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Insect pests, such as pantry beetles, are often associated with food contaminations and public

health risks. Machine learning has the potential to provide a more accurate and efficient solution in
detecting their presence in food products, which is currently done manually. In our previous research,
we demonstrated such feasibility where Artificial Neural Network (ANN) based pattern recognition
techniques could be implemented for species identification in the context of food safety. In this study,
we present a Support Vector Machine (SVM) model which improved the average accuracy up to 85%.
Contrary to this, the ANN method yielded ~80% accuracy after extensive parameter optimization. Both
methods showed excellent genus level identification, but SVM showed slightly better accuracy for most
species. Highly accurate species level identification remains a challenge, especially in distinguishing
between species from the same genus which may require improvements in both imaging and machine
learning techniques. In summary, our work does illustrate a new SVM based technique and provides

a good comparison with the ANN model in our context. We believe such insights will pave better way
forward for the application of machine learning towards species identification and food safety.

Food contamination is a serious threat to public health and national well-being!. Pest such as insects, especially pantry
and storage beetles, often find their ways into food produces (usually grains) during the storage and/or transportation’.
Food products processed using insect infested raw materials and under unsanitary conditions also lead to the presence
of insect contaminants in foods**. Furthermore, many species of beetle are known to be the symbiotic hosts for path-
ogen, with some being extremely virulent®. Various beetle species are also known to arrive through food products and
become invasive species by out-competing the native species’®. Thus, the implications of beetle contamination in food
products may stretch from food safety to ecological balance. To counter such implications, food products are constantly
inspected and food safety regulations are strongly enforced to keep both the consumers and the environment safe!°.
The most common and widely used method of food inspection involves highly trained professionals who carefully
analyze food samples for insect remains (and other extraneous materials) using optical microscopy. They then match
the patterns from the insect fragments with reference images to identify the insect species>'°. This however, is quite
arduous, time consuming and needs well trained professionals. Even then, it is often challenging to correctly identify
the exact species as insects from same genus often have similar appearance in pattern and minute structural features.
The last few years have seen a surge in the use of machine learning for species identification due to the tech-
nological advents in the field of pattern recognition''~". Identification of species is the key in cataloging and
monitoring the biodiversity which has great implications in better managing the ecology and environment!®17.
Several reports are now available that highlight the application of machine learning in species identification,
where features were first extracted to identify particular patterns or micro-structures by analyzing multiples ‘test’
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Figure 1. The basic experimental procedure for our work. (a) Steps (such as beetle collection and imaging) to
obtain input images; (b) the input images subjected to Feature Selection Method. (¢ and d) and the schematic
showing the training and cross validation using ANN and SVM models.

images. They are then used to build a training set classifier obtained from various closely-related species!®-%.

The organisms were then identified by comparing the characteristics of these extracted features using machine
learning methods that showed good accuracy for identification even to the order level**2*. However, most of
such reports that prevail are in the context of ecology where clear and whole images of intact specimens are easily
available. It is rare to find intact insect species in food products where the insect remains are often fragmented
and significantly altered from the steps of food processing, which makes the species identification significantly
more challenging. Hence, we explored the possibility of using advanced machine learning approaches for species
identification using images of fragmented organisms that are relevant to food safety regulations.

In our previous work, we explored the feasibility of this approach to be implemented in the context of food con-
tamination and safety regulations**?. Results from the present regulatory analytical methods have shown over time
that the majority of insect contaminations found in foods arise from the storage/pantry beetles*. Beetles (or other
insects) also have hardened forewings, known as elytra, whose fragments are often found in insect contaminated
food samples. Fortunately, these hard chitin-based elytra also contain particular patterns and microstructures that
could be unique to the species. Hence, analyzing elytra samples to identify the beetle species using their ‘fingerprint’
of patterns seemed a logical start for us. Thus, fifteen different species of beetles that are most commonly associated
with food contaminations were collected and their elytra were carefully imaged. They were then processed through
MATLAB (MathWorks Inc., Natick, MA) to extract the image features. Subsequently, we trained artificial neural
networks (ANN) that allowed up to 79% prediction accuracy in identifying the beetle species®.

