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Machine Learning and computer vision have been the frontiers of the war against the COVID-19
Pandemic. Radiology has vastly improved the diagnosis of diseases, especially lung diseases, through
the early assessment of key disease factors. Chest X-rays have thus become among the commonly used
radiological tests to detect and diagnose many lung diseases. However, the discovery of lung disease
through X-rays is a significantly challenging task depending on the availability of skilled radiologists.
There has been a recent increase in attention to the design of Convolution Neural Networks (CNN)
models for lung disease classification. A considerable amount of training dataset is required for CNN to
work, but the problem is that it cannot handle translation and rotation correctly as input. The recently
proposed Capsule Networks (referred to as CapsNets) are new automated learning architecture that
aims to overcome the shortcomings in CNN. CapsNets are vital for rotation and complex translation.
They require much less training information, which applies to the processing of data sets from medical
images, including radiological images of the chest X-rays. In this research, the adoption and integration
of CapsNets into the problem of chest X-ray classification have been explored. The aim is to design
a deep model using CapsNet that increases the accuracy of the classification problem involved. We
have used convolution blocks that take input images and generate convolution layers used as input to
capsule block. There are 12 capsule layers operated, and the output of each capsule is used as an input
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to the next convolution block. The process is repeated for all blocks. The experimental results show that
the proposed architecture yields better results when compared with the existing CNN techniques by
achieving a better area under the curve (AUC) average. Furthermore, DNet checks the best performance
in the ChestXray-14 data set on traditional CNN, and it is validated that DNet performs better with a
higher level of total depth.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Pandemic, a word not to be taken or used lightly is a critical
ituation where an epidemic of a contagious disease eventually
preads across a large area of the world. History has witnessed
arious pandemics such as smallpox and tuberculosis. If misused
r misunderstood, a Pandemic can cause severe issues to the
nfrastructures and systems that stop functioning and collapse in
ue course towards human suffering, even deaths.
Corona Virus (COVID-19) is a highly contagious disease that

tarted spreading throughWuhan (China) in late December [1]. As
f September 2021, the number of coronavirus cases has crossed
26 million with over 4.6 million reported deaths.1 Since then,
his infectious disease has become the focus of attention, and
esearchers are looking for different techniques and technology
o prevent and control the spread of COVID-19 [2].

In Late December 2019, several patients diagnosed with a
evere stage of pneumonia were reported in the province of
uhan, China. In early January of this year, the organism causing

he virus was identified as novel coronavirus, thus named 2019-
CoV and now generally known as COVID-19 [1]. As of September
021, the number of coronavirus cases has crossed 226 million
ith over 4.6 million reported deaths. With both symptomatic
s well as asymptomatic, patients have been actively playing a
ignificant role in airborne as well as the contact-based spread
f the COVID19 disease [3]. Given the spread mechanism so
ommon and unavoidable, the nature of spread has caused the
esearch community to find systems for healthcare to deal with
he deadly virus in a safe manner [2].

The weaknesses of the healthcare systems which have come
o light could be easily mitigated using the state of the art tools
o collect and analyze data coming from various components of
he overall government and local healthcare systems [4]. These
fforts are directed towards effectively predicting the spread, thus
dentifying patients as soon as possible to provide better care
or the patients with comorbidity [5]. But also these can help
overnments and infrastructures put in place systems that are
etter able to cope with giving insights on improvements for
uture such events.

Different approaches have been witnessed as a reaction from
ther nations resulting in different outcomes. We have the case
f mass testing in South Korea [6], where they were able to
solate the positive patients through proactive testing and track-
ng contact of each citizen. This continuous testing not only
nabled them to have a bigger, relatively complete picture of the
ontagion and its spread but also possible hot spots [3].
This way, South Korea was able to fully control the spread of

he COVID19 virus and return to a better situation than the rest
f the world [7]. An almost similar response has been witnessed
y other nations such as Taiwan, which also adopted a proactive
pproach towards testing as well as using extensive data analysis
nd using machine learning [8].
Similar has been the case for countries that are much more

dvanced and have better systems. On the same side, we have

1 COVID Stats https://www.worldometers.info/coronavirus/.
2

countries such as Italy where the system has not been able to
cope with the COVID-19 outbreak. One of the reasons was the
delay in enforcing the social distancing policy to minimize the
spread of disease. The lack of knowledge about the comorbidity
has played a significant role in the increase in the number of
overall cases as well as massive loss of human life [9]. Taking the
example of Taiwan and South Korea, the Italian health care sys-
tem was required to make decisions not only at the government
level but also to take adequate measures in their healthcare sys-
tem to tackle the massive influx of patients with already known
factors in comorbidity were at risk. The healthcare providers
were required to make uninformed and on-the-spot decisions
about choosing the proper medications as well as choosing the
candidate patients who should be on a priority list for taking
benefit from the overburdened healthcare system [10,11].

The likelihood of catching the COVID-19 virus can be assessed
using health care data so that patients could be flagged for the
healthcare operators to evaluate the comorbidity. It is also essen-
tial to identify the main hotspots of infected people o control the
spread of COVID-19. Identifying the hotspots and infection rates
can lead to improved health care responses. This has proven to be
very helpful, especially in Wuhan, China, where a patient’s mobile
phone’s location data was used to limit the spread using AI-based
methods [12,13].

COVID-19 is a very systematic disease where lethal and severe
lung infection complications lead to the overall failure of critical
organs. Though there are no effective vaccines for COVID-19 yet,
assistive therapeutic procedures improve a patient’s condition
over time. Machine Learning is among valuable tools for diagno-
sis. Similarly, the proposed system will be able to assess and give
information about the patient survival and their conditions [7,14].

During the last few years, complex computer vision tasks have
evolved in different stages, from categorizing unique images to
classifying/discovering/dividing multiple situations and multiples
categories into more complex cognitive functions that include
understanding and describing situations in pictures or videos
the rapid and significant improvement of performance is partly
driven by public access to significantly large data sets with anno-
tations for the high-quality images. In contrast, there are enough
Data sets already publicly available in medical imaging [15].

Traditional means of commenting on natural images, for ex-
ample, crowd sources, cannot be applied to medical images be-
cause such a sensitive job often demands years of working with
domain knowledge and professional field training. Overcoming
this drawback is an important milestone when we consider the
significance of the quality image datasets in the medical imaging
community [16,17]. Furthermore, primary radio-logical datasets
(such as medical image datasets) have accumulated in many Pic-
ture Archiving and Communication System (PACS) hospitals for
decades. The main challenge is how to convert those vacations’
Potential radiological data into the form of automatic learn-able
data.

