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Abstract: Radioprotective effects of vitamin C and vitamin E as a water-soluble and a lipid-soluble
agent, respectively, were investigated at the molecular level during the imposition of gamma
radiation-induced structural changes to bovine serum albumin (BSA) at the therapeutic dose of
3 Gy. Secondary and tertiary structural changes of control and irradiated BSA samples were inves-
tigated using circular dichroism and fluorescence spectroscopy. The preirradiation tests showed
nonspecific and reversible binding of vitamins C and E to BSA. Secondary and tertiary structures of
irradiated BSA considerably changed in the absence of the vitamins. Upon irradiation, α-helices of
BSA transitioned to beta motifs and random coils, and the fluorescence emission intensity decreased
relative to nonirradiