

‘�’ indicates that the associated normal tissue had the largest correlation.

TCGA abbrev. Cancer type HPA tissue Cancer/normal correlation Most correlated

BLCA Bladder Urothelial Carcinoma urinary bladder 0.901 �

BRCA Breast Invasive Carcinoma breast 0.924 �

CESC Cervical Squamous Cell Carcinoma and . . . cervix, uterine 0.852 urinary bladder

COAD Colon Adenocarcinoma colon 0.93 �

GBM Glioblastoma Multiforme cerebral cortex 0.895 �

HNSC Head and Neck Squamous Cell Carcinoma tonsil 0.862 skin

KICH Kidney Chromophobe kidney 0.932 �

KIRC Kidney Renal Clear Cell Carcinoma kidney 0.931 �

KIRP Kidney Renal Papillary Cell Carcinoma kidney 0.925 �

LIHC Liver Hepatocellular Carcinoma liver 0.929 �

LUAD Lung Adenocarcinoma lung 0.925 �

LUSC Lung Squamous Cell Carcinoma lung 0.886 urinary bladder

OV Ovarian Serous Cystadenocarcinoma ovary 0.817 cervix, uterine

PAAD Pancreatic Adenocarcinoma pancreas 0.886 stomach

PRAD Prostate Adenocarcinoma prostate 0.951 �

READ Rectum Adenocarcinoma rectum 0.912 colon

SKCM Skin Cutaneous Melanoma skin 0.838 urinary bladder

STAD Stomach Adenocarcinoma stomach 0.921 �

TGCT Testicular Germ Cell Tumors testis 0.698 urinary bladder

THCA Thyroid Carcinoma thyroid gland 0.934 �

UCEC Uterine Corpus Endometrial Carcinoma endometrium 0.868 cervix, uterine

https://doi.org/10.1371/journal.pcbi.1009085.t001
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and, unlike most other profiled cancer/normal pairs, have mean transcriptomes that are more

similar to each other than to other cancers or normal tissues. This strong association between

normal liver and liver cancer gene expression was identified and explored by both Uhlen et al.

[18] and Li et al. [20]. Despite the separation between cancer and normal tissue transcriptomes

Table 2. Gene-level statistics computed on TCGA and HPA RNA-seq gene expression data and TCGA survival

data.

Statistic Description

ci,j Mean expression of gene i in cancer type j. The average of these mean expression values for gene

i across all 21 cancer types is represented by �ci. Expression values are normalized as FPKM+1.

ni,j Mean expression of gene i in normal tissue j (the tissue associated with cancer type j). The

average of these mean expression values for gene i across all 18 normal tissues is represented by

�ni. Expression values are normalized as FPKM+1.

c�i;j ¼log2ðci;j=�ciÞ Cancer-specific expression of gene i in cancer type j as computed by the log fold-change in

expression of gene i between cancer type j and the average in all cancer types. Large positive

values represent genes whose expression in cancer j is much larger than the average found in all

profiled cancers, large negative values represent genes whose expression in cancer j is much

smaller than the average found in other cancers and values close to 0 represent genes whose

expression is similar to that found in other cancers.

n�i;j ¼log2ðni;j=�niÞ Normal tissue-specific expression of gene i in tissue j as computed by the log fold-change in

expression of gene i between tissue j and the average in all normal tissues. The interpretation of

these statistics is similar to that outlined above for the c�i;j statistics.

ri,j = log2(ci,j/ni,j) Relative expression of gene i between cancer type j and the corresponding normal tissue as

computed by the log fold-change in mean expression of gene i in cancer j and normal tissue j.
si,j Cancer prognostic value of gene i for cancer type j as computed by the signed log of a p-value

generated by Uhlen et al. [18] to capture the significance of the association between expression of

gene i and survival for cancer type j. For genes with a favorable prognostic value, the -log of the

p-value is used to produce positive values. For genes with an unfavorable prognostic value, the

log of the p-value is used instead to generate negative values.

https://doi.org/10.1371/journal.pcbi.1009085.t002

Fig 1. Projection of TCGA cancer types and associated HPA normal tissues onto the first two principal components of the mean expression

values. Principal components are computed from a matrix of mean gene expression values, i.e., a matrix containing all ci,j and ni.j statistics. a) Cancers

are represented by blue points and are enclosed in the blue shaded region; normal tissues are represented by red points and are enclosed in the red

shaded region. b) Each normal tissue and the associated cancer type(s) are enclosed in a separate shaded region.

https://doi.org/10.1371/journal.pcbi.1009085.g001
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along the first PC, a very high correlation still exists between the mean gene expression values

in a specific cancer and the expression values in the corresponding normal tissue. This associa-

tion is captured in Table 1, which lists the rank correlation between cancer and associated

normal tissue mean expression values, i.e., the ci,j and ni.j statistics. As shown in Table 1, the

majority of the profiled cancers are most strongly correlated with their corresponding normal

tissue. The close association cancer and normal tissue gene expression shown in Table 1 is con-

sistent with the projections onto lower variance PCs shown in Fig B in S1 Text; among the first