However, greater depth leads to the problem of deteriorat-
ing disappearance. This problems was resolved by ResNets [17],
FractalNets [18] when adding connections from primary layers to
subsequent layer. DenseNets, another such dataset by Huang et al.
simplifies how omission connections are added [19]. This con-
tribution improves and supports the dense connections among

https://www.worldometers.info/coronavirus/
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he other connected layers. The addition of these dense connec-
ions leads to fewer parameters than conventional CNN. Another
dvantage of the sequence of these maps is the advantage of a
moother flow of gradient across the neural network, allowing
he Machine Learning experts to train using deeper neural net-
orks. Sabour et al. [20] have given that CNN has done well

n many machine learning-based computer vision scenarios with
ome of the underlying drawbacks. Among the most prominent
s that CNN’s have not proven to be the strongest for the relevant
ransformations. Any slight change in the object’s position causes
NN to change its prediction.
Although this problem can be reduced to a certain extent by

ncreasing data during training, this does not make the network
obust for any new mode or format present in the test data.
nother essential drawback is that public CNNs do not consider
patial relationships between things in a picture while deciding.
n short, CNN networks use only the presence of a couple of
articular localized objects in the whole decision-making image
rocessing task. In contrast, the object’s context spatial in reality
s equally significant.

The main reason is the final assembly process in the neural
etwork, which gives significance to the existence of properties
hile ignoring the topical properties information used mainly

or parameter reduction with the growth of the network. For
vercoming such constraints, Sabour et al. [20] proposed ba-
ic yet significant network structure called CapsNet. CapsNet’s
rained model keeps the weighted information at the vector
evel rather than numerical form (as found normally in the most
asic and simple neural networks). In this case, these groups
f neurons have to be called together, thus getting the name
apsule for the Patient and others entities. The concept of guid-
nce was used by agreement and crushing on a stratified basis
o achieve advanced precision in the ChestXray dataset. Data
ollection and detection of overlapping numbers in a rather better
ay as compared to traditional methods which are leveraging
econstructional organizations [21].

Though very powerful, CapsNets have so much improvement
o be done in the complexity, Sabour et al. because the net-
ork currently uses only one layer of twisting and capsule nets.
enseNets, on the other hand, can achieve higher performance
han the CapsNet by aggregating these features. In this work, we
xtend this idea from Sequence functions through the layers of
enseNets [19] because it can learn a variety of properties, which
therwise may require a somewhat deeper neural network, this
ork can be considered as an extension to previous work.
CNN has a remarkable ability to learn and classify the im-

ges without any knowledge related to the problem, making it
n adaptable way to classify images. Neural networks and CNN
etworks are used with different pre-processing steps, including
ncreased data(Augmentation). It has been shown that CNN net-
orks without any pre-processing outweigh the other methods

n classifying radiological images [16,22,23]. Despite the success
f CNN in overcoming many ways to handle images, they still
uffer from some flaws. For example, they are not transformed
nd do not consider the spatial relationships within the image. To
mprove its outcome, CNNs must have training data of all types
f rotation and transformation.
CNN has performed better in many computer vision and learn-

ng tasks, but it has some flaws highlighted by Sabour et al. [20].
ne is that CNN networks are not decisive for relevant transfor-
ations, meaning that a slight change in the object’s position
auses CNN to change its expectations. Although this problem
an be reduced to some extent by increasing data during training,
his does not make the network robust for any new situation or
ormat that might be present in the test data. Another critical

law is that CNN’s networks do not consider spatial relationships

3

between objects in the picture when making a decision. Simply
put, CNN networks use only the presence of particular local
objects in a decision-making image, while the spatial context
of objects, in reality, is equally important. The reason is mainly
the pooling operation in the network, which gives importance to
the existence of properties and ignores the spatial information in
images, which is the primary purpose of reducing the parameters
with the network growth.

To overcome these constraints, Sabour et al. [20] a technique
Capsule Networks CapsNet is proposed. This model stores the
information at the vector level instead of the numerical (as in
simple neural networks). This group of neurons is called together
as a capsule. They used the concept of routing by agreement and
layer-based squashing to achieve advanced precision in the Mixed
National Institute of Standards and Technology (MNIST) dataset
and better expose the overlapping numbers by reorganizing the
reconstruction. The CapsNets system is very efficient; however,
at the same time, there is room for improvement in complexity
since the authors did not use the layers or the depth of assembly,
where the network currently uses only one layer of capsules.

1.1. Motivation

In our work, the motivation is to improve CapsNet perfor-
mance in complex data set Chest X-ray to citewang2017chestx.
In addition, we follow the intuition behind DCNET++ [24] to
design a modified decoding network with dense sequential lay-
ers. In addition, we presented the intuition behind the selection
of high-density networks and then improved them to improve
performance in complex data sets. Capsule networks are pow-
erful enough to work on images that have complex data sets.
Our goal is to enable capsules using DenseNet. We are trying
to customize the capsule network into frames, explained in the
following sub-sections.

1.2. Contributions

We proposed modification of the capsule network, Dense Cap-
sule Network (DNet), which replaces the standard embedding
layers in CapsNet with a tightly connected torsion. The addition
of direct links between two successive layers helps to learn better
maps of the features, which in turn helps to form better quality
capsules [24,25]. The effectiveness of this proposed model is re-
flected in the results we achieved, as our model with depth levels
five has produced better results. Furthermore, we trained our
model with seven levels of depth and compared the results with
our five levels trained model, Which need a higher computational
environment because of its complexity but performed better than
the five levels of DNet.

1.3. Organization

The rest of the paper has been organized as follows: Section 2
highlights state of the art. The proposed model is explained in
Section 3. Simulation and its results are discussed in Section 4.
Finally, the results and overall discussion is explained in Section 5
followed by Section 6 where the conclusive remarks and future
directions are presented.

2. Related work

Computer-aided diagnosis (CADx) and detection (CADe) have
always been the main areas of research in medical image pro-
cessing [26]. In past years, deep learning models have begun to
overcome traditional methods of statistical learning in different

tasks, such as automated skin lesion classification [27], detection
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f liver injury, and detection of pathological results [28]. How-
ver, current CADe methods generally target a particular disease
r injury, such as pulmonary nodules, benign tumors, or lymph
odes [29]. A recent and prominent exception was introduced by
ang et al. [22], as the chest x-ray data collection was presented
n a large scale Processing of associated radiological images and
eports (extracted from the PACS institutional database) using
atural language processing (NLP) techniques. The publicly avail-
ble dataset contains 112000 chest radiographs with a front
isplay of 30,805 unique patients.
In the era of machine learning, deep learning, and computer

ision research efforts in the construction of many annotated data
ets [30–35] with different characteristics to play an important
ole to be dispensed within the best definition of future problems,
nd then, potential technological advances. In particular, here, we
ocus on joint learning and the relationship between images (x-
ay) and text (X-ray reports). The work of generating the titles of
revious images [36–38] uses data sets Flickr8K, Flickr30K [39]
nd MS COCO [32] containing 123,000, 31,000, and 8000 images
espectively, and each image is described in five sentences by
AMT) Amazon Mechanical Turk.

