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A B S T R A C T

Pain is the leading symptom for most individuals with osteoarthritis (OA), a complex condition marked by joint
discomfort. Recently, the dynamic interplay between the nervous and immune systems has become a focal point
for understanding pain regulation. Despite this, there is still a substantial gap in our comprehensive under-
standing of the neuroimmune interactions and their effects on pain in OA. This review examines the bidirectional
influences between immune cells and nerves in OA progression. It explores current approaches that target
neuroimmune pathways, including promoting M2 macrophage polarization and specific neuronal receptor tar-
geting, for effective pain reduction.
Translational potential statement: This review provides a comprehensive overview of the mechanisms underlying
the interplay between the immune system and nervous system during the progression of OA, as well as their
contributions to pain. Additionally, it compiles existing intervention strategies targeting neuroimmunity for the
treatment of OA pain. This information offers valuable insights for researchers seeking to address the challenge of
OA pain.

1. Introduction

Osteoarthritis (OA) is a prevalent and disabling disease that imposes
a significant burden on both patients and society. Globally, the preva-
lence of OA has increased by 132.2 % since 1990 and currently stands at
7.6 % as of 2020. This prevalence is projected to further rise by 2050 [1].
OA affects not only the articular cartilage but also the subchondral bone,
intra-articular and periarticular soft tissues [2]. The main symptom of
OA is pain, and pain relief is a primary concern for patients [2,3].

Currently, pain assessment in OA patients primarily relies on

questionnaire-based methods, such as the Visual Analog Scale (VAS) [4],
and the Knee injury and Osteoarthritis Outcome Score (KOOS) [5]. More
objective methods, such as Quantitative Sensory Testing, including
measurements of Pressure Pain Threshold, Conditioned Pain Modula-
tion, and Temporal Summation, have also been employed to assess pain
sensitization in OA [6]. Evaluation of pain intensity in experimental
animals depends on behavioral experiments such as measuring me-
chanical and thermal pain thresholds, and gait analysis [7]. Addition-
ally, some studies measure levels of inflammatory factors in the DRG of
animals to assess pain severity [8].
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In normal circumstances, the joint tissues, apart from cartilage, are
richly innervated by sensory and sympathetic nerves. However, in OA,
nerve endings proliferate in the synovium, subchondral bone, and
osteochondral junction, heightening the joint’s sensitivity [9]. Tissue
injury in OA patients can activate nociceptive neurons, resulting in
nociceptive pain. Interestingly, studies found that individuals with OA
may also experience symptoms of neuropathic pain and neuro-
sensitization [3,5,10]. These symptoms manifest as heightened sensi-
tivity to stimulation within the joints or abnormal pain sensations in
areas beyond the affected joints. The current consensus suggests that the
mechanism driving chronic pain in OA is multifaceted, involving
continuous stimulation and activation of nociceptive receptors within
the joint, direct engagement of neurons in the dorsal root ganglion
(DRG), and changes within the central nervous system. Furthermore,
during the course of OA, there is a notable increase in markers indicative
of nerve injury [11,12], suggesting that nerve injury may also contribute
to OA pain.

OA, as a chronic inflammatory disease, involves a significant im-
mune component throughout its course. In OA joints, inflammation
primarily occurs in the synovium, where the number of immune cells
significantly increases during OA progression [13]. Key immune cells
involved include macrophages and T lymphocytes, whose infiltration
levels correlate closely with OA progression and pain symptoms [14].
Inflammatory responses within the joint lead to upregulation of
pro-inflammatory cytokines and pronociceptive substances, including
interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-17, prosta-
glandin E2 (PGE2), and nitric oxide (NO), which induce cartilage
degradation and activation of nociceptors [15]. Apart from immune
cells in the synovium, fibroblast-like synoviocytes (FLS), chondrocytes,
osteoblasts, and osteoclasts also contribute to the secretion of these in-
flammatory factors, further driving the progression of joint inflamma-
tion and pain. However, regulating inflammation is not their primary
function, and their capacity to secrete pro-inflammatory cytokines is
lower compared to immune cells [15]. The mechanisms through which
they regulate pain also partly differ from those of immune cells. For
instance, FLS are able to stimulate nociceptors by influencing myofi-
broblast contraction to regulate synovial fibrosis [16], and osteoclasts
can induce pain sensitization through the secretion of netrin-1 to pro-
mote nerve growth [17]. These cells’ modulation of OA pain extends
beyond the realm of neuroimmune interactions; hence they are not
extensively discussed in this review.

Recent advancements in understanding of OA pathogenesis have
revealed the critical role played by interactions between the immune
and nervous systems in mediating OA pain. This review is designed to
provide a comprehensive overview of neuroimmune interactions in OA,
and to summarize therapeutic approaches that target both the immune
and nervous systems for the management of OA pain. It specifically
delves into the role of immune cells and their secreted inflammatory
mediators in the regulation of OA pain. Furthermore, the review ex-
amines the ways in which neurons modulate immune cell activity and
inflammatory processes via neurotransmitters, chemokines, and
microRNAs.