Recently, SVM based methods have also been used in identifying insect species in stored grains. In one such
work, Yang et al. used a multi-class SVM model to identify insects, based on the proportion of their wings?.
Similar studies used size ratio of insect bodies or other anatomical features as means to identify the species?>*”%.
However, such approaches can only be applied to ecological systems and not in food safety as beetle remains
in food samples often lose their original shape, size and color due to the food processing steps. Further, these
studies seldom address identifying beetle species that have similar appearance or other anatomical similarities,
for belonging to the same genus®. Nevertheless, these works do highlight the significance of developing multiple
methods for species identification, especially when the challenges are both copious and extensive.

Therefore, we explored the possibility of using support vector machine (SVM) as an alternative method for our
applications. In this work, we developed an SVM based method in our quest to improve the accuracy of predic-
tion. The multi-class SVM model was first developed to identify a beetle species from the images of its elytra frag-
ments. This was followed by an innovative approach where binary class SVM was used to distinguish between the
beetles that have similar appearances, especially for being from the same genus. Motivated by the SVM method,
we also improved the ANN model that we reported earlier”. Both the parameters and architectures of the ANN
method were thoroughly optimized in our quest to improve its accuracy. We used the same set of elytra images,
feature sets and feature selection methods for both ANN and SVM based models. Our study therefore also pre-
sents a fair comparison and evaluates the performances of these two well optimized machine learning methods
(ANN and SVM) in identifying the food contaminating beetle species. We believe such optimization techniques
and their comparison will help future studies achieve better accuracies. We further hope that our study will also
shed light on the use and influence of machine learning techniques towards the problem of species identification
through pattern recognition, especially in the context of food safety.

Materials and Methods

The flow of the experiments and computational steps and methods involved in our study are schematically
demonstrated in Fig. 1. It started with the collection of the 15 different species of food contaminating beetles, fol-
lowed by imaging their elytra. To simulate the fragmentations, each of the whole elytra images was cropped into
about 100 sub-images, which were used to develop the models for species identification. The following describes
the whole process in greater details.
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Imaging and data acquisition. The basic imaging and data acquisition process were described in our
previous report and is schematically illustrated in Fig. 1a**. Briefly, we chose 15 different species of beetles that
are most commonly associated with insect based food contamination. The elytra from each species were carefully
isolated and several different elytra samples (5-6 per species) from each species were carefully imaged using
Leica M205, at 75-100X magnification. The collected images were then enhanced through Gaussian filters and
histogram-equalization. To simulate fragmentation, 100 sub-images were randomly extracted from each image
of whole elytra with variable sizes and locations. This resulted in a final set of 6900 images, with an average of
460 =+ 71 images for every species of beetle. Subsequently, the images were analyzed digitally for characteristic
features such as the size, color, patterns, periodicity and textures, which grossly mimicked the steps and methods
of taxonomical identification®'°.

Image feature extraction. Identifying and recognizing the minute features or patterns within the input
images is the key in identifying a species through machine learning. The process of feature extraction is thus
essentially converting the microstructural patterns of the input images into their digital descriptors, a strategy that
have commonly been used in species identification through pattern recognition'?-*>?7-?_ To do this effectively, all
the image features were categorized in 3 sets, namely Global Feature 1 (GF1), Global Feature 2 (GF2) and Local
Feature (LF). The broad characteristics such as size, color, basic pattern and textures (such as lines, ridges) were
categorized as GF1. More detailed features such as type of patterns (hairs, ridge lines, groves and bulges) and their
periodicity were categorized as GF2. As the name describes the GF 1&2 provide a good general description of the
global or general appearance of the images and provides their basic identity. Further microscopic details, such
as minute changes in and around every pattern spot (such as a bulge or a grove) were categorized as a LE, as they
provided information about local changes around every pattern spot and is believed to be more closely associated
with the identity/order of the insects. Standard digital filtering and processing steps were used during the process
of feature extraction, which have been described in detail in our previous report. Together, the GF1, GF2 and LE,
allowed us to generate the classifier that essentially contained the digital fingerprint’ for each beetle species. For
more details on these features, please refer to our previous report®.