The text usually describes the scorer’s attention to objects
nd activities that occur in a direct image. Detect-based neural
etwork trunking ImageNet pre-training (CNN) is used regionally
o analyze input images and create a list of attributes or ‘‘high-
evel concepts with visual ground connection’’ (including objects,
ctions, scenes, etc.) in [37,38]. The VQA requires a more detailed
nalysis and a complex conclusion in the image content to an-
wer the associated natural language questions. A new dataset
ontaining 250,000 raw images, 760,000 questions, and 10 mil-
ion text responses are presented [34]. In the face of this new
hallenge. In addition, databases such as "Flickr30k entities" [33],
Visual7W" [35] and "optical genome" [40,41] are presented (as
hown in 94,000 images and 4100,000 address areas) to con-
truct and learn spatially. Dense and increasingly difficult Deep
ymbological links between text descriptions and image areas
hrough grounding at the object level. Although one can argue
hat there is a significant similarity between generating image la-
els, visual responses to questions, and diagnosis of disease-based
maging [42,43]

Three factors make the diagnosis based on large-scale medical
maging 1, you cannot get general, open signs of anatomy, and
evel of pathology through many sources, such as AMT, which
n Unpredictable for medically untrained practitioners. There-
ore, we exploited the extraction of common thoracic pathology
arkers (possibly several images) of chest X-ray images attached

o images using natural language processing techniques (NLP).
adiologists tend to write more logical, abstract logical sentences
han simple-textual texts. 2, the spatial dimensions of radiology
re generally 2000 x 3000 pixels. Regions of local pathogens may
how significantly variable volumes or extensions but are very
mall compared to the full-scale image.
In Fig. 1, we have illustrated eight examples using the patho-

ogical result of actual images, which are often much smaller and
ardest for detection. We formulate and verify the classification
f multi-tag images and the framework of the disease site with
ittle supervision to meet this difficulty. 3, so far, all the image
ranslation techniques and VQA in com The computer vision
epends heavily on the already-trained and well-rehearsed CNN
odels that work well in many object classes and serve as a good
aseline for a more precise configuration model. However, this
osition does not apply to diagnostic medical imaging.
In synthetic vision, deep learning demonstrated its ability to

ccurately classify images [44–47]. In addition, the field of med-
cal image processing deeply explores deep learning. However,

major medical problem is the availability of large data sets

4

with a reliable explanation of the underlying truth. Two larger
sets of x-ray data are available recently: the CXR data collection
from Open-i [48] and ChestX-ray14 from the National Institutes
of Health (NIH) clinical center [22]. Due to its size, ChestX-ray14,
which consists of 112200 front-end images of CXR from 30,805
unique patients, has attracted considerable interest in the deep
learning community. Activated by Wang et al. [8] Through the use
of neural networks (CNN) of computer vision, many search groups
began to process the CNN application for the CXR classification.
In [49], Yao et al. A combination of CNN and a frequent neural
network was introduced to exploit the tag dependencies. Using
the backbone of CNN, they used the DenseNet [19] model, which
was fully adapted and trained in X-ray data. Recently, Rajpurkar
et al. [16] It was proposed to transfer accurate education, using
DenseNet-121 [19] and raise the AUC results in ChestX-ray14 for
a higher label-label classification.

The proposed architectures using convolution techniques have
increased significantly due to increased computational power.
Literature for CNN is vast. CNN tries to learn the hierarchy from
the bottom to the top, where the lower layers learn essential
functions such as edges and upper layers learn sophisticated
features by combining these low-level features [50]. Although
deeper networks have improved performance, their training is
much more difficult because of the large number of learn-able
parameters [51]. The proposed modern structures aim to enhance
performance while improving learn-able parameters in number
at the same time [52]. The Highway-Network [53] was the first
proposed structure in this direction to form a deeper network
with a large number of layers. They added by-passing paths to the
model to train efficiently. The ResNet [17] model improves train-
ing by adding residual connections. Another of these networks
was proposed by Huang et al. [19]. He devised a new method
to add the skip links by inserting links from the first layers into
deeper layers and naming them a dense block.

Capsules are a group of neurons representing the properties of
several entities present in the image. An image can have several
properties that can be captured as position, size, and texture.
Capsules use routing-by-agreement where the output is sent to
all final capsules. Each capsule predicts the central capsule, which
is then compared to the actual production of the central capsule.
Suppose the outputs coincide, the coupling coefficient between
the capsules increases. Capsule networks [20] have recently been
introduced to overcome the disadvantages of CNN networks dis-
cussed. DCnet++[24] an architecture is proposed which is based
on capsule network and uses the idea of Densely connected
Networks and shows improvement in results of MNIST data set
as compared to the state of the art results of Hinton et al. [54].

In recent years, there has been significant growth in attention
to deep learning methodologies with improved accuracy of X-
ray classification of the chest. In particular, the architecture that
uses the Convolution Neural Network (CNN) has produced better
solutions for image classification functions and object recogni-
tion [22]. But CNN has some disadvantages: (1) it is not equivalent
in translation, (2) it does not consider the spatial characteristics
in the images because of the maximum aggregation, and it only
learns numeric values. Capsules are a group of neurons that
represent the properties of many of the entities in the picture.
There may be many characteristics of the captured image, such as
position, size, and texture, because the capsule grid learns vector
values [20]. The results obtained by traditional CNN networks are
not suitable for clinical trials.

3. Proposed solution

Inspired from dense connectivity of layers block carried out
by Huang et al. [19] and dense convolution network for capsule
network Dcnet++ [24].
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Table 1
Related Work.
textbfTechniques Achievements Data Set Limitations(s) Results

DenseNet-121.
[16]

Achieved better accuracy
than [22].

Chest x-ray-14 Only flipped data horizontal. Average AUC:
0.8413

AlexNet,
GoogLeNet,
VGGNet-16,
ResNet-50. [22]

Presented a new chest
X-ray database, namely
‘‘ChestX-ray8’’, Did initial
Comparison of different
CNN models.

Chest x-ray-8 Used only 50 layer deep
CNN[Resnet50]. Could have
achieved more accuracy by
going deeper.