8 PCs, only PCs 1 and 3 show a clear separation between cancers and normal tissues.

Association between normal tissue-specificity and cancer type-specificity

When analyzing tissue-specific or cancer-specific gene expression, i.e., the ratio of expression

in one tissue or cancer to the mean expression in all tissues or cancers as quantified by the c�i;j
and n�i;j statistics, cancers and normal tissues no longer cluster separately and most cancers

look very similar to the corresponding normal tissue (Tables 1 and 3 provide a quantification

of this similarity). Fig 2 illustrates the projection of the analyzed cancers and normal tissues

onto the first two PCs of the relative mean expression values, i.e., the PCs of a matrix combin-

ing all c�i;j and n�i:j statistics. Similar projects onto PCs 3–8 of the relative mean expression values

can be found in Fig C in S1 Text. As seen in Fig 2, cancers and normal tissues no longer sepa-

rate along PC 1 and each cancer tends to be very close to the corresponding normal tissue.

Table 3. Distances between each cancer type and the corresponding normal tissue in reduced principal component (PC) space. The Euclidean distance was computed

between the projections of each cancer type and the associated normal tissue in the space spanned by the first two PCs of the mean gene expression matrix (as shown in

Figs 1 and 2). The ‘Cancer/normal relative distance’ column contains the ratio of the distance between each cancer and normal tissue pair as visualized in Fig 1 to the aver-

age distance between the cancer and all other cancers or normal tissues. The ‘Cancer/normal-specific relative distance’ column contains a similar distance ratio computed

in the space spanned by the first two PCs of cancer-specific and normal tissue-specific mean expression values as visualized in Fig 2. The ‘Distance ratio’ column contains

the ratio of the ‘Cancer/normal-specific relative distance’ to the ‘Cancer/normal relative distance’.

TCGA abbrev. HPA tissue Cancer/normal relative distance Cancer/normal-specific relative distance Distance ratio

BLCA urinary bladder 0.997 0.122 0.123

BRCA breast 1.06 0.455 0.43

CESC cervix, uterine 1.25 0.576 0.461

COAD colon 0.805 0.256 0.318

GBM cerebral cortex 0.922 0.184 0.199

HNSC tonsil 0.871 0.243 0.279

KICH kidney 0.749 0.46 0.614

KIRC kidney 0.916 0.574 0.627

KIRP kidney 1.07 0.51 0.475

LIHC liver 0.585 0.37 0.632

LUAD lung 1 0.168 0.168

LUSC lung 1.03 0.444 0.431

OV ovary 1.81 0.584 0.322

PAAD pancreas 2.18 2.39 1.1

PRAD prostate 0.964 0.313 0.324

READ rectum 0.829 0.311 0.375

SKCM skin 0.497 1.04 2.1

STAD stomach 0.818 0.435 0.532

TGCT testis 1.81 0.857 0.474

THCA thyroid gland 1.14 0.216 0.189

UCEC endometrium 1.47 0.245 0.167

https://doi.org/10.1371/journal.pcbi.1009085.t003
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These findings are quantified in Table 3 using the Euclidean distances between cancer and

normal tissues in the space of the first two PCs. Specifically, the ‘Cancer/normal relative dis-

tance’ column contains the ratio of the distance between a given cancer and normal tissue in

the PC space visualized by Fig 1 relative to average distance between that cancer and all other

cancers or normal tissues. A relative distance of 1.0 indicates that the cancer mean expression

values are no more similar to the expression values in the corresponding normal tissue than to

a randomly selected cancer or normal tissue. Values above 1.0 indicate less similarity than

would be expected at random and values below 1.0 indicate that the cancer and normal tissue

transcriptomes are more similar than would be expected at random. The ‘Cancer/normal-spe-

cific relative distance’ column contains equivalent relative distance values generated in the

space of the first two PCs computed on the cancer and tissue-specific expression data as visual-

ized in Fig 2. The ‘Distance ratio’ column contains the ratio of the cancer/tissue-specific rela-

tive distances to the non-specific relative distances. Importantly, the distance ratios for most

cancer/normal pairs are significantly below 1.0, i.e., cancer and normal tissue transcriptomic

profiles are much more similar when evaluated in terms of cancer/tissue-specific values. Pan-

creatic cancer and skin cancer are two notable exceptions. For skin cancer, this result is likely

due to the fact that the TCGA expression data is generated on metastatic lesions rather than

primary tumors, which will reflect the properties of the host tissue. The implication of these

results is that differences in gene expression between cancers largely reflect differences found

between the corresponding normal tissues. A version of Table 3 with Euclidean distances com-

puted on all PCs with non-zero variance can be found as Table B in S1 Text. While the distance

between cancers and associated normal tissues in the space of all PCs is smaller for most cancer

types when using tissue/cancer-specific expression values as compared to unadjusted values,

the impact is much less pronounced relative to the distances computed on just PCs 1 and 2.