2. Regulation of nerves by immune cells in OA

Within the immune system’s framework, there are two primary di-
visions: the innate and adaptive immunity mechanisms. Existing studies
have primarily focused on the cells involved in innate immunity,
particularly macrophages and the inflammatory mediators they release,
as indispensable factors in the onset and progression of OA, closely
linked to OA symptoms. Relatively few studies have explored the role of
adaptive immunity in OA. However, given its strong association with
chronic pain [18], further attention should be directed toward this
aspect (Table 1).

2.1. Regulation of nerves by innate immunity in OA

2.1.1. Macrophages
Macrophages are pivotal immune cells in OA pathology and have

thus become a central focus in OA research. Throughout the progression
of OA, macrophages accumulate not only in the joint, primarily within
the synovium, leading to inflammation and cartilage degradation [35,
19], but also in the DRG, where they provoke inflammatory responses
[27] (Fig. 1). These macrophages can be categorized into
pro-inflammatory macrophages (M1 macrophages) and
anti-inflammatory macrophages (M2 macrophages). Considering the
intimate link between pain and inflammation, the regulatory role of M1
and M2 macrophages on pain perception aligns with their respective
regulatory roles in inflammatory processes [20].

Within the joint, macrophages are predominantly located in the sy-
novial membrane. During the progression of OA, macrophages become
activated through the recognition of damage-associated molecular pat-
terns (DAMPs) and pathogen-associated molecular patterns (PAMPs) by
pattern recognition receptors (PRRs) [36], or through the initiation of
inflammasome activation [37]. The M1 polarization of macrophage is
closely associated with OA development [19]. M1 macrophages release
a variety of pro-inflammatory cytokines during the immune response,
which have the ability to directly stimulate nociceptive sensory nerve
endings [38]. For instance, in monosodium iodoacetate (MIA)-induced
OA mice, M1 macrophages in the synovium exhibit a selective accu-
mulation pattern around the terminations of neurons expressing tran-
sient receptor potential vanilloid 1 (TRPV1) [23]. TRPV1 is a

Table 1
The role of immune cells in different locations in mediating pain during OA
progression.

Types of
Immune Cells

Sites

Joint DRG Spinal Cord Dorsal
Horn

Macrophages Migration and M1
polarization in the
synovium [19].
Releasing
pain-promoting
substances, such as
IL-1β, IL-6, TNF-α,
CCL2, PGE2, and
NGF [20,21].

Infiltration and
M1 polarization
in the DRG [22].
The secretion of
iNOS, IL-1β,
TNF-α, IL-6,
CCL2, and NGF
induced pain
[23].

The activation and
proliferation of
microglia occurred
in the ipsilateral
spinal dorsal horn
[24].
Stimulating
neurons through
the release of IL-1β
[25].

Neutrophils Leading to pain
sensation by
secreting IL-1β and
NE [23,26].

Neutrophil
infiltration
occurred during
early-stage OA
[27].

Mast Cells The proportion of
mast cells in
synovium increased
significantly [28].
The secretion of
chymase, PGE2,
PGD2, and NGF
elicited pain [29–31].

Dendritic
Cells

The proportion of
dendritic cells
increased [32].

T Cells T-cell infiltration and
Th1 polarization in
the synovium
resulting in pain [33,
34].

OA, osteoarthritis; DRG, dorsal root ganglion; IL, Interleukin; TNF-α, tumor
necrosis factor α; CCL2, C–C motif chemokine ligand 2; PGE2, prostaglandin E2;
NGF, nerve growth factor; iNOS, inducible nitric oxide synthase; NE, norepi-
nephrine; PAR, proteinase-activated receptor 2; MIA, monosodium iodoacetate;
PGE2, prostaglandin E2; PGD2, prostaglandin D2; Th1, T-helper 1.
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non-selective cation ligand-gated channel mainly distributed on the
surface of sensory neurons. Its activation can cause structural changes
and trigger cations to flood the neuron, thereby playing a crucial role in
the transmission of inflammatory pain [39]. These nociceptive
TRPV1-positive neurons also co-express interleukin-1 receptor 1
(IL-1R1), and these two receptors exhibit functional coupling. As a
result, IL-1β released by M1 macrophages can directly activate these
neurons [23]. Additionally, other cytokines secreted by M1 macro-
phages, such as C–C motif chemokine ligand 2 (CCL2), can induce cal-
cium influx by binding to the corresponding chemokine receptor C–C
motif chemokine receptor (CCR) 2 on the surface of sensory neurons,
directly activating these neurons [40]. Another crucial
pro-inflammatory factor released by M1 macrophages, TNF-α, has been
shown to increase sensitivity of sensory neurons to PGE2, thereby pro-
moting hyperalgesia [41]. PGE2, a well-recognized pronociceptive
substance and a metabolite of arachidonic acid, can bind to prosta-
glandin E2 receptor 4 (EP4R) on nociceptors’ surfaces, promoting pain
sensitization [42]. In late-stage OA, synovial M1 macrophages are
among its significant sources [43]. Other pronociceptive substances
include nerve growth factor (NGF) and NO, which macrophages can
promote expression of by modulating FLS and chondrocytes, or serve as
direct sources themselves [21,44]. Interestingly, some studies suggested
that M1 macrophages might also play a role in pain relief. For instance,
M1macrophages at nerve injury sites release opioid peptides in response
to IL-4, thereby relieving pain [45]. In contrast, M2macrophages exhibit
anti-inflammatory and pain-relieving properties, suggesting that
encouraging M2 polarization could be a key strategy in alleviating OA
pain. This aspect will be further explored later in this review.