Avg AUC:0.6962

DenseNet-121 [52] Used patient Wise split of
Data Set.

Chest x-ray-14 Used larger data set with
same convolution layers as
[16].

Avg AUC: 0.841

CNN+LSTM[10]
[23]

Proposed CNN+LSTM
combined architecture to
use history data along with
images.

Chest x-ray-14 Did not improved results on
images itself.

Avg AUCs =
0.992,0.722

Dynamic Routing
on Deep Neural
Network. [25]

Proposed a Dynamic routing
Connection between capsule
layers.

Chest x-ray-14 Improve disease localization
by integrating .comlocation
information provided in the
dataset.

Avg AUC = 0.775

Capsule Networks
[20].

Proposed a new approach
which overcomes the
Drawbacks in CNNs.

MNIST Better approach but it
probably requires a lot
more small insights before
it can out-perform a highly
developed technology.

Accuracy:99.22

DCnet++ [24]. Achieve better accuracy
than [20] on MNIST dataset
, by proposing more dense
architecture of Capsule
Network.

MNIST Resources limitation, could
have achieved more
accuracy by proposing more
deeper architecture.

Accuracy:99.75
3
1

3

t
c
c

p
t
c
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We proposed modification in the capsule network, Dense Cap-
ule Network (DNet), which replaces the standard embedding
ayers in CapsNet with a tightly connected torsion. The formation
f direct links between two successive layers allows the system
o comprehend the maps of features better. Hence, this enables
he system to form better quality capsules. The proposed system’s
ffectiveness is reflected in the results we achieved, as our model
ith depth levels five has produced better results than [22].
urthermore, we trained our model with seven levels of depth
nd compared the results with our five levels trained model,
hich needed a higher computational environment because of

ts complexity but performed better than the five levels of DNet.

.1. Dense block

As, the maps of features – comprehended by the first link
apsNet baseline model – recognize rudimentary features only.
hus, the maps mentioned above may not be sufficient to create
apsules for complex data sets. Therefore, we attempted to in-
rease the torsion layers up to two and eight in the first layer for
mprovement. We perceived that this methodology did not yield
etter results, as detailed in Table 1. In DNet, the capsule network
as modified to establish a deeper structure, which consisted of
ight layers.
Skipping connections form the basis of a dense subnet. The

ayers are arranged in a sequence so that as different layers
rogress, they combine to make the final wrap layer. This method-
logy provides better results – in the form of good gradient flow
compared to directly stacked torsion layers. The input sample
onsists of eight levels of combinations. These rounding levels
reate their own thirty-two distinct new maps and a sequence of
roperties of all previous attributes. Layers that produce the maps
eature 257 (the input image is included). These characteristics
re varied. The capsule layer takes the maps as an input and
pplies a nine-by-nine wrapping with one step to the distinctive

aps obtained: capsules, essential capsules the work from, and

5

others. [20] focuses primarily on equivalence rather than the
consistency we see fully.

We did not utilize the average and assembly layers employed
in DenseNet (DNet). Hence, this resulted in the loss of spatial
information. It is pivotal to keep in mind that Sabour et al. [20]
created initial capsules of 256 distinct maps produced by the
same level of complexity.

From torsion, DNet central capsules are created by integrating
all properties as shown in Fig. 1. Different levels of complexity
further improve the classification. The feature mentioned above
maps function as thirty-two 8D capsules. These capsules are
then advanced to squash activity. Then, the training layer is
succeeded by the routing algorithm. The final of the ten categories
(numbers) is obtained. Next, for the above final, 16D capsules
are created. These generate 10D output vectors from a single-
style heat. A network of conventional capsules inspired by the
intensive communication carried out by Huang et al.. The re-
construction model was modified for the capsule network. The
decoder is a four-layered model with shine properties. These
properties of the first and second layer take the XrayCaps layer as
an input (masked by the exit sign during training), which result
in a superior rebuild. The size of this image is greater than 32 x
2, then the number of neurons is switched from 512 to 600 and
024 to 1200.

.2. Capsule block

Adding omission connections to implications was not enough
o improve performance. This may be due to simple essential
apsules that are not sufficient to encode information in such
omplex images.
DNet model activates a part of the picture. We envision which

ortion of the picture is operated by a DNet 8D core capsule
hrough forwarding propagation. Note that a tiny spatial territory
reates every first capsule of the image, which then works to-
ether to decide, but this is not the case as it was pretty complex
o overcome this. Hence, we have implemented a new method
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Fig. 1. Dense block.
Fig. 2. Capsule block.
to create essential capsules that carry the information of several
picture measurements, thus varying the capsules. This assisted in
establishing links between the primary capsules of various levels
of images. Considering only one level, this will be like picture
activation operations in DNets and CapsNet from the baseline.
Besides, the activation process will not have a spread external to
the square zone of the capsule network.

The activated zone is spread in DNet because of the ‘‘same’’
padding combinations in the high-intensity torsion layers. A set
of basic models of CapsNet (from Sabour et al. [20]) provides ac-
curacy in the chest-X-ray-8 data set, possibly because the patches
are utilized as inputs, which actuates a more extensive spa-
tial zone to create each capsule. Even though it accomplishes a
sensibly better resolution in a solitary capsule model, a set of
seven models of this sort significantly increases the number of
parameters that can be diminished for little size pictures. We
center around lessening the number of parameters used to model
information and learning better data by making numerous levels
of capsules. A three-layer DNet module with 13.4M parameters
checks a test resolution. An elaborate pipeline of the DNet model
is used to learn the chest-x-ray-8 dataset.

It is a progressive model where a DNet form is made, and
its proxy characterization is utilized as an input to the following
6

DNet. As a result, this produces a feed representation for the
subsequent layer of DNet. There are twelve capsules per DNet.
As shown in Fig. 2, Repentance is applied in steps (size nine by 9
and 2 steps) which diminishes the size of the picture forwarded
to the following levels.

This is also similar to brainwork that separates data into chan-
nels. For instance, there are independent ways for high and low
spatial frequency content and color data. Besides the three layers
above of XrayCaps (output), we made an output layer of XrayCaps
in addition to a three-layer series directive of PrimaryCaps. The
purpose behind adding this other level is to permit the model
to grasp the properties collected for several levels of capsules.
Note that in the case of the simple accumulation of XrayCaps
and common genetic reproduction. Others are dominated by the
losses of the last level of PrimaryCaps. This prompts low-quality
learning and initial levels pretending as basic repentance classes.
Accordingly, the model was prepared together to prevent any
poor learning, yet four-layer losses were published separately.