Fig 2. Projection of TCGA cancer types and associated HPA normal tissues onto the first two principal components of the tissue/cancer-specific

mean expression values. Principal components are computed from a matrix of tissue-specific and cancer-specific mean gene expression values, i.e., a

matrix containing all c�i;j and n�i:j statistics. a) Cancers are represented by blue points and are enclosed in the blue shaded region; normal tissues are

represented by red points and are enclosed in the red shaded region. b) Each normal tissue and the associated cancer type(s) are enclosed in a separate

shaded region.

https://doi.org/10.1371/journal.pcbi.1009085.g002

PLOS COMPUTATIONAL BIOLOGY Analyzing cancer gene expression data through the lens of normal tissue-specificity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009085 June 18, 2021 7 / 18

https://doi.org/10.1371/journal.pcbi.1009085.g002
https://doi.org/10.1371/journal.pcbi.1009085


This is consistent with the concentration of cancer/normal transcriptomic differences in PCs 1

and 3.

Association between normal tissue-specificity, cancer/normal differential

expression and cancer survival

The ratio of cancer to normal tissue gene expression is inversely associated with normal tissue

specificity for most of human genes in all tested cancer/normal pairs. In other words, tissue-

specific genes tend to be down-regulated in cancer, which is consistent with a view of cancer

as a dedifferentiation process [21]. This finding is quantified by the ρcase/ctrl values in Table 4,

which capture the rank correlation between normal tissue specificity (n�i;j) and cancer/normal

relative expression (ri,j) and are negative for all 21 profiled cancer types. A related finding is

that normal tissue specificity tends to be positively associated with favorable survival in cancer,

i.e., an increase in expression of normal tissue specific genes is associated with improved sur-

vival in cancer. Genes that are not tissue-specific have the inverse association, i.e., an increase

in expression is associated with worse survival. Genes that are down-regulated in a tissue rela-

tive to other tissues tend to have no survival association. The rationale behind these survival

associations is that cancer cells are more dedifferentiated than normal tissue cells [18]. This

survival association is quantified by the ρsurv values in Table 4, which capture the rank correla-

tion between normal tissue specificity (n�i;j) and prognostic ability (si,j) and are near zero or

Table 4. Correlations between normal tissue-specific gene weights and either cancer/normal relative expression or

an indicator of cancer prognostic ability. The ρcancer/norm column holds the Spearman rank correlation between nor-

mal tissue-specific gene weights (n�i;j) and the log ratio of mean expression in the cancer type to mean expression in the

normal tissue (ri,j). The ρsurv column holds the Spearman rank correlation between normal tissue-specific gene weights

(n�i;j) and the signed log of the p-value from a Kaplan-Meir test of the association between gene expression and cancer

survival as computed by Uhlen et al. [18]) (si,j, which is computed as -log(p-value) for favorable genes and log(p-value)

for unfavorable genes).

TCGA abbrev. HPA tissue ρcancer/norm ρsurv
BLCA urinary bladder -0.299 -0.0229

BRCA breast -0.437 -0.0993

CESC cervix, uterine -0.432 -0.105

COAD colon -0.057 0.304

GBM cerebral cortex -0.446 0.0764

HNSC tonsil -0.48 0.11

KICH kidney -0.232 0.454

KIRC kidney -0.436 0.454

KIRP kidney -0.311 0.454

LIHC liver -0.358 0.35

LUAD lung -0.363 0.073

LUSC lung -0.406 0.073

OV ovary -0.546 -0.0348

PAAD pancreas -0.643 0.148

PRAD prostate -0.179 -0.0397

READ rectum -0.208 0.349

SKCM skin -0.444 -0.0707

STAD stomach -0.258 0.344

TGCT testis -0.636 0.256

THCA thyroid gland -0.441 -0.0851

UCEC endometrium -0.45 0.0276

https://doi.org/10.1371/journal.pcbi.1009085.t004
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positive for all 21 profiled cancer types. Fig 3 provides a more detailed visualization of the asso-

ciation of normal tissue-specificity with cancer/normal relative expression and cancer survival

for liver cancer. Similar plots for the other profiled cancer types can be found in Figs D and E

in S1 Text.