Recent studies have indicated that, macrophages in the DRG were

indispensable for the maintenance of OA pain [22]. In mice with
MIA-induced OA, the macrophages in the DRG exhibit a classical M1
phenotype, which is characterized by the expression of inducible nitric
oxide synthase (iNOS) [22], resulting in direct neurotoxicity to neurons
[46], which might explain the lack of strong correlation between pain
and joint destruction in OA patients [5]. Same as in the joint, certain
proinflammatory substances produced by M1 macrophages can stimu-
late neurons in the DRG. For example, IL-1β can induce pain by acti-
vating neuronal IL-1R1 [23]. CCR2 expressed by neurons in the DRG can
also be activated and induce pain by CCL2 secreted by M1 macrophages
[47,48]. Currently, the expression changes of molecules such as TNF-α,
IL-1β, IL-6, and NGF in the DRG have become important indicators for
evaluating pain in experimental animals [8,49].

In addition, acting as macrophages in the central nervous system,
microglial cells also undergo changes during the progression of OA [24,
25]. OA leads to the proliferation and activation of spinal microglia in
mice, promoting the progression and sustaining of pain [24]. Research
on the changes of cerebral microglial cells in OA is relatively lacking.
Microglial cells can also be divided into M1/M2 phenotypes, with
M1-polarized microglia capable of secreting various pro-inflammatory
mediators, such as IL-1β, TNF-α, IL-6, and iNOS, thereby being a
necessary condition for neuroinflammation and pain sensitization [50].
In MIA-induced OA mice, the upregulation of P2X7 receptors on spinal
microglial cells promotes the release of IL-1β, affecting the excitability of
dorsal horn neurons, leading to mechanical allodynia. Interestingly, in
mice with unilateral OA, in addition to affecting the ipsilateral spinal
dorsal horn, there is also proliferation in the contralateral spinal dorsal
horn microglial cells [24,25], and the corresponding mechanisms
require further clarification.

Figure 1. The Interaction of Macrophages with Nerves at Multiple Sites During the Progression of Knee OA.Within the knee joint, macrophages are capable of
directly stimulate nerve endings through various pro-inflammatory mediators. Concurrently, the release of nociceptive neurotransmitters from these nerve endings
also plays a role in modulating macrophage activity. In the ipsilateral L3-L5 DRG, macrophages release pro-inflammatory mediators that have the potential to either
stimulate or directly damage neuronal cell bodies. Meanwhile, neurons release nociceptive neurotransmitters, cytokines, and microRNAs, influencing macrophage
function. Additionally, in the spinal dorsal horn ipsilateral to the joint affected by OA, activated microglia secreted IL-1β, which stimulates spinal neurons.
Simultaneously, ATP-enriched vesicles released by neurons can promote microglial activation. CCL2, C–C motif chemokine ligand 2; CGRP, calcitonin gene-related
peptide; CX3CL1, C-X3-C motif chemokine ligand 1; DRG, dorsal root ganglion; IL, interleukin; NGF, nerve growth factor; NO, nitric oxide; OA, osteoarthritis; PGE2,
prostaglandin E2.
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2.1.2. Neutrophils
Similar to macrophages, in the joint, neutrophils expressing IL-1β are

observed to gather around sensory nerve terminals that express IL-1R1
[23], indicating that neutrophils in the joint play a role in neurology.
Research on the effects of neutrophils on nerves in OA primarily focuses
on elastase. Increased secretion of elastase by neutrophils in the joint can
lead to cartilage damage [51,52], and is also strongly associated with
synovial inflammation and pain of OA [26,53,54]. Neutrophil elastase
(NE) could trigger protease-activated receptor 2 (PAR2) on nociceptors
by cleaving its N-terminus [55], and the resultant pain might be
attributed to the functional interaction between PAR2 and TRPV1 [56].

In MIA-induced OA mice, early-stage OA is characterized by the
presence of neutrophil accumulation in the DRG. However, neutrophil
levels return to baseline after 4 weeks, without a concomitant
improvement in pain [27], suggesting that the presence of neutrophils in
the DRG may be a reactive response to acute injury. Nonetheless, the
early infiltration of neutrophils in the DRGmay have a significant role in
alleviating OA pain. This is supported by findings from mouse models
using complete Freund’s adjuvant (CFA) injection, where early admin-
istration of non-steroidal anti-inflammatory drugs (NSAIDs), which
inhibited the aggregation of neutrophils, surprisingly led to a prolonged
pain experience. A possible mechanism for this could be the secretion of
calprotectin by neutrophils, which is thought to play a protective role
against the development of chronic pain [57].