XrayCaps generated from the PrimaryCaps series play an es-
sential role in reconstruction, an additional effect for different
layers of capsules. During the test, the four layers of XrayCaps are
combined to form the final 54D capsule for each of the ten cat-
egories, and reconstructions of one image channel were created
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Fig. 3. 3-levels of proposed model.
using these four capsules. The Xray-8 reconstruction of the chest
was not very good, which we believe is due to the dominance of
the background noise in the samples and the presence of complex
information that the decoder is not strong enough to reproduce.
Interestingly, we observed the effect of noise in XrayCaps from
different levels on the reconstruction output on the chest-Xray-8
data developed by subtracting 0.2 from each x-ray one by one
in XrayCaps 54D. It was noted that the impact of reconstruction
processes falls from level 1 to the last level of capsules.

3.3. DNet

We have created convolution blocks as shown in Fig. 4, first
convolution block takes an input image of 1080 × 1080 in size,
the input image and all feature maps generated by eight convo-
lution layers are then be used as an input to capsule block after
Batch normalization, which has 12 capsule layer and obtained
capsules output is used as an input for second convolution block
than this same process repeated for all convolution blocks.

The feature maps obtained from the capsule blocks after
squash function used PrimaryCaps will then be used as final
7

XrayCaps carried out by ‘‘Routing by agreement’’ algorithm [20],
PrimaryCaps which are feature maps of capsule blocks, are con-
catenated and used as one of the final XrayCaps. The 3 level of
DNet is shown in Fig. 3 and with nth level is shown in 4

The Data set we used is chest x-rays data set recently pub-
lished by Wang et al. [22]. We will further do more experiments
by increasing the number of dense blocks and capsule blocks and
try to achieve improvements in results.

Deep learning methods include multilayered processing with
less time and more satisfactory performance. Sub-layers give a
better result through the use of CNN and autoencoders. With the
increase in the number of automatic encoders, image resolution
increases. Such as increasing the number of subsampling, you also
get better [17,19,50]. So we experimented with different levels of
depth and achieved results improvement.

4. Simulation results

In this wor,k we have performed different experiments of
our proposed model DNet, and we have also experimented with
Resnet50 model, which was implemented by [22] on chest x-
ray-14 data set. And we have also implemented the architecture
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Fig. 4. Architecture of the proposed DNet model.
roposed by [25] and compared both papers’ results with our
odel’s results.

.1. Data

We utilize the chest-x-ray set14 set by Wang et al. (2017). This
et contains 112,120 x-rays in a frontal view of 30,805 distinct
atients. Wang et al. [22] utilized automatic extraction methods
n radiology reports and recorded each picture with up to 14
arying signs of thoracic pathology. Some sample pictures are
hown below in Fig. 5 and the frequency of examples are shown
n Fig. 6

The main block of a convolution neural network (CNN) is the
orsion process. In the deep network, the essential work of the
wist (and weights) is basically ‘‘detecting’’ the basic features.
hen we train a deep network, we adjust the weights of our
NN taps to detect or ‘‘activate’’ certain features in the image.
t is essential to understand that top-level functions combine
ower-level functions as a weighted addition: the activation of a
revious layer is multiplied by the weights following the added
ayer trap before moving to nonlinear activation. There is no
lace in this flow of information that is the relationship between
he features taken into account. Therefore, we can say that the
rimary failure of CNN is that it does not carry any information
bout the relative relations between characteristics. This is just
failure in the central design of CNN because it is based on the
asic torsion process applied to numerical values.
Hinton et al. mention that to identify the image correctly, it

s essential to maintain hierarchical relationships between the
icture’s properties. When these relationships are integrated into
he network, it is elementary to understand that what you see
s just another view of what you have seen before since it is not
nly based on independent properties; now, it is joining these
roperties to form a complete representation of‘‘ knowledge’’. The
ey to this representation is a richer feature using vectors rather
han climbers. Capsules provide the basis for building a better
odel for the relationships above within the network in the deep

earning domain.
8

The change in capsule networks can be divided simply by
using vectors instead of scaling. It helps vectors because it helps
us write down more information, not just any kind of relational
and relational information. Imagine that instead of taking the
standard activation of a characteristic property only, we consider
its vector to contain something such as that containing [probabil-
ity, orientation, size]. An original numerical version like the ones
on the left can work. Detects the face, although the eyes and lips
are prominent features for a face (95 per cent chance)!

This wealth presents new challenges: a more significant num-
ber means more calculation and complexity. On the other hand,
because of the wealthier vector information, capsules notice that
different properties’ sizes are different and generate less probabil-
ity of detection. With the rich collection of information supplied
by capsules, they show great potential to become the main engine
of our deep future network.

CNN is a black box learning algorithm, The best part of CNN
is that it learns features with itself like in its first layer it will
learn edges in the next layer may be it learns derivatives. In its
higher layer, it will learn more elevated levels of feature maps like
shapes [50]. So it did not need any noise reduction technique be-
fore feeding data to CNN. The most used pre-processing methods
for CNN are data augmentation, like a flip of data rotation of data
as CNN in transnational invariant that is why for better training
it should be trained with all variation in data. Still, capsule net-
works overcome this drawback of CNN [20] that is why we have
experimented with our model without data augmentation.

4.2. Experiment environment

We have performed this experiment on a machine with 8
CPUs 24 GB of RAM. The GPU we used for the experiment is
Tesla Nvidia P100 which has 16 GB of memory for 1st and 2nd
experiments. While for the 3rd experiment, we needed a more
significant memory, so we used 2 GPUs through parallelism the
training with the same number of CPUs but more significant RAM
of 52 GB (see Table 2).
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Table 2
Experimental Environments.

CPUs Ram Memory Libraries GPU(s)

Exp no. 1 8 x skylake 24 GB Python NvidiaTeslaP100 x 1 = 16GB

Exp no. 2 8 x skylake 24 GB Python NvidiaTeslaP100 x 1 = 16GB

Exp no. 3 8 x skylake 52 GB Python NvidiaTeslaP100 x 2 = 32GB
4.3. Experiments

We have done three experiments with different depth levels
f the proposed model in 4, one with three levels of depth 2nd
ne with five levels of depth, and 3rd one is seven levels of depth.