Using normal tissue gene activity to improve the comparative analysis of

cancers

As illustrated in Fig 2 and Table 3, the relative expression of genes between different cancer

types is associated with the relative expression in the corresponding normal tissues. This

association can be leveraged to improve the comparative analysis of cancer types based on

transcriptomic data. Specifically, when attempting to identify genes that are differentially

expressed (DE) between two cancer types, genes that are DE between the associated normal

tissues can be prioritized, e.g., via gene filtering or a hypothesis weighting scheme like

weighted false discovery rate (wFDR) [22]. Although this will improve the power for detecting

DE genes between cancer types, the results will highlight differences between the underlying

normal tissues rather than differences between the cancer types that are independent of nor-

mal tissue physiology. Alternatively, removing tissue-specific genes (or gene sets) can enable

the identification of differences between cancer types that are due to malignant processes and

not differential gene activity within the normal tissues. This second approach is one we have

successfully used in the past for the analysis of gene expression in primary colorectal tumors

and colorectal metastatic lesions in the liver and lung [23]. The pan cancer impact of this

approach is illustrated in Fig 4 and Table 5. Fig 4 visualizes the Pearson correlation between

the fold-change in gene expression between each pair of cancers and the corresponding pair of

normal tissues. To compute this correlation for cancers a and b, we first create two vectors of

gene expression fold-change values: vc = {c1,a/c1,b,. . .,cp,a/cp,b} and vn = {n1,a/n1,b,. . .,np,a/np,b},

where vc holds the expression fold-change values for all p measured genes between cancers a

Fig 3. Association of liver-specificity (n�i;liver), liver cancer/normal liver differential expression (ri,LIHC) and liver cancer prognostic value (si,LIHC).

Each point in both plots represents a single gene and the red lines reflect the linear regression fit. a) Association between liver-specificity and differential

expression between liver cancer and normal liver. b) Association between liver-specificity and prognostic value of gene expression for liver cancer.

https://doi.org/10.1371/journal.pcbi.1009085.g003
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and b and vn holds the expression fold-change values between the normal tissues associated

with cancers a and b. The Pearson correlation coefficient is then computed between vectors vc

and vn and these correlation coefficients are visualized in the cells below the diagonal in Fig 4.

For cells above the diagonal, genes that have a fold-change between normal tissues (i.e., ni,a/
ni,b) of�0.5 or�2 are excluded from the vc and vn vectors before computing the correlation.

The positive correlation values generated on all genes indicate that the pattern of DE between

most cancers mirrors the pattern of DE found between the corresponding normal tissues. The

lower correlation values in the cells above the diagonal confirms that filtering out genes show-

ing large DE between associated normal tissues will generate cancer DE results that are distinct

from the normal tissue biology. Table 5 demonstrates the impact of this association for the

comparative analysis of liver cancer and glioblastoma. This table lists the 10 Molecular Signa-

tures Database (MSigDB) [24] Hallmark pathways most significantly associated with relative

gene expression between liver and cerebral cortex and between liver cancer and glioblastoma

according to the pre-ranked version of the CAMERA gene set testing method [25]. Gene set

testing of liver cancer/glioblastoma relative expression was performed using all genes (middle

Fig 4. Impact of normal tissue-specificity on cancer differential expression. Cell coloring reflects the Pearson correlation between the fold-change in

gene expression between each pair of cancers and the corresponding pair of normal tissues. Large correlations indicate that the expression difference

between cancers mirrors the expression difference in the normal tissues. For cells below the diagonal, all genes are used to compute the correlations; for

cells above the diagonal, genes that have a fold-change between normal tissues of�0.5 or�2 are excluded. As indicated by the lower correlations in

cells above the diagonal, filtering out genes that show large differential expression between normal tissues will generate cancer differential expression

results that are distinct from the normal tissue biology.

https://doi.org/10.1371/journal.pcbi.1009085.g004
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column) and using genes filtered according to DE between normal liver and cerebral cortex

(right column). Filtering for this analysis removed all genes whose fold-change in expression

between liver and cerebral cortex was less than�0.5 or�2. As seen in the table, differential

pathway activity between liver cancer and glioblastoma is similar to differential pathway activ-

ity between normal liver and cerebral cortex when all genes are considered. When genes exhib-

iting significant normal tissue DE are removed, the comparative cancer results are distinct

from the normal tissue results.