Feature selection. Methods aiming minimal redundancy were used for feature selection, which allowed us
to better understand the features that are more closely associated to species identification. For this, two commonly
used feature selection methods were applied. The first method tries to achieve both minimal redundancy and
maximum relevance (nNRMR)* based on mutual information of two variables, I(x, y), which can be defined using
joint and marginal probabilities:

plx; 3)
I(x, y) = ) _p(x; y)lo,
%,y pr e o

Let S denote the subset of features that are being sought. Then, mRMR aims to minimize redundancy, which
selects the features that are mutually maximally dissimilar by the following minimization problem.

min W, W, = o — > 10, j)
‘ | i,jeS (2)

On the other hand, relevance of a feature i to a specific class h needs to be maximized as follows:

max V,, V, = Zl(h i)
sl (3)

At this point, two options arise to combine the above expressions in a single maximization problem: (i) mutual
information difference (MID) and (ii) mutual information quotient (MIQ) for which following expressions are
optimized, respectively.

max (V; — W) (4)

max (V/W) (5)

Due to the difference of two options, different rankings of the features are possible. In this study, we used the
top 50 features suggested by each of these two approaches.

The second method is based on correlation and eliminates features that have low prediction ability
and high degree of redundancy. This method too has two options: correlation-based-forward (CBF) and
correlation-based-backward (CBB), as elimination can take place either forward or backward. It was observed
from our previous study that CBF led to a better performance than that by CBB, and hence only CBF was used
in this study.

Pre-processing of features. In order to avoid over estimation, care was taken to randomly divide the sam-
ple images into a training set and a test set. About 80% of the sample images were used to build the classifier and
~20% were reserved for the cross validation. However, due to the nature of feature extraction process, about 70
samples had NaN values and hence were carefully excluded before the feature set processing. It was also observed
that some samples were inclusive in one feature set and yet could be excluded in another. Thus, we had slightly
different number of samples for different feature sets (MID: 6887, MIQ: 6832, CBF: 6835), but we did maintain
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One Layer Two Layers Three Layers
50 (50, 50) (50, 150, 50)
100 (50, 100) (100, 150, 100)
150 (150, 200) (150, 150, 150)

Table 1. Representation of different ANN architectures used in our work using various number of layers and
nodes.

the ratio between training sets and test sets as 80% to 20%. To address the vast difference in scales of the feature
descriptors, we employed z-score normalization for each feature descriptor across all the samples: namely, we
subtracted the mean from each value and divided by the standard deviation of that particular descriptor. In doing
so, the original data were turned into a standard scale for each feature and evaluated in separate SVM models and
ANN optimization.

ANN Method and Parameter Optimization. In our previous report, we used 2 hidden layers with 50
nodes in ANN. In this work, we have expanded our approach to optimize the architecture. Here, we not only
experimented with different number of layers, but also utilized two commonly used training algorithms for pat-
tern recognition, Scaled Conjugate Gradient (SCG) and Resilient Backpropagation (RP). Each training algorithm,
in turn, was optimized for 1, 2 and 3 hidden layers. We further augmented various numbers of nodes with an
increment of 50s as represented in Table 1, and ran them with both trainscg and trainrp functions in MATLAB,
giving us 36 different ANN architectures. We also performed some experiments with or without z-score to study
the normalization behavior.

We initiated our experiments by using all features but subsequently utilized only the selected feature sets.
Besides three independent feature selection methods, the union of 3 selected feature sets was also considered in
seeking the best representation of the features. Hence, five feature sets, viz. all features, MID, MIQ, CBE, and the
consensus set (CS) were subsequently used for further optimization procedure.

SVM Method and Parameter Optimization. The SVM models are prominent for handling both linear
and non-linear data. The model aims to draw decision boundaries between data points from different classes and
separate them with maximum margin®. We used open source LIBSVM for this work due to the non-linear nature
(multiple type and kind of patterns) of our feature set®’. For the same reason, radial basis function (RBF), which
is widely adopted® and often outperforms other kernel functions in nonlinear classification®, was chosen as the
kernel function to solve the classifier. The feature sets described in the ANN method (in the previous paragraph)
were adopted for the SVM method as well.