2.1.3. Mast cells
The level of mast cell infiltration in synovium of individuals with OA

is significantly elevated, surpassing that seen in rheumatoid arthritis.
This elevation correlates positively with OA severity as observed in
imaging studies but does not directly correlate with patient-reported
pain [28]. Upon degranulation, mast cells release proteases such as
tryptase, which, similar to NE, can activate PAR2 [29], leading to similar
effects. Mast cells may also serve as a source of NGF [30]. NGF can
activate tropomyosin receptor kinase A (TrkA) on mast cells, inducing
the release of PGE2 and prostaglandin D2 (PGD2). The activation of the
prostaglandin D2 receptor 1 by PGD2 results in heightened sensitivity of
pain receptors [31].

2.1.4. Dendritic cells
There is a lack of research investigating the interaction between

dendritic cells (DCs) and neurons in OA. An elevated proportion of DCs
in the DRG has been reported in elderly mice with OA [32]. Given that
DCs are known to secrete IL-23, a factor implicated in inducing
chemotherapy-induced pain in female mice [58], it is reasonable to
speculate that DCs in the DRG might similarly influence OA pain.

2.2. Regulation of nerves by adaptive immunity in OA requires further
confirmation

During the progression of OA, there is a noticeable increase in T cell
migration into the synovium and synovial fluid. Importantly, the pro-
portion of CD4+ T cells in the synovium exhibits a substantial correla-
tion with the severity of pain and disability experienced in OA [59]. At
the early stages of OA, a conspicuous accumulation of T cells occurs in
the synovium, accompanied by a tendency towards T-helper 1 polari-
zation [33]. This pattern persists even in the later stages of OA [34].
Although these T cells are known to exacerbate inflammation and
cartilage deterioration in OA, thereby affecting pain perception [60],
their precise role in neuroimmune crosstalk within this context remains
largely unexplored.

Although the role of B cells in OA is not as prominent, specific
phenotypic alterations are observed. In OA, synovial B cells gain the
ability to secrete IL-10 [61]. Furthermore, Raffaeli et al. documented a
decrease in opioid receptor expression on peripheral B cells in patients
suffering from severe or chronic pain [62]. These findings suggest the
potential engagement of B cells in the neuroimmune response of OA.

3. Regulation of immunity by nerves in OA

In the context of OA within the joint, activated sensory neurons
subsequently release a diverse array of substances within the joint and in
the DRG. This process simultaneously facilitates pain transmission and
affects the immune system (Table 2).

Nociceptive transmitters released by sensory neurons have the ca-
pacity to modulate immunity. In the joint affected by OA, the activation
of nociceptive receptors leads to an upregulation in the expression of
nociceptive transmitters, primarily substance P (SP) and calcitonin
gene-related peptide (CGRP) [76]. These nociceptive neurotransmitters
are critical factors in pain perception. However, their regulatory roles in
inflammation are complex and may involve dual pro-inflammatory and
anti-inflammatory effects. For example, in vitro studies show that SP can
stimulate macrophages and mast cells to secrete pro-inflammatory
chemokines [63,64]. However, in the context of tissue injury, SP can
promote the M2 polarization of macrophages, which is associated with
anti-inflammatory effects [77]. More studies tend to support the
anti-inflammatory role of SP during joint diseases. In RA mouse models,
intravenous SP injection increases circulating IL-10 levels and induces
macrophage M2 polarization, exerting anti-inflammatory effects and
reducing arthritis inflammation [67]. Furthermore, Kim SJ et al. ach-
ieved sustained release of SP in OA mouse joints through intra-articular
injection of self-assembled peptide-SP hydrogels, effectively reducing
joint inflammation [78]. Conversely, while some reports suggest that
CGRP can induce M2 polarization of macrophages in conditions such as
keratitis and temporomandibular joint arthritis [68,79], current
research on joint diseases tends to support a pro-inflammatory role for
CGRP. In RA mice, CGRP released from DRG induces endothelial cells to
secrete C-X3-C motif chemokine ligand 1 (CX3CL1), which recruits
macrophages and promoting M1 polarization [65]. Additionally, in OA
mice, intravenous administration of CGRP antagonists has been shown

Table 2
Regulation of immune cells by sensory neuron secretions.

Sensory Neuron
Secretion

Pro-Inflammatory Anti-Inflammatory

Nociceptive
transmitter

SP induced activation of
MAPK pathway in
macrophages [63].
SP activated mast cells via
Mrgprb2 [64].
CGRP promoted the release of
CX3CL1 by endothelial cells,
inducing macrophage
chemotaxis and M1
polarization [65].