Use of normal tissue-specificity to improve the comparative analysis of

normal and neoplastic tissue

As illustrated in Table 4, tissue-specific genes are more likely to be down-regulated in cancer as

compared to the associated normal tissue and non-specific genes are more likely to be up-regu-

lated; these associations hold across all 21 evaluated cancer types. Similar to the approach out-

lined in Section Using normal tissue gene activity to improve the comparative analysis of

cancers for the comparative analysis of different cancers, this association between normal tis-

sue-specificity and cancer/normal DE can be used to prioritize genes for analysis via either

gene filtering or hypothesis weighting. Fig 5 illustrates the increase in power that can be

achieved by filtering genes according to normal tissue-specificity prior to a cancer/normal DE

analysis. Specifically, this figure contains quantile-quantile (Q-Q) plots of p-values from gene

set testing of MSigDB Hallmark pathways relative to cancer/normal relative expression (i.e, the

ri,j statistics) for the 21 profiled cancer types using all genes or genes filtered to remove the 20%

of genes with the most extreme tissue-specificity values (i.e., the n�i;j statistics). To test for path-

ways enriched in genes that are up-regulated in the cancer as compared to the associated nor-

mal tissue (panel a), filtering was performed to remove the most tissue-specific genes. To test

for pathways enriched in genes that are down-regulated in the cancer as compared to the asso-

ciated normal tissue (panel b), filtering was performed to retain tissue-specific genes. Similar

Q-Q plots based on just a single cancer/normal pair can be found in Figs F and G in S1 Text.

Use of normal tissue-specificity to improve cancer survival analysis

Normal tissue-specificity can also be used to improve the power of cancer survival analysis. As

shown in Table 4, tissue-specific genes are more likely to be favorably prognostic for cancer

Table 5. Impact of normal tissue-specificity on comparative analysis of liver cancer and glioblastoma. The table lists the 10 MSigDB Hallmark pathways most signifi-

cantly associated with relative gene expression between liver and cerebral cortex and between liver cancer and glioblastoma. Gene set testing of cancer relative expression

was performed using all genes (middle column) and using genes filtered according to normal tissue differential expression (right column). Filtering specifically removed all

genes whose log2 fold-change in expression between liver and cerebral cortex was�−2 or�2. Without filtering, differential gene expression between liver cancer and glio-

blastoma is similar to differential expression between normal liver and cerebral cortex.

rank liver vs. cerebral cortex liver cancer vs. glioblastoma liver cancer vs. glioblastoma (filtered)

1 XENOBIOTIC_METABOLISM XENOBIOTIC_METABOLISM E2F_TARGETS

2 FATTY_ACID_METABOLISM FATTY_ACID_METABOLISM G2M_CHECKPOINT

3 BILE_ACID_METABOLISM BILE_ACID_METABOLISM EPITHELIAL_MESENCHYMAL_TR. . .

4 COAGULATION OXIDATIVE_PHOSPHORYLATION MYC_TARGETS_V1

5 INTERFERON_GAMMA_RESPONSE ADIPOGENESIS KRAS_SIGNALING_UP

6 TNFA_SIGNALING_VIA_NFKB PEROXISOME INFLAMMATORY_RESPONSE

7 ALLOGRAFT_REJECTION COAGULATION TNFA_SIGNALING_VIA_NFKB

8 IL6_JAK_STAT3_SIGNALING CHOLESTEROL_HOMEOSTASIS IL6_JAK_STAT3_SIGNALING

9 ADIPOGENESIS REACTIVE_OXYGEN_SPECIES_P. . . TGF_BETA_SIGNALING

10 INFLAMMATORY_RESPONSE KRAS_SIGNALING_DN P53_PATHWAY

https://doi.org/10.1371/journal.pcbi.1009085.t005

PLOS COMPUTATIONAL BIOLOGY Analyzing cancer gene expression data through the lens of normal tissue-specificity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009085 June 18, 2021 11 / 18

https://doi.org/10.1371/journal.pcbi.1009085.t005
https://doi.org/10.1371/journal.pcbi.1009085


survival with non-tissue-specific genes more likely to be unfavorably prognostic. Unlike the

association between tissue specificity and cancer/normal DE, the association with survival is

only pronounced in a subset of the profiled cancer types. For these cancer types, an approach

similar to that outlined above for the comparative analysis of cancer and normal tissue can be

used to prioritize genes for survival analysis. Fig 6 illustrates the increase in survival analysis

power that can be achieved by filtering genes according to normal tissue-specificity. Similar to

Fig 5, this figure contains quantile-quantile (Q-Q) plots of p-values from survival analyses for

all 21 profiled cancer types using either all genes or a subset of genes filtered according to nor-

mal tissue-specificity (the n�i;j statistics). In this case, the p-values are generated via Kaplan-

Meir (KM) tests of the association of gene expression with cancer survival following the

approach of Ulhen et al. [18]. For the analysis of favorably prognostic genes (panel a), the p-

values for all unfavorable genes were set to 1.0 and filtering was performed to remove genes

where n�i;j < logð0:8Þ, i.e., genes down-regulated in the associated tissue. For the analysis of

unfavorably prognostic genes (panel b), the p-values for all favorable genes were set to 1.0 and

filtering was performed to remove genes where n�i;j > logð1:2Þ, i.e., genes up-regulated in the

associated tissue. Similar Q-Q plots based on just a single cancer/normal pair can be found in

Figs H and I in S1 Text.