As for the optimization procedure, we sought for the best ~ parameter for the RBF function along with the
best regularization parameter, C, for SVM. The combination of optimal ~ and C values were sorted such that
the influence is enough to have a decision surface without misclassifying the training set, which minimized the
over-prediction.

During this stage, we aimed to develop multi-class SVM model that relies on different training and testing sets
in several rounds, which is also called cross validation. This is a common approach to evaluate a predictor and
can be applied in various ways such as the sub-sampling test, independent dataset test and jackknife test**~¢. In
this study, we attempted to mimic the leave-one-out test at species level with some variations. More specifically,
we introduced randomness to select a particular image with its 100 sub-images for each elytra species. Then, 100
sub-images were held out for the test set in that particular round. Namely, we left out an image for a given species
and tried to predict the class labels for its 100 sub-images. Since this step was repeated 100 times, 100 pairs of
training and test sets were built each consisting of 5,400 and 1,500 (15 x 100) instances. It is worth noting that test
sets have equal representation of each species with their 100 sub-images and we kept the same ratio between the
training and the test sets. However, sub-images having NaN values in their feature vectors were removed, which
resulted in slightly varying sizes for both sets.

In order to ensure the best possible optimization, we first performed a grid search across 5 orders of mag-
nitude in logarithmic scale for varying C (from e + 01 to e + 5) and ~ values (from e — 01 to e — 06). Then, for
the multi-class SVM, 100 rounds of cross validation were performed. The outcomes however were not always
perfectly accurate. In some cases, two species of beetles, due to their similar appearances, would be misclassified.
They were defined as the ‘difficult pairs’ as it was difficult to distinguish between them. Another binary class SVM
was then used to better distinguish between these two species of beetle. In this case, 100 rounds of cross validation
were performed. For the hybrid multi-stage SVM model, first the multi-class model was run during each round
of cross-validation. If the result obtained happened to be one of the difficult pairs (i.e. beetles species of same
appearance or from same genus), then the results were fed into a binary-class SVM, which would separate the
difficult pairs. This concatenated method was not performed and the process stopped after the multi-class SVM if
the outcome species is not from a difficult pair.

Metrics Used to Evaluate the Prediction Quality. In order to compare aforementioned classification
efforts, we calculated a confusion matrix for each round of cross validation from which we derived the counts
for true positive (TP), false positive (FP), true negative (TN), and false negative (FN) cases. Due to the nature of
multi-classification, we computed these values for each class label (species) from an M x M confusion matrix as
follows.

Let Cy;, ) be the confusion matrix for M species where rows represent the actual class label and columns stand
for the predicted labels. Then, for a given class label 7,
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Figure 2. Overlapping of features for various feature selection methods. Only 7 features were found to be
selected by all three methods.
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Once we obtained the values above, we evaluated the performance of each approach by the following five
metrics: (i) Accuracy, (ii) Sensitivity, (iii) Precision, (iv) Specificity, and (v) Matthew’s correlation coefficient (MCC),
which are commonly used in biological research®-*! and defined as below.

M TP
Overall Accuracy = M’_; x 100%
iz TR + EN; (10)
Sensitivity = _r X 100%
TP + EN (11)

Precision = T—P X 100%
TP

+ FP (12)
TN

Specificity = ——— X 100%

pectficly = N P ’ (13)

(TP x TN) — (FP x EN)

MCC =
/(TP 4 EN) x (TP + FP) x (TN + FN) x (TN + FP) (14)

Since our work primarily relies on cross validation, we first computed the overall accuracy of each model by
Eq. 10 for every round and reported the global statistics such as mean and standard deviation in table format.
As for the performance evaluation per species (across all rounds of cross validation), we used the remaining
four metrics listed through Eqs 11 to 14. However, due to the virtue of our study design, Accuracy per species
essentially becomes the same as Sensitivity as they both refer to the measure of true predictions for a given class.