SP promoted M2 polarization
of macrophages through
inhibition of NF-kB/NLRP3
signaling pathway [66].
Intravenous injection of SP
increased circulating IL-10
level, inducing macrophage
M2 polarization [67].
CGRP promoted M2
polarization of macrophages
via the PI3K/AKT signaling
pathway [68].

Cytokines CCL2, CSF1, CX3CL1
promoted macrophage
chemotaxis in the DRG [69,
70,71].
CXCL1 facilitated the
chemotaxis of neutrophils in
the DRG [72].

microRNA miR-21 induced pro-
inflammatory phenotype in
macrophages [73].

miR-183 suppressed
macrophage chemotaxis [74].

Vesicles ATP-enriched vesicles
released by spinal dorsal horn
neurons induced activation of
microglia [75].

SP, substance P; MAPK, mitogen-activated protein kinase; Mrgprb2, mas-related
G protein-coupled receptor b2; CGRP, calcitonin gene-related peptide; NF-kB,
Nuclear Factor kappa B; NLRP3, NOD-like receptor family pyrin domain con-
taining 3; IL-10, Interleukin-10; PI3K, Phosphoinositide 3-kinase; AKT, Protein
Kinase B; CX3CL1, C-X3-C motif chemokine ligand 1; CCL2, C–C motif chemo-
kine ligand 2; DRG, dorsal root ganglion; CSF1, colony-stimulating factor 1;
CCR2, C–C motif chemokine receptor 2.

Y. Zou et al.



Journal of Orthopaedic Translation 48 (2024) 123–132

127

to alleviate joint inflammation [80].
Sensory neurons are capable of expressing various cytokines that

influence immune cells. The heightened expression of CCL2 in sensory
neurons within the DRG is associated with the activation of Toll-like
receptor (TLR) 4 in neurons by DAMPs, which can attract macro-
phages originating from monocytes [32,76]. It is noteworthy that CCL2
can also activate CCR2 to promote pain through neuronal autocrine
signaling [47]. Other research has demonstrated that TLR4 activation
could also increase the expression of C-X-C Motif Chemokine Ligand 1
(CXCL1) in sensory neurons, promoting the chemotaxis of neutrophils
and contributing to pain induction [72]. Similarly, in OA mice, neurons
in the DRG release CXCL11, which attracts macrophages and induce M1
polarization to sustain pain [22]. Additionally, CX3CL1, present on the
membrane of sensory neurons in the DRG, is released in response to
nerve injury or other stimuli, promoting both the chemotaxis and pro-
liferation of macrophages [69]. In the event of nerve damage, there is an
upsurge in the expression of colony-stimulating factor 1 (CSF1) in DRG
sensory neurons, leading to an expansion of macrophage within the DRG
in male mice. Meanwhile, CSF1 levels also increase in the spinal dorsal
horn, inducing the activation of microglial cells [70]. However, whether
this phenomenon occurs during the course of OA requires further
investigation.

Sensory neurons can also exert influence on the immune system
through additional mediators. For example, neuron-derived microRNAs
play a regulatory role in immunity. In mouse OA models, within the
DRG, the inhibitory effect of miR-183 on transforming growth factor
(TGF)-α is compromised, resulting in an increase in CCL2 and the
exacerbation of inflammation [74]. In the DRG of peripheral nerve
injury mouse model, there was a notable increase in miR-21 expression
in neurons, accompanied with the neuron-mediated transfer of exo-
somes containing miR-21 to macrophages, resulting in the development
of a pro-inflammatory macrophage phenotype [73]. Furthermore,
ATP-enriched vesicles released by neurons in the posterior horn of the
spinal cord could stimulate microglial activation, exacerbating nerve
pain [75].

4. Treatment strategies for OA pain targeting the nervous system
and immune system

As mentioned earlier in this paper, both the immune system and the
nervous system contribute significantly to the pain experienced by pa-
tients with OA. Considering that pain is often the most troubling
symptom for those with OA, numerous studies have been devoted to
developing new treatment approaches to address OA-related pain. In
this section, we categorize these approaches based on their targets -
either the immune system or the nervous system - and explore the
feasibility and effectiveness of these varied treatment methods (Table 3).

4.1. Strategies for targeting immune cells

As previously mentioned, macrophages play a crucial role in OA pain
through their involvement in neural immunity. While local or systemic
depletion of macrophages in mouse models of OA can alleviate pain, it
significantly disrupts immune homeostasis in the entire body and joint
[86,87], making it unsuitable for clinical treatment. Modulating polar-
ization of macrophages appears to be a promising avenue for therapeutic
intervention of OA pain. Numerous studies have demonstrated that
promoting the anti-inflammatory phenotype of macrophages within the
joint effectively alleviates OA lesions and reduces pain in mice [35,88].
Likewise, the direct application of in vitro-induced M2 macrophages to
the DRG successfully relieved OA pain in mice [27].