Fig 5. Quantile-quantile plots illustrating the impact of tissue-specific gene filtering on gene set testing of MSigDB Hallmark pathways using

cancer/normal relative expression (ri,j). Each plot contrasts the distribution of p-values (the black line) from tests for all 50 Hallmark pathways for

each of the 21 cancer/normal pairs (total of 1050 tests) using all genes or genes filtered according to tissue-specificity. The red line has a slope of 1.0 and

captures the distribution that would be expected if filtered and un-filtered p-values had the same distribution. In both panels, the x-axis reflects the p-

value distribution when all genes are included and the y-axis reflects the p-value distribution when genes are filtered according to normal tissue-

specificity (n�i;j). Panel a) contains the results from tests for enrichment of large ri,j statistics among the gene set members (i.e., are gene set members

more likely to be up-regulated in cancer vs. the normal tissue?) and gene filtering removed the 20% of genes with the largest tissue-specificity values

(i.e., kept genes that are less tissue-specific). Panel b) contains the results from tests for enrichment of small ri,j statistics among the gene set members

(i.e., are gene set members more likely to be down-regulated in the cancer vs. the normal tissue?) and gene filtering removed the 20% of genes with the

smallest tissue-specificity values (i.e., kept genes that are more tissue-specific). For both panels, the p-values for gene sets whose direction of enrichment

is opposite the target direction were set to 1.0, which causes the vertical portion of the black line. As illustrated in the Q-Q plots, gene filtering in both

cases improved gene set testing statistical power.

https://doi.org/10.1371/journal.pcbi.1009085.g005
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Limitations

There are a number of limitations associated with the data and analysis results presented in

this paper that are important to note.

• The normal tissue paired with some of the cancer types (see Table 1) may not accurately

reflect the tissue of origin or tissue microenvironment of the tumor, e.g., most melanoma

samples in TCGA are metastatic lesions rather than primary tumors and most ovarian can-

cer tumors in TCGA are high-grade serious ovarian cancer which is thought to originate in

the Fallopian tube rather than normal ovarian tissue [26, 27].

• The HPA and TCGA gene expression data used to compute the statistics described in

Table 2 was measured on different individuals not matched for age, gender or clinical char-

acteristics (this limitation is partly mitigated by the focus on mean expression across sam-

ples). Note that gender is largely consistent for the gender-specific cancers and associated

tissues (breast, cervix, ovary, prostate, testis).

• The HPA RNA-seq data was measured on tissue samples from just three healthy individuals

so the mean values can be expected to have much larger variances than the TCGA means. It

should be noted that, despite the small number of samples, the mean gene expression values

estimated from the HPA RNAs-seq data have been shown to provide accurate estimates of

gene tissue-specificity as detailed in the original HPA paper [19].

Fig 6. Quantile-quantile plots illustrating impact of tissue-specific gene filtering on the distribution of p-values from Kaplan-Meir (KM) tests of

the association of gene expression with cancer survival as computed using the approach of Ulhen et al. [18]. Each plot contrasts the distribution of

p-values (the black line) for all genes for each of the 21 cancer types or for genes filtered according to tissue-specificity. The red line has a slope of 1.0

and captures the distribution that would be expected if filtered and un-filtered p-values had the same distribution. In both panels, the x-axis reflects the

p-value distribution when all genes are included and the y-axis reflects the p-value distribution when genes are filtered according to normal tissue-

specificity (n�i;j). Panel a) contains the results when only favorably prognostic genes are considered (i.e., genes where increased expression is associated

with better survival; p-values for unfavorable genes were set to 1.0) and gene filtering removed genes where n�i;j < logð0:8Þ (i.e., removed genes

expressed at a lower level in the associated normal tissue than in the average tissue). Panel b) contains the results when only unfavorably prognostic

genes are considered (i.e., genes where increased expression is associated with worse survival; p-values for favorable genes were set to 1.0) and gene

filtering removed genes where n�i;j > logð1:2Þ (i.e., removed genes expressed at a higher level in the associated normal tissue than in the average tissue).

As illustrated in the Q-Q plots, gene filtering in both cases improved survival analysis statistical power.

https://doi.org/10.1371/journal.pcbi.1009085.g006
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• The rank correlation coefficients reported in Tables 1 and 4 are computed across all mea-

sured genes for each cancer type and normal tissue pair so have very large n values and

approximate p-values close to 0. Because the true n values are much lower given the depen-

dency structure between gene expression values, we only reported the correlation point

estimates.