.3.1. ResNet50
ResNet is the short name for Red Residual. As shown in the

etwork name, the new terms introduced by this network are
he remaining learning. Several advances in image classification
ere due to deep subliminal neural networks. Several image
ecognition tasks can leverage the benefits of deep learning and
achine learning models. Thus to enhance the accuracy, research
as been done in this domain to improve the overall results.
hen the deeper networks begin to converge, the degradation
roblem is exposed: by increasing the depth of the grid, accuracy
ecomes saturated and then degrades quickly. Let us take a
9

shallow network and its deep counterpart by adding more layers.
A shallow grid can replace the first layers of the deeper model,
and the remaining layers can function simply as an identity
function. In the deepest grid, the additional layers are closer to
the assignment to the shallow meter portion and reduce the
error by a large margin. In the worst case, both the surface
network and its deepest forms must give the same precision. In
the case of the reward scenario, the deeper model should provide
a better resolution than its more superficial counterpart. But the
experiences with our current customers reveal that the deeper
models do not work well. Therefore, the use of deeper networks
corrupts the performance of the model.

The problem with going deeper in layers is the increase in
complexity and saturation of results. Resnet50 attempts to re-
solve this issue using the Deep Learning Framework. Generally,
an efficient way in profoundly adaptive neural networks is to
stack and use the network to do a complex task. While doing
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Fig. 6. Frequency of data.
o, the network tries to recognize and solve these several layers.
n the remaining learning, instead of learning some properties,
e try to learn something that remains. The rest can simply be
nderstood as a characteristic of the inputs of that class. ResNet
oes this via the shortcut links (connect the input layer directly
o Na layer n (n + x). It has been proved that it is easier to train
network, and the problem is also solved by degrading precision
esNet50, a residual network of 50 layers. There are other types
uch as ResNet101 and ResNet152 too. The results we achieved
y implementing ResNet50 are shown in Fig. 7.

.3.2. Dynamic routing connection
In our networks, chest-Xrays are computed in advance and

fterwards forwarded to a descending sampling block from Conv-
ool-Conv-Pool. The second layer has the size of step 7 and steps
. The second assembly layer uses the maximum assembly of
olume 3 and steps 2. After the top assembly layer, we utilized a
ayer of 1 and 2, and finally, we utilized a medium layer of sizes
and 2 before feeding a thick layer. Dynamic routing between
ense layers Each dense mass consists of 8 layers of composite
unctions. Dynamic routing is used to update the one by one
ymbiotic layer. Dense blocks are used after sampling. The pro-
osed dense pattern is tracked in [19] except for the one by one
etaphysical layer. The dense layer comprises successive layers
f composite functions that take the serial output created in the
ast layers. Each composite function comprises six successive
atch normalization processes.
The network and dynamic orientation are included between
by one torsion layer connections. A dense block of dynamic

outing is indicated. After the thick masses, we utilized a more
rominent layer of step 9 and step 1. Afterwards, we utilized a
edium assembly layer of size four and step 4. Then, we used a
apsule layer that is fully connected to class classifications. The
haracteristic map shape was changed to the primary capsules
n the entirely interconnected capsule layer. This task was done
y taking eight maps of the properties of each pixel as a capsule.
fterwards, we direct the entire linked layer between the primary
apsules and the capsule of the disease marker after the guidance
10
mechanism by agreement. Finally, we take the L2 standard for
each vector in digital capsules as a number for each disease
marker. Results achieved by this model is shown in 8.

4.3.3. Experiment : 1(DNet-3)
In our First Experiment, we have used 70000 images for train-

ing and 10000 images for testing without data augmentation. We
have taken 14 classes from the dataset [22]. Image input size we
used 1080 × 1080, we conditioned the model for 500 epochs with
a batch size of 256 images in the dataset. The loss function we
used is margin loss [20], and optimizer Adam et al. [55]. The ROC
Curve for the predicted test. First, we have done experiments with
three levels of depth and achieved results shown in Fig. 9. The
average of AUCs are shown in Table 3.

We detail the capability of our model in numerous depth lev-
els and compare them with the Resnet50 [17] model actualized
in [22] structure. The first test was performed utilizing the Nvidia
Tesla P100 with 12 GB of RAM. We carry out all our models 50
to 100 times. The introductory learning rate was set at 0.001, and
0.9 decay rate with Adam [55] as the optimizer. We change the
reproduction property to reduce the reconstruction loss according
to the image’s size so that the loss of margins does not dominate.
To create our 2 sample test errors once we calculate each model.
Three methods were utilized for all trials.

To make just comparisons, we essentially retain the DNet
model parameters proposed after the PrimaryCaps layer, just
like traditional CapsNet. The following details the corresponding
implementation of the data set used. A collection of chest x-ray-
14 manuscript data and data collection will have the training and
test images of 80000 size each image 1024 by 1024 in size. We
did not use any system to increase the data, and we repeated
the experiment 3 times. DNet can identify the differences in data
entry speeds compared to CapsNet, i.e. it is capable of achieving
an accuracy test in chest x-ray-14 data set with 20 times fewer
overall duplicates.

The step in the PrimaryCaps layer of the second level of DNet
was modified from two to one. This modification was done to
adjust the picture. No improvement was noticed in the execution



F. Karim, M.A. Shah, H.A. Khattak et al. Applied Soft Computing 124 (2022) 109077

o
c
s
D
t
W
s
A
c
r

4

t
t
s
w
m
p
o
A

d
s
P
5
0
r
t
n

Fig. 7. Resnet50 ROC curves.
f DNet 3 levels in both chest x-ray-14, which is expected data be-
ause we capture fine properties at the rough level. The training
et will gain each slight difference in writing a certain number.
uring the testing phase, a problem can occur due to these‘‘
hin’’ properties. More time needs to be invested in improvement.
e discover that the loss of the modified decoder in DNet is

ignificantly reduced, with the same loss multiplex as CapsNet.
lso, we illustrate the comparison of the test of DNet, which we
an undoubtedly conclude that DNet has a quicker convergence
ate.

.3.4. Experiment : 2(DNet-5)
In our 2nd experiment, we have utilized 70000 pictures for

raining and 10000 pictures for testing without data augmenta-
ion. We have taken 14 classes in the dataset [22]. Image input
ize we used 1080 × 1080. We taught our model for 500 epochs
ith a batch size of 256 images. The loss function we used is
argin loss [20], and optimizer Adam [55]. The ROC Curve for the
redicted test. First, we have done experiments with three levels
f depth and achieved results shown in Fig. 10. The average of
UCs is shown in Table 3.
We detail the capability of our model at multiple levels of

epth and compare it to the improved Resnet50 model in the [22]
tructure. The first test was performed using the Nidia Tesla
100 with 12 GB of RAM. We carry out all our models from
0 to 100 times. The first learning rate was set at 0.001 and
.9 decay rate with Adam as the optimizer. We modified the
eproduction property to reduce the reconstruction loss according
o the image’s size so that the loss of margins does not domi-
ate. Once each model is calculated, CapsNet2 and DenseNet3 to

2 CapsNet https://github.com/XifengGuo/CapsNet-Keras.
3 DenseNet https://github.com/liuzhuang13/DenseNet.
11
generate our sample test errors. All trials used three methods. To
make just comparisons, we essentially maintain the standards for
the proposed DNet model after the PrimaryCaps layer, just like
traditional CapsNet. The corresponding implementation of the set
of data used is shown below. A set of data from the chest x-ray-14
manuscript and data collection will contain training and testing
of 80000 images per 1024 x 1024 image. We did not utilize any
system to increase data and executed the experiment three times.