The role of M2 macrophages in suppressing pain can be achieved
through multiple mechanisms. Firstly, they release anti-inflammatory
factors like IL-10 and TGF-β, which have been shown to reduce neuro-
inflammation [89,90]. Secondly, M2 macrophages secrete opioid pep-
tides to mitigate pain hypersensitivity [91]. Thirdly, M2 macrophages
secrete specialized pro-resolving mediators including lipoxins, pro-
tectins, and resolvin E1, which modulate various immune cells to
decrease the release of inflammatory mediators [92]. Additionally, the
activation of resolvin E1 receptors on DRG neurons has been shown to
block TRPV1 function, thus alleviating pain [93]. Finally, M2 macro-
phages release exosomes containing miRNA, which can be internalized
by neurons and glial cells, leading to the downregulation of target genes
associated with pro-neuroinflammatory responses [94,95]. Therefore,
inhibiting M1 polarization and inducing M2 polarization of macro-
phages is an effective approach to alleviate OA pain.

Macrophage polarization is a complex process involving multiple
signaling pathways. Representative pathways include Janus kinase
(JAK)/signal transducer and activator of transcription (JAK/STAT),
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PI3K/AKT),
Nuclear Factor kappa B (NF-kB), mitogen-activated protein kinase
(MAPK), Notch, and TGF-β dependent pathways [96–100] (Fig. 2).
Modulating these signaling pathways is crucial for regulating macro-
phage polarization. Numerous biologically active materials have been
utilized in current research, including inhibitors, specially treated cells,
and extracellular vesicles, all proven to regulate the polarization of
macrophages within joints and DRGs, thereby relieving OA pain [49,
101–107] (Table 4). Currently, there is insufficient evidence regarding
the induction of M2 polarization of macrophages in the central nervous
system to alleviate OA pain; however, research by Ban D et al. has shown
that intrathecal injection of cerium oxide nanoparticles induces M2
polarization of macrophages, mitigating chronic neuropathic pain
following spinal cord injury [108].

Significant research is focused on targeting cytokines secreted by
macrophages for the treatment of OA pain. As mentioned earlier, certain
pro-inflammatory cytokines, including TNF-α and IL-1β, which are
secreted by M1 macrophages, can directly stimulate nerve cells. How-
ever, clinical trials targeting a single cytokine alone have showed limited
efficacy in alleviating OA pain [109,110]. Conversely, the direct appli-
cation of M2 macrophage-related cytokines has achieved gratifying re-
sults. Animal studies have shown that direct application of the fusion
protein of IL-4 and IL-10 in the joints or DRGs significantly alleviates OA
pain, underscoring the significant potential of these cytokines in OA
therapy [27,111].

Significant strides have also been made in targeting other immune
cells in the context of OA. For instance, prophylactic inhibition of NE has
been successful in preventing chronic OA pain in animal models [81]. In
the management of OA, therapeutic approaches that focus on modifying
T cell behavior are showing promise. These methods are proving to be
effective in both mitigating pain and protecting joints, representing a
key avenue in OA treatment [82,83]. However, most current studies
focus on safeguarding joint tissues like cartilage and synovium, with less
emphasis on the involvement of these immune cells in neuroimmunity.
This oversight highlights the need for further research to understand

Table 3
Strategies for the treatment of OA pain targeting neuroimmunity.

Targets Promising Therapeutic Measures

Immune Cells Macrophages Inhibition of M1 polarization and induction
of M2 polarization within the joint and DRG
[35,27].

Neutrophils Neutralizing NE in the joint [81].
T cells Inhibition of Th17 cell differentiation [82].

Induction of Treg cell differentiation [83].
Neuronal
Surface
Receptors

TrkA Blocking the binding of NGF to TrkA [84].
TLRs Inhibition of TLRs activation [71].
TRPV1 Injection of high-purity synthetic trans-

capsaicin into the joint [85].

OA, osteoarthritis; TrkA, tropomyosin receptor kinase A; TLRs, toll-like re-
ceptors; TRPV1, transient receptor potential vanilloid 1; DRG, dorsal root gan-
glion; NE, neutrophil elastase; Th17, T-helper 17; Treg cell, regulatory T cell;
NGF, nerve growth factor.
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how these immune cells contribute to neuroimmune interactions and to
explore their potential implications in the development of new OA
therapies.

4.2. Strategies for targeting nerves

Strategies targeting nerves include inhibiting neurogenic pain me-
diators and pro-inflammatory factors to reduce neurogenic inflamma-
tion, as well as blocking relevant receptors on nerves to alleviate
inflammatory stimulation. Rimegepant, a CGRP receptor antagonist, has
been shown to inhibit synovitis and pain in destabilization of the medial
meniscus (DMM) mouse models when administered intraperitoneally
[80]. Another competitive antagonist, CGRP8-37, demonstrates similar
effects [112]. Additionally, intra-articular injection of a combination of
magnesium ions and vitamin C has been shown to reduce SP and CGRP
levels in OA mouse joints, alleviating hyperalgesia and suppressing joint
inflammation [113]. Furthermore, intrathecal injection of antibodies
against CXCL11, which is released by neurons, improves pain-related
behaviors in OA mice by inhibiting M1 polarization of macrophages in
the DRG [22].