Guidance on how to leverage normal tissue-specific associations for cancer

transcriptomic analyses

To leverage the findings detailed in this paper for their own cancer transcriptomic analyses,

researchers can adopt the following general approach:

• Calculate the tissue-specific gene expression statistics n�i;j for the normal tissue associated

with the cancer type of interest. For the 21 cancer types and 18 corresponding normal

tissues investigated in this paper, these statistics can be found at the companion website

(https://hrfrost.host.dartmouth.edu/CancerNormal/). For normal tissues not analyzed in

this paper but supported by the HPA, it should be straightforward to compute the n�i;j from

the HPA RNA-seq data. For a normal tissue not supported by the HPA, the ni,j statistics can

be computed from appropriate transcriptomic data; as long as the HPA normalization is

used, n�i;j statistics can be computed using the average ni,j statistics for the normal tissues pro-

filed by the HPA.

• For survival analysis using gene expression predictors: Researchers can use the n�i;j statis-

tics to filter or weight the predictors to prioritize genes that are favorably and/or unfavorably

prognostic. The approach detailed in the Use of normal tissue-specificity to improve cancer

survival analysis Section above provides one example of how these statistics can be used

for gene filtering. Researchers are encouraged to first check the association between prog-

nostic ability and tissue-specificity (as captured in Table 4 and Fig E in S1 Text) to gauge the

likelihood that filtering/weighting according to n�i;j will be impactful for the cancer type of

interest.

• For the comparative analysis of gene expression in different cancers: For the differential

expression analysis between different cancer types or between primary and metastatic lesions

of the same cancer, researchers can use the n�i;j statistics to either prioritize genes that are dif-

ferentially expressed (DE) between the corresponding normal tissues or prioritize genes that

do not show normal tissue-specificity. Genes with large n�i;j statistics for either normal tissue

are likely to be DE between the corresponding cancers so filtering or weighting to prioritize

large n�i;j statistics will increase cancer DE power. However, as detailed in Section Using nor-

mal tissue gene activity to improve the comparative analysis of cancers, performing a cancer

DE analysis that simply recapitulates the differences between the normal tissues is unlikely

to be biologically informative. Instead, researchers can prioritize genes with n�i;j statistics

close to 0, i.e, genes that do not show significant up or down-regulation in the normal tissue,

to highlight differences between the cancers that are independent of the normal tissues. The

results from this type of analysis are shown in Table 5.

• For the analysis of cancer/normal relative expression: Because tissue-specific genes tend

to be down-regulated in the corresponding cancer, researchers can use the n�i;j statistics to

filter or weight genes prior to the comparative analysis of normal and neoplastic tissue. The

approach detailed in the Use of normal tissue-specificity to improve the comparative analysis
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of normal and neoplastic tissue Section above provides one example of how these statistics

can be used for gene filtering in this type of scenario. Similar to the survival analysis applica-

tion, researchers are encouraged to first check the association between tissue-specificity and

cancer/normal relative expression (as captured in Table 4 and Fig D in S1 Text) to gauge

the likelihood that this type of filtering/weighting will be impactful for the cancer type of

interest.

Conclusion

The biology of human cancer is highly tissue-specific with the majority of cancer-related

somatic alterations occurring in only a small number of tissue types and the functional impact

of common and inherited mutations frequently exhibiting a tissue-specific functional impact.

An important consequence of cancer tissue-specificity is that the biology of normal tissues

holds important information regarding the molecular features of associated cancers, informa-

tion that can be leveraged to improve the power and accuracy of cancer genomic analyses.

To date, most research exploring the joint analysis of normal tissue and cancer genomic

data has focused on the analysis of tumor and adjacent normal samples. The development of

approaches that leverage the general characteristics of normal tissues for cancer analysis has

only received limited attention with most investigations focusing on specific alterations within

a single cancer type. To address this research gap and support use cases where adjacent normal

tissue samples are unavailable, we have explored the genome-wide association between the

transcriptomes of 21 solid human cancers profiled by TCGA and their associated normal tis-

sues as profiled in healthy individuals by the HPA. Although the mean transcriptomic profiles

of normal and cancerous tissue appear distinct, a strong association is revealed between each

cancer and the corresponding normal tissue when gene expression data is transformed into tis-

sue or cancer-specific values, i.e., the ratio of expression in one tissue or cancer relative to the

mean in other tissues or cancers. As we have demonstrated through the analysis results pre-

sented in this paper, the strong association between cancer-specific and tissue-specific gene

expression can be leveraged to significantly improve statistical power and biological interpreta-

tion for cancer survival analysis, cancer comparative analysis, and analysis of cancer/normal

pairs.

Supporting information

S1 Text. Supporting methods and results. The supporting information file includes supple-

mental methods and results (Tables A and B and Figures A-I, which are described below).