DNet can identify differences in data entry rates compared to
CapsNet, i.e. it is capable of accurately testing a chest x-ray-14
data set with 20-fold fewer overall duplicates. The step in the
PrimaryCaps layer of the second level of DNet was modified from
two to one. This modification was done to adjust the picture. No
improvement was noticed in the execution of DNet 3 levels in
chest x-ray-14, which is expected because we get fundamental
properties at the approximate level. Each slight difference will be
captured in writing a specific number from the training group.
During the testing phase, a problem can occur due to these‘‘ thin’’
properties. More time needs to be invested in improvement. We
feel that the loss of the modified decoder in the DNet has dropped
significantly, with the same loss multiplier that happened to
CapsNet. In addition, we illustrate the comparison between the
DNet test, which we can undoubtedly conclude that DNet has a
quicker convergence rate.

4.3.5. Experiment : 3(DNet-7)
In 3rd, we have utilized 70000 pictures for training and 10000

pictures for testing without data augmentation; we have taken 14
classes in the dataset [22]. Image input size we used 1080 × 1080.
We taught our model for 500 epochs with a batch size of 256 im-
ages. The loss function we used is margin loss [20], and optimizer
Adam [55]. The ROC Curve for the predicted test (see Fig. 12).

https://github.com/XifengGuo/CapsNet-Keras
https://github.com/liuzhuang13/DenseNet
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Fig. 8. Dynamic routing ROC.
irst, we have done experiments with three levels of depth and
chieved results shown in Fig. 11. The average of AUCs is shown
n Table 3.

We detail the capability of our model in numerous depth lev-
ls and compare them with the Resnet50 [44] model actualized
n [22] structure. The first test was performed utilizing the Nvidia
esla P100 with 12 GB of RAM. We carry out all our models 50
o 100 times. The introductory learning rate was set at 0.001, and
.9 decay rate with Adam [55] as the optimizer. We change the
eproduction property to reduce the reconstruction loss according
o the image’s size so that the loss of margins does not dominate.
nce we train each of our models for DenseNet and CapsNet to
reate our 2 sample test errors. Three methods were utilized for
ll trials. To make just comparisons, we essentially retain the
Net model parameters proposed after the PrimaryCaps layer,
ust like traditional CapsNet.

The following details show the corresponding implementation
f the data set used. A collection of chest x-ray-14 manuscript
ata and data collection will have the training and test images
f 80000 size, each image 1024 by 1024 in size. We did not use
ny system to increase the data, and we repeated the experiment
times. DNet can identify the differences in data entry speeds

ompared to CapsNet. It can achieve n accuracy test in chest x-
ay-14 data set with a 20 times drop in all of the duplicates. We
ave shifted the step from two to one in the PrimaryCaps layer
f DNet’s second layer to adjust the image.
No improvement was observed in the performance of DNet
levels in both chest x-ray-14, which is expected Data because
e capture fine properties at the rough level. Thus, each slight
ifference is captured from the training set while writing a certain
umber. Such ‘‘thin’’ properties have the probability of causing a
roblem in the testing phase. Thus, we require to devote more
12
Table 3
Average AUCs.

Wang et al. [22] DNet-3 DNet-5 DNet-7

Atelectasis 0.70 0.77 0.75 0.80
Cardiomegaly 0.810 0.72 0.82 0.86
Consolidation 0.70 0.73 0.80 0.84
Edema 0.80 0.77 0.91 0.92
Effusion 0.75 0.71 0.76 0.80
Emphysema 0.83 0.69 0.86 0.91
Fibrosis 0.78 0.65 0.83 0.86
Hernia 0.87 0.66 0.84 0.90
Infiltration 0.66 0.75 0.73 0.77
Mass 0.69 0.71 0.77 0.80
Nodule 0.66 0.67 0.82 0.87
Plueral Thickening 0.685 0.69 0.77 0.82
Pneumonia 0.65 0.70 0.81 0.85
Pneumothorax 0.79 0.74 0.87 0.91
AVG 0.745 0.711 0.810 0.867

time to improve. It was found that the loss of the modified
decoder in DNet is significantly reduced, with the same loss mul-
tiplex as CapsNet. In addition, we demonstrate the comparison
of the test of DNet, which concludes that DNet has a more rapid
convergence rate.

We have used 70000 training images and 10000 testing im-
ages without data augmentation. We have taken 14 classes in
the dataset [22]. We used image input size 1080 × 1080, and
our model was trained for 500 epochs with 256 image-batch
sizes. The loss function we used is margin loss [20], and optimizer
Adam [55]. The ROC Curve for all predicted tests. First, we have
done experiments with three levels of depth and achieved results
shown in Fig. 9. Then we have done experiments with five levels
of depth and achieved results are in Fig. 11 in this experiment,
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Fig. 9. ROC-DNet-3.
e have achieved better results than Wang et al. [22]. In the 3rd
xperiment, we have taken our model deeper than five levels, we
ave experimented with seven levels of depth, and it performed
etter than five levels of DNet, achieved results are shown in
ig. 11. The average of AUCs is shown in Table 3.

.4. Complexity of DNet

Neural synapses rely on the simple fact that the vision system
eeds to use the same knowledge in all places of the image.
his is achieved by linking the weights of feature detectors so
hat the features learned are available in one location at other
ocations. Stretch capsules knowledge sharing between sites in-
ludes knowledge about partial relationships that characterize a
amiliar form. The changes in the view have complex effects on
ixel density but simple linear effects on the matrix situation
hat represent the relationship between an object or a part of the
bject and the viewer. The goal of capsules is to make good use of
his latent line, deal with differences in perspective and improve
artitioning decisions.
Capsules are used to filter a high-dimensional match: A fa-

iliar object can be detected by seeking to reach an agreement
etween the sounds of the modulation matrix. These sounds
ome from parts that have already been discovered. One of the
arties produces a vote by multiplying a matrix of its positions
y an acquired conversion matrix that represents the fixed re-
ationship between the point of view between the segment and
he whole. As the view changes, the position matrices for Parties
nd the group will change in a coordinated manner so that
ny agreement between the voices of the different parties will
ontinue. Finding narrow sets of high-dimensional sounds that
oincide with the noise of irrelevant voices is one way to solve
13
the problem of appointing parties to all. This is not trivial because
we cannot put the space of high-dimensional space in a way that
squares the area of low-dimensional translation to facilitate the
twists.