Results

A total of 625 features were generated from the elytra images (Supplementary Table S1). Feature selection meth-
ods were applied to extract the top ~50 features in each method, (MID & MIQ 50; CBF 52). The union of three
feature sets yielded 119 features in the CS, as shown in Fig. 2 (Supplementary Table S2). It is worth noting that
the feature sets have only 7 features in common and the majority of them are unique to that particular set. This
could be due to the fact that the nature of the patterns/features on the beetle elytra can be quite diverse based
on the genus and/or the species. Also, some of the features were partially correlated and redundant as they were
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All (625) le+02 e Josa 0.048
MID (50) le+03 e Jos 0.050
MIQ (50) le+01 o loss 0.046
CBF (52) le+02 ég ~ lo79 0.044
CS (119) le+01 o loss 0.044

Table 2. The significance of feature selection on the performance for the multi-class SVM model.

Sensitivity

1

Precision

! I
Specificity

MCC

Figure 3. Prediction performance as Sensitivity, Precision, Specificity and MCC values for the identification of
all 15 species of beetles. It can be noted that some species of beetles could be identified with better confidence
level than others. However, beetles such as species 2&10; 5&6 (of genus Oryzaephilus) and 13&14 (of genus
Tribolium) were difficult to be identified (indicated by the arrows).

extracted and we never intended to make them uncorrelated; hence statistical enrichment methods may not nec-
essarily highlight the common features that bear relevance to their identities.

For the SVM method, each feature set, the best values for C & y were sought by developing 100 rounds of SVM
models and testing them on the corresponding test sets. Table 2 summarizes the identification accuracies that were
averaged across 100 rounds for each feature set for the best (C, ) pair. The MID, MIQ and CBF showed a perfor-
mance of 81, 83 and 79% respectively with their best parameters (Table 2), with the consensus set (CS) yielded 85%
accuracy. All feature selection methods including the consensus set did not show significant improvement than
using all 625 features (84%). This reflects that the feature selection method may have limitations in improving the
performance. However, careful selection of some features, such as through the CS model, that has significantly less
number of features, will provide a more efficient model, when dealing with a large data set.
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§2-S810 le+02 le — 05| 0.87 0.08
$5-S6 le+02 le — 05 | 0.79 0.13
S13-S14 le+02 le — 03 | 0.87 0.11

Table 3. Accuracy, C and ~ values for the binary class SVM model to differentiate between the difficult pair.

-- Multi I - Binary I - Hybrid
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00 &%

Figure 4. Performance comparison for the original Multi-class and Hybrid SVM models in terms of their
Accuracy values for the difficult pairs. The Hybrid Model that was aimed to combine the advantages of Multi-
class and Binary models failed to outperform the original Multi-class model.

The CS model was thus carried forward for the species identification using the multi-class SVM method. The
prediction performance was assessed by 4 metrics namely Sensitivity, Precision, Specificity and MCC, which have
collectively been presented in Fig. 3 for all the 15 different beetle species. Almost near perfect Sensitivity values
were obtained for species 1, 3, 4, 9, 11 & 15. Similarly, excellent Precision (positive prediction) and MCC values
could be observed for the species 1, 3, 4, 7, 11, 12 & 15. On the contrary, the Precision values were quite low for
species 2, 5, 6, 10, 13 and 14, with species 5&6 yielding less than 80%. The Sensitivity and MCC values were also
not high for species 2, 5, 6, 10, 13 & 14. Overall, the results from the multi-class SVM method suggest that some
beetle species are more difficult to identify (and distinguish) than the others as indicated by arrows in Fig. 3. For
example, our model falls short in distinguishing between species 2 & 10; 5 & 6 or 12, 13 & 14. This seems logical,
since the elytra patterns of species 2 & 10 (G. cornutus & S. paniceum) have very similar appearance. This is even
more so for species 5 & 6 (O. mercator & O. surinamensis) and species 12, 13 & 14 (T. castaneum, T. confusum & T.
freemani) which being from the same genus, are known for their exceedingly similar appearances that sometimes
even confuse trained entomologists>*.