Table A. TCGA cancer type statistics. The 21 analyzed TCGA cancer types, number of tumor

samples with expression data, mean age, gender proportions, and corresponding HPA normal

tissues. Note that gender proportions for some cancers may not add up to 1.0 if gender is

unavailable for some samples. Table B. Distances between each cancer type and the corre-

sponding normal tissue in reduced principal component (PC) space. The Euclidean dis-

tance was computed between the projections of each cancer type and the associated normal

tissue in the space spanned by the all PC with non-zero variance of the mean gene expression

matrix. The ‘Cancer/normal relative distance’ column contains the ratio of the distance

between each cancer and normal tissue pair to the average distance between the cancer and all

other cancers or normal tissues. The ‘Cancer/normal-specific relative distance’ column con-

tains a similar distance ratio computed in the space spanned by the first two PCs of cancer-spe-

cific and normal tissue-specific mean expression values. The ‘Distance ratio’ column contains

the ratio of the ‘Cancer/normal-specific relative distance’ to the ‘Cancer/normal relative
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distance’. Fig A. Variance of the PCs of the mean gene expression matrix. Fig B. Projection

of TCGA cancer types and associated HPA normal tissues onto principal components 3–8

of the mean expression values. Principal components are computed from a matrix of mean

gene expression values, i.e., a matrix containing all ci,j and ni.j statistics. a) Cancers are repre-

sented by blue points and are enclosed in the blue shaded region; normal tissues are repre-

sented by red points and are enclosed in the red shaded region. b) Each normal tissue and the

associated cancer type(s) are enclosed in a separate shaded region. Fig C. Projection of TCGA

cancer types and associated HPA normal tissues onto principal components of the tissue/

cancer-specific mean expression values. Principal components are computed from a matrix

of mean gene expression values, i.e., a matrix containing all ci,j and ni.j statistics. a) Cancers are

represented by blue points and are enclosed in the blue shaded region; normal tissues are rep-

resented by red points and are enclosed in the red shaded region. b) Each normal tissue and

the associated cancer type(s) are enclosed in a separate shaded region. Fig D. Association

between normal tissue-specificity (n�i;j statistics) on the y-axis and cancer/normal relative

expression (ri,j statistics) on the x-axis. Each point in both plots represents a single gene and

the red lines reflect the linear regression fit. Fig E. Association between normal tissue-speci-

ficity (n�i;j statistics) on the y-axis and cancer survival (si,j statistics) on the x-axis. Each

point in both plots represents a single gene and the red lines reflect the linear regression fit.

Fig F. Quantile-quantile plots illustrating the impact of filtering tissue-specific genes on

gene set testing of MSigDB Hallmark pathways using cancer/normal relative expression

(ri,j). Each plot contrasts the distribution of p-values (the black line) from tests for enrichment

of large ri,j statistics among the gene set members, i.e., are gene set members more likely to be

up-regulated in cancer vs. the normal tissue? The x-axis reflects the p-value distribution when

all genes are included and the y-axis reflects the p-value distribution when genes are filtered

according to normal tissue-specificity (n�i;j). Gene filtering removed the 20% of genes with the

largest tissue-specificity values (i.e., keeps genes that are less tissue-specific). Fig G. Quantile-

quantile plots illustrating the impact of filtering non-tissue-specific genes on gene set test-

ing of MSigDB Hallmark pathways using cancer/normal relative expression (ri,j). Each plot

contrasts the distribution of p-values (the black line) from tests for enrichment of small ri,j sta-

tistics among the gene set members, i.e., are gene set members more likely to be down-regu-

lated in cancer vs. the normal tissue? The x-axis reflects the p-value distribution when all genes

are included and the y-axis reflects the p-value distribution when genes are filtered according

to normal tissue-specificity (n�i;j). Gene filtering removed the 20% of genes with the smallest tis-

sue-specificity values (i.e., keeps genes that are more tissue-specific). Fig H. Quantile-quantile

plots illustrating the favorable impact of tissue-specific gene filtering on cancer survival

analysis. Each plot contrasts the distribution of p-values (the black line) capturing favorable

prognostic status of all genes for genes filtered according to tissue-specificity. The x-axis

reflects the p-value distribution when all genes are included and the y-axis reflects the p-value

distribution when genes are filtered according to normal tissue-specificity (n�i;j). Gene filtering

removed genes where n�i;j < logð0:8Þ (i.e., removed genes expressed at a lower level in the asso-

ciated normal tissue than in the average tissue). Fig I. Quantile-quantile plots illustrating the

unfavorable impact of tissue-specific gene filtering on cancer survival analysis. Each plot

contrasts the distribution of p-values (the black line) capturing unfavorable prognostic status

of all genes for genes filtered according to tissue-specificity. The x-axis reflects the p-value dis-

tribution when all genes are included and the y-axis reflects the p-value distribution when

genes are filtered according to normal tissue-specificity (n�i;j). Gene filtering removed genes

where n�i;j > logð1:2Þ (i.e., removed genes expressed at a higher level in the associated normal
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tissue than in the average tissue).

(PDF)
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