Significant progress has been made in research focused on blocking
the actions of pain-promoting substances on nerves. NGF can activate
the TrkA and p75 neurotrophic factor receptor (p75NTR) on sensory
neurons, leading to hyperalgesia [114]. Although anti-NGF treatment
can improve pain, it also carries the risk of causing structural damage to
the joint [115], which has led to the suspension of related clinical trials.
Recent studies on animal models suggested that blocking TrkA might
offer a more promising avenue for treating OA pain compared to
anti-NGF therapies [116,84]. Regarding another pro-inflammatory
substance PGE2, the competitive EP4R antagonist Grapiprant has been
used to treat osteoarthritic pain in dogs [117], but its applicability to
humans requires further investigation and confirmation through
research. Moreover, sensory neurons express various TLRs in the DRG,
and the activation of these TLRs contributes to OA pain [71]. The spe-
cific mechanisms of this process remain to be further elucidated. It is

hypothesized that this phenomenon is related to the interaction between
neutrophils and neurons. As previously mentioned, activation of TLRs
on the surface of neurons leads to the release of CXCL1, recruiting
neutrophils, and ultimately inducing nociceptive sensitization [72].
Additionally, it is proposed that DAMPs generated in OA can activate
TLRs on damage neurons co-expressing TLRs and TRPV1, subsequently
activating associated TRPV1 channels, leading to cation influx and
neuronal activation [71]. Experimental studies have shown that tar-
geted knockout of these TLRs or the downstreammyeloid differentiation
primary reactive protein 88, the central connector protein of TLRs, can
inhibit hyperalgesia [72,118]. Therefore, exploring the blocking of TLRs
as a potential therapeutic approach for OA pain is worthy of further
investigation.

TRPV1 is at the forefront of current research, particularly due to its
expression in sensory neurons and its association with inflammation and
transmission of nociceptive signals [119]. The impact of TRPV1 acti-
vation, however, is multifaceted, owing to its widespread presence in
various cell types. Notably, several studies have illustrated that acti-
vating TRPV1 can actually reduce inflammation and pain. For instance,
capsaicin, a well-known TRPV1 activator, has been shown to inhibit M1
macrophage polarization by activating TRPV1 receptors present on their
surface [120]. A recent clinical study revealed that high-purity synthetic
trans-capsaicin (CNTX-4975) significantly reduced pain in patients with
moderate to severe OA knee pain, particularly during walking [85].
Nonetheless, further research and practical investigations are necessary
to fully comprehend the role of TRPV1 in modulating nerve function and
immunity in OA patients.

5. Discussion

This review offers a detailed summary of the mechanisms underlying
pain associated with OA, with a particular focus on the interaction be-
tween immune cells (especially macrophages) and nerves. It also ana-
lyzes potential methods and their feasibility of targeting immune cells
and nerves in the treatment of OA pain. Throughout the various stages of

Figure 2. Representative signaling pathways regulating macrophage polarization. Red arrows indicate pathways promoting M1 polarization of macrophages,
green arrows indicate pathways inducing M2 polarization, and black arrows represent pathways contributing to both M1 and M2 polarization, without a clear
polarization preference. AKT, Protein kinase B; DAMPs, Damage-associated molecular patterns; DLL4, Delta-like ligand 4; IL, Interleukin; JAK, Janus kinase; MAPK,
Mitogen-activated protein kinase; NF-kB, Nuclear Factor kappa B; NICD, Notch intracellular domain; PAMPs, Pathogen-associated molecular patterns; PI3K,
Phosphoinositide 3-kinase; TGF-β, Transforming growth factor-β; TLR4, Toll-like receptor 4; TNF-α, Tumor necrosis factor-α.
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OA, immune cells located in the joint, DRG, and spinal cord can
modulate pain by affecting sensory neurons through the production of
cytokines. Inversely, nerves can also influence immune responses by
releasing chemokines and neurotransmitters. Consequently, strategies
that regulate the infiltration of immune cells and cytokines in the joint
and DRG, as well as those modulating neuronal surface receptors, might
be effective in pain inhibition. The insights provided in this review offer
a fresh perspective for researchers investigating the mechanisms and

treatment of OA-associated pain.
It is noteworthy that pain symptoms in some OA patients appear

before X-ray evidence of cartilage damage. This phenomenon occurs
because synovitis and bone marrow edema beneath the cartilage can
sometimes precede structural cartilage damage during the progression
of OA, and both are highly correlated with pain [17,121]. Furthermore,
mice undergoing DMM surgery showed changes in gene expression in
the DRG and pain behavior as early as three days post-operation, even in
the absence of significant cartilage structural damage [122,123]. This
suggests that targeting neuroimmune regulation in the early stages of
OA progression for pain management should be considered, and treat-
ment sites should include joints and DRGs. Additionally, the contribu-
tion of subchondral bone to OA pain should be emphasized. While
synovitis is a typical feature of OA, some patients exhibit milder synovial
inflammation, with pathology primarily characterized by cartilage
degeneration and subchondral bone remodeling [124]. In these cases,
specific mechanisms of pain include increased intraosseous pressure
stimulating nerve endings [125], netrin-1 secretion by osteoclasts [17],
acidification of the subchondral bone microenvironment sensitizing
nerve endings [126], and spontaneous firing of nerve endings due to
subchondral bone overgrowth [127]. Although immune cell populations
in OA subchondral bone have been identified [128], the interaction of
neuroimmune factors within subchondral bone has not been definitively
validated.