We use a quick iterative process called ‘‘guide agreements’’ to
solve this challenge. This group is a powerful retailing principle
that allows familiarity in familiar ways to derive fragmentation,
rather than simply using low-level signals such as proximity or
agreement in color or speed. It determines the probability of
allocating part to segment based on the proximity of the voices
from that segment to those from other parts. The crucial differ-
ence between capsules and standard neural networks is that the
activation of the capsule is based on the comparison of multiple
incoming position predictions. While in the traditional neural
network and based on the comparison of the incoming single
vector activity and the vector of weight learned, this complexity
can be reduced by using EM Matrix [54].

5. Discussion

In the present work, a modified version of two models capsule
network and Deeper DNet has been proposed, which replaces the
standard embedding layers in CapsNet with a tightly connected
torsion. The addition of direct links between two successive layers
helps learn better maps of the features. This, in turn, helps to form
better quality capsules, and the effectiveness of this proposed
model is reflected in the results. In our 1st experiment with three
levels of depth, we achieved 0.711 average AUC, which is not
better than [22], but in our 2nd experiment, our model with
depth levels five has produced better results than [22] which has
0.811 average AUC level. Furthermore, we did 3rd experiment
with seven levels of depth and compared the results with our



F. Karim, M.A. Shah, H.A. Khattak et al. Applied Soft Computing 124 (2022) 109077
Fig. 10. ROC-DNet-5.
previous trained model. This surely needs a higher computational
environment, but we achieved better results than 5 level depth
model with a 0.867 average AUC level. The network which we
proposed shows an improvement in average AUC compared to
the previously implemented model ResNet50 [22]. However, this
experiment leads to an increase in complexity as we go deep with
our model.

Consequently, It is recommended to improve the accuracy of
the proposed model by modifying it with em routing based on
x-ray data set. This can help reduce the complexity and better
diagnose the health status of patients against COVID-19.

As we have achieved better results with 5 and 7 levels of depth
from our model DNet, but as we go deep with our model, the
complexity increases as CapsNet vectorizes the model and data.
To handle this complexity, we can in the future use the EMmatrix
proposed by [54]. By modifying our model with em routing, we
can significantly reduce complexity and achieve better results. In
the future, we plan to integrate EM directive [54] into DNet And
further reduce the computational complexity of the model and
improve the accuracy of our model.

The novel coronavirus pandemic has created a unique as well
as demanding challenge for not only the overburdened healthcare
system but all the connected domains and, most importantly, In-
formation Communication and Technology (ICT) [56]. Most coun-
tries cannot have a pandemic-ready emergency response system
to tackle such global situations. Effective use of Artificial Intelli-
gence and especially using big data for creating Machine Learning
models for precision medical care to cope with a future pandemic
as well as give recommendations about arranging and effectively
managing healthcare resources [57,58].

In this work proposed a modified capsule network named
Deeper DNet, which replaces the standard embedding layers in
14
CapsNet with a tightly connected torsion. The addition of direct
links between two successive layers helps to learn better maps
of the features, which helps form better quality capsules. The
effectiveness of this proposed model is reflected in the results. In
our 1st experiment with three levels of depth, we achieved 0.711
average AUC, which is not better than [22] but in 2nd experiment,
our model with five levels of depth has produced better results
than [22] with an average AUC level of 0.811. Furthermore, we
did 3rd experiment with seven levels of depth and compared the
results with our previous trained model. This needed a higher
computational environment, but we achieved better results than
our 5 level depth model 0.867. The network which we pro-
posed shows an improvement in average AUC compared to the
previously implemented model ResNet50 [22].

6. Conclusions and future work

Capsule networks (CapsNet) are strong for rotation and hard
translation and require much less training information, which ap-
plies to the processing of data sets frommedical images, including
radiological images of the chest x-rays.

In this research, we proposed a deep learning model for the
problem of x-ray classification based on the technique of CapsNet.
Capsule network and Deeper DNet are modified to replace the
standard embedding layers in CapsNet with a tightly connected
torsion. The addition of direct links between two successive layers
helps to learn better maps of the features, which helps form
better quality capsules. Different experiments were conducted on
chest x-rays data sets with different experimental settings. The
performance of our proposed model was evaluated by comparing
it with the previous state of art CNN techniques. The results
showed better performance in terms of area under curve (AUC)
average as compared to previous approaches.
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Fig. 11. ROC-DNet-7.
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The output of the proposed system not only contributes to
improving the intelligent health care system but also opens op-
portunities for the rest of the research world. A possible extension
in this domain can be in improving optimization code and re-
ducing the computational complexity of the model. It can be
done using the EM matrix proposed by [54]. By modifying our
model with em routing, we can significantly reduce complexity
and achieve better results. In the future, we plan to integrate EM
directive [54] into DNet And further reduce the computational
complexity of the model and improve the accuracy of our model.

A capsule is a group of neurons representing the vector of
their activity ionization process parameters for a particular type
of entity, such as an object or part of the object. It uses the
length of the activity vector to represent the probability of an
entity’s existence and direction to represent instance creation
parameters.

We have achieved better results with 5 and 7 levels of depth
from our model DNet, but as we go deep with our model, the
complexity increases as CapsNet vectorizes the model and data.
To handle this complexity, we can, in the future, use the EM
matrix proposed by [54]. We can significantly reduce complexity
and achieve better results by modifying our model with em
routing. In the future, we plan to integrate EM directive [54] into
DNet And further reduce the computational complexity of the
model and improve the accuracy of our model.

The active capsules in the standard make predictions, through
shift matrices, for the parameters of creating cases of capsules
at a superior level. When many predictions coincide, a higher-
level capsule is activated. We proposed Dense Capsule Networks
(DNet) on a more depth level. The proposed frames allocate
CapsNet by replacing the standard tiling layers with densely
15
connected sequences. This helps to integrate the characteristics
maps learned by the different layers to form the primary capsules.
DNet essentially adds a deeper network of communication, lead-
ing to learning maps with discriminatory characteristics. DNet
uses a hierarchical structure to learn capsules that represent
more or less spatial information, making them more effective
in learning complex data. DNet checks the best performance in
the ChestXray-14 data set on traditional CNN. In addition, DNet
performs better with a higher level of total depth. Experiments
on image classification tasks using reference data sets illustrate
the effectiveness of proposed architectures.
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