The under-performance of the multi-class model to distinctively identify beetles of similar elytra patterns or
of same genus presented us with the challenge of separating between the ‘difficult pairs’. Hence, binary-class SVM
model was implemented to these three sets of difficult pairs. Table 3, presents the best values of C and y along with
the average accuracies and standard deviations for 100 rounds of cross validation, for the binary class SVM model.

It can be noted that the binary-SVM did improve the accuracy of prediction and this approach could distin-
guish between the difficult pair species 2&10 as it has improved the accuracy to 87%. The same improvement
was also observed for species 13&14, as the accuracy increased to 87%. This is significant, as our model can now
distinguish between two species from the same genus, (i.e. T. confusum & T. freemani of genus Tribolium), which
is regarded difficult even for entomologists when looking only at their elytra patterns. The improvement however
falls short for the ‘difficult pair’ species 5&6 (O. mercator & O. surinamensis of genus Oryzaephilus). This could be
due to extensive similarity of patterns between two species can be easily confuse one from the another*2.

The improvement of predictions in the species identification (except for one pair) encouraged us to consider a
hybrid model, where the feature set is first solved with a multi-class SVM model, followed by a binary-class model if the
former predicts a ‘difficult pair. We hypothesized that this multi-stage, hybrid model would probably be able to combine
the best of both models, i.e. predict the correct identity from any number of species (the advantages of the multi-class
SVM) and with a reasonably good accuracy even for the difficult pairs (the key feature of the binary class SVM). Figure 4
compares the accuracy values for multi-class and hybrid multi-stage (1% multi-class then binary) SVM models. It was
indeed possible to get slightly better accuracy (88%) when the outcome of the 1st step yields the difficult pair 2/10.
This, however, was not the case when the 1st step of the hybrid model yielded either 5/6 or 13/14. One possible reason
is that the features used for the multi-class model may not be as relevant for the binary class models. For example, the
features arising from the structural patterns (that are of Global Feature 2) are almost identical for 13&14 (T confusum
& T. freemani being from the same genus Tribolium) and can only be distinguished by the feature set arising from their
color (Global Feature 1). Thus, it may be possible that the subtle differences in their colors are either not translated onto
the classifier or may have been lost during the feature selection process®*.
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50 trainscg 0.77
50 trainrp 0.70
100 trainscg 0.79
! 100 trainrp 0.69
150 trainscg 0.79
150 trainrp 0.67
(50, 50) trainscg 0.78
(50, 50) trainrp 0.71
5 (50, 100) trainscg 0.78
(50, 100) trainrp 0.70
(100, 150) trainscg 0.79
(100, 150) trainrp 0.51
(50, 150, 50) trainscg 0.78
(50, 150, 50) trainrp 0.58
(100, 150, 100) trainscg 0.79
} (100, 150, 100) trainrp 0.52
(150, 150, 150) trainscg 0.79
(150, 150, 150) trainrp 0.43

Table 4. Accuracy values for ANN models with different parameters.

(50, 50) 0.78 078
(50, 100) 0.78 0.78
(100, 150) 0.79 0.79

Table 5. The effect of z-score normalization.

Compared to our previously reported ANN method, the accuracies of our newly developed SVM were found
to be slightly better. This improvement did come from our strategy of screening and optimizing a wider range of
the parameters and using the CS. This encouraged us to better optimize our previously developed ANN method
in order to improve its accuracy. Thus, efforts were made in optimizing both its training algorithm and network
architecture. Since the CS feature sets yielded the best results and even outcompeted the all feature set in SVM,
hence we used only this feature set to optimize the ANN method.

First, we optimized the model by employing different training algorithms with varying number of hidden
layers and hidden nodes. Training algorithms, SCG and RP were applied with trainscg and trainrp functions in
MATLAB. For each algorithm, the network architecture was varied for 1, 2 and 3 hidden layers, with the nodes
varied from 50 to 150 at increments of 50 in each hidden layer. As shown in Table 4, the trainscg function per-
formed better than the trainrp function in all architectures. The best accuracies that we could obtain were slightly
above 79% for all three layers. Additionally, we observed that slight improvements could be made by increasing
the number of nodes. However, increasing the number of nodes even up to 400 only marginally increased the
accuracy to 80% for 2 and 3 layer architectures.