Exploration into the crosstalk of immune cells in OA remains limited,
potentially obscuring some underlying neuroimmune mechanisms. In-
sights from studies on other diseases can be informative. For example,
Luo et al. discovered that in cases of chemotherapy-induced nerve injury
in female mice, T cells were the primary inducers of neuropathic pain in
standard strains. In contrast, in female nude mice lacking adaptive im-
munity, macrophages assumed this pain-inducing role [129]. This sug-
gests that employing immune-deficient animal models may offer
substantial insights into understanding neuroimmune interactions in
OA.

Research into the role of the sympathetic nervous system in neuro-
immune responses throughout OA progression remains underexplored.
Neurotransmitters secreted by the sympathetic nervous system, present
within the joint, could have varying effects on different cell types,
potentially leading to both pro-inflammatory and anti-inflammatory
responses [130]. Notably, several studies have documented the im-
pacts of sympathetic nerve activation and ablation in mouse models of
OA [131,132]. The involvement of sympathetic nerves in neuroimmune
interactions in OA thus presents an intriguing area for more in-depth
research in future studies.

In animal models of OA, variances in pain-induced behaviors and
pain-related signaling pathways were observed across different sexes
[32]. This pattern is mirrored in other pain research, where immune
responses and subsequent pain responses varied between experimental
animals of different genders [58,129]. Taking into account the dispar-
ities in OA prevalence and symptoms between men and women in the
general population [2], the inclusion of both genders in neuroimmunity
studies related to OA would be beneficial. Such an inclusive approach is
likely to shed light on gender-specific differences in the mechanisms of
OA pain and aid in creating more targeted and effective treatment
methods.
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Table 4
Biological materials improving OA pain through promotion of macrophage M2
polarization.

Biological Materials Mechanism of Action Route of
Administration

Target
Site

MJN110 (a kind of MAGL
inhibitor) [101]

Promoting increased
expression of PINK1
and Parkin in M1
macrophages to induce
mitochondrial
autophagy.

Intraperitoneal
injection

Joint

BTZ@PTK (co-assembly
of bortezomib and an
amphiphilic
copolymer with ROS-
cleaved thioketal
linkages) [102]

Clearing ROS within
the joints, and
inhibiting the JAK/
STAT signaling
pathway in M1
macrophages, thus
suppressing M1
polarization of
macrophages.

Intra-articular
injection

Joint

TissueGene-C (a
combination of human
allogeneic
chondrocytes and
irradiated GP2-293
cells overexpressing
TGF-β1) [103]

Inducing an increase in
intra-articular levels of
IL-10 and TGF-β1 to
promote M2
polarization of
macrophages.

Intra-articular
injection

Joint

Neonatal umbilical cord
blood mesenchymal
stem cells [104]

The secretion of PTX-3
acts on macrophages to
induce M2 phenotype.

Intra-articular
injection

Joint

Tyrosine hydroxylase-
positive cells derived
from bone marrow
stem cells [105]

The secretion of IL-4
induces M2
polarization of
macrophages and
catecholamines to exert
anti-inflammatory
effects.

Intravenous
injection

DRG

M2 macrophage-derived
exosomes miR-26 b-5p
[106]

Suppressing the
expression of TLR3 on
macrophages to inhibit
M1 polarization, while
promoting the
expression of CD206 on
their surface to
facilitate the transition
to M2 type.

Intra-articular
injection

Joint

Membrane vesicles from
Lactobacillus johnsonii
[107]

The Membrane vesicles
highly enriched with
GS can inhibit the
mTOR pathway within
macrophages,
hindering macrophage
migration and M1
polarization.

Intraperitoneal
injection

Joint

Dexamethasone
liposomes [49]

Binding to
glucocorticoid
receptors on the surface
of synovial
macrophages promotes
their polarization to the
M2 phenotype.

Intra-articular
injection

Joint

OA, osteoarthritis; MAGL, Monoacylglycerol lipase; PINK1, Phosphatase and
Tensin Homolog-Induced Putative Kinase 1; TGF-β1, transforming growth fac-
tor-β1; IL-10, Interleukin-10; PTX-3, Pentraxin-3; IL-4, Interleukin-4; TLR3, Toll-
like receptor 3; GS, glutamine synthetase; mTOR, mammalian target of
rapamycin.
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