We also investigated the normalization (with and without z-score) conditions which did not show much
change in accuracies as highlighted in Table 5. With all the variations in architectures and optimization of param-
eters the overall accuracy only increased marginally from our previous report of 79%, with the maximum of 80%
which was obtained for 2 layer architecture with (350, 400) nodes. Thus, we concluded that accuracy levels can
hardly be stretched beyond 80%, using this method with the given set of features or input images.

Similar to our previous report and the SVM method, the individual performance for the ANN method also
varied according to the species (Supplementary Figure S1). While some species such as species 1, 3, 4, 11 & 15
yielded good prediction performances (for all 4 metrics namely: Sensitivity, Precision, Specificity and MCC), some
others such as 2, 5, 6, 8, 10, 13 & 14 fell short from the overall average. The reason for this can again be attributed
to the entomological similarities between the species. The beetle species 2&10; 5&6; 8&9 and 13&14 are difficult
pairs and the method did not perform well in these cases and failed to appreciably distinguish between the spe-
cies from the same genus. However, our collective results do highlight that both the ANN and SVM models are
efficient enough to predict the species identity at the genus level. This is significant since accurate identification
of the genus of the beetle may be sufficient in several applications. For example, in many regulatory practices of
food safety, the goal is often to screen a larger sample volume than have detailed characterizations of a very small
sample set. In such applications, where fast, efficient and inter-mediate screening is necessary, perhaps an initial
genus level accuracy is a welcome relief, which the ANN and SVM models are quite capable of providing.
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Discussion

The broader objective of this work is to develop a machine learning method that would eventually identify food
contaminating beetles even to the species level. We plan to achieve this by training machines to recognize a set
of patterns or features that are associated with a particular beetle species. The classifier of these features sets,
obtained from the images of beetle elytra, could be solved using machine learning algorithms such as ANN and
SVM, each having its own advantages and disadvantages'*!>*"?2, In our previous work, we explored the feasibility
of machine learning in the context of food safety using an ANN based method to identify the beetle species from
the images of their elytra fragments. This exploratory work provided us with the insight of the extent and nature
of the complexity associated with this problem. We realized that it is only prudent to explore different methods to
counter such a convoluted problem. Therefore, we investigated upon a SVM based method not just to identify the
beetle species from their elytra fragments but also to improve on the accuracy of prediction.

Due to the processed non-linear nature of the feature set, the RBF kernel function was used in our SVM
model, as such approaches has been reported in similar situations?*>?”44, The feature set was subjected to various
feature selection methods to narrow down more prominent features before using a SVM model. This enrichment
step, especially using the CS approach, did help us achieve excellent genus level identification. But the use of the
CS, which is the union of MID, MIQ and CBF methods, did not drastically increase the accuracy (only 2% more
than MIQ). Our results thus suggest that the key in improving the accuracy may lie in obtaining better quality
images and extracting as many features as possible from them. The classifier with a large feature set can then be
solved using RBF kernel function as it is suitable for higher dimensions and certainly has the potential to manage
several different feature possibilities along with multiple types of images®*>*>*¢. The present work also highlight
that such a strategy could address the challenge in distinguishing between the difficult pairs, which could not be
achieved previously??*?>2%47 The accuracy was found to be ~87% for the species from the same genus, which was
also higher than the ANN methods that we previously developed?®.

We believe it can be improved further when we use a larger data set with more features which is currently
underway. But before proceeding to such extensive and elaborate experimental efforts, it was important to
demonstrate that the SVM method could provide an accurate and robust solution for this problem, which pri-
marily is the essence of this work as it helps lay out a solid foundation to our future efforts.

One can argue that this increase in accuracy could be implicated to the feature selection method along with the
detailed optimizations in the SVM method. To answer such a question, we embarked on improving the ANN method
using the same strategies, namely the use of feature selection method and the detailed optimization of its parameters.
We believe that the features selected through the CS model is the most rational means to minimize the feature numbers,
as it outperforms three separated feature sets in ANN as well. The nature of the training function also influenced the
accuracy values, as the trainscg function was found to perform better than the trainrp function for all the architec-
tures. In spite of all the optimization processes, the accuracy did not improve significantly from the one obtained in
our previous study, the best incrementing only to 80% from ~79%. The individual performance for each species was
found to vary amongst the species with some performing poorly due to their similarities in appearances with the other.
Those species that appear similar to each other (difficult pairs) could not be separated using the ANN based method.
Moreover, for the ANN method, the accuracies were quite close for the data set treated with or without z-score normal-
ization, which suggests that the normalization was not necessary for the ANN method.

The proper optimization and similarity of treatments of both the SVM and ANN method therefore also
allowed us to compare these computational methods in our context. We found that the SVM slightly outper-
forms ANN for the species recognition for our application using the present data set. The exact reason for this
improvement is difficult to pin-point and could simply be due to better parameter selection or the diverse and
non-linear nature of the data set or both. It could also be due to the fact that the SVM converges on a global
minimum and allows a better tolerance to the noise (deviation from the pattern that often inherently associated
with the original images) therefore might be slightly more robust for a large set of features®**+4. Thus, from the
perspective of convergence and robustness, SVM may have certain advantages over ANN. Figure 5 compares the
accuracy values using ANN and SVM methods for each species of beetle. It can be noted that the SVM method
marginally out-performs the ANN for most beetles, except for species 5&6, i.e. the beetles of genus Oryzaephilus,
as indicated by the red arrows. This could be due to the marked similarities in their elytra patterns. Other than
the minute difference in their coloring, their elytra are almost identical to each other®. Such differences in features
may have received slightly more weightage in the ANN method compared to the SVM>!*% Tt could also simply
be an anomaly that may clear out when larger numbers of better quality images are used for both the methods.
But such anomalies do highlight the importance of developing multiple methods for a multi-facetted problem
like this. They each have their own advantages and disadvantages for a particular set of images and their mutual
comparison could show us the best way forward, which essentially is the rationale behind the present study.

While we achieved high overall accuracies through SVM and ANN models, the difficult pairs have remained as
a challenge, which might be due to the high entomological similarities within those pairs. The limited number of
specimen images per species not only restricted us in sample sizes, but also made it harder to distinguish those difhi-
cult pairs. Besides the quantity of images, quality has appeared to be another issue that might have introduced arti-
facts in the feature extraction stage. Even though we compared prediction models under the same conditions, having
actual beetle fragments rather than sub-images could be closer to a real-world scenario. As indicated in our earlier
work, some other food storage beetles are lacking in our current repository. Hence, collection, storage, and analysis
of high quality microscopic images for a larger variety of beetle fragments remain as some of the future works.

Conclusion

In summary, both ANN and SVM could be used to identify the species of food contaminating beetles from the
patterns on their elytra fragments. The multi-class SVM method was found to be a good strategy for the beetle
species identification. It had average overall accuracy of 85%, when features selection methods were consolidated
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Figure 5. Comparison the performance metrics between ANN and SVM methods for individual beetle species.
It can be noted that both SVM and ANN methods are quite comparable to each other, with each having its own
advantages.

with the consensus approach. For individual species, it showed excellent genus level accuracy but could not distin-
guish between the beetles with very similar appearance (difficult pair). To address this, an additional binary-SVM
method was developed that could improve the accuracy up to 87% for some difficult pairs. However, their concat-
enated hybrid model did not perform as well as either (multi-class or binary class) of SVM models. Similar to the
SVM model, our previously developed ANN model was also subjected to feature selection methods followed by
extensive optimization of it parameters. But the optimization of both the architecture and the parameters hardly
improved the accuracy, with the overall average reaching only to ~80%. At an individual level, the SVM method
worked better for most of the beetle species expect of the species 5&6 of genus Oryzaephilus. This anomaly could
be due to the vivid similarity between their elytra patterns and only highlights that one method may not be suf-
ficient to completely address this problem. Hence, we believe the comparative study between these two machine
learning methods builds an excellent platform for the future studies in this area, which are currently underway.

Disclaimer. The views expressed in this work are those of the authors only and do not necessarily express the
views/policies of the FDA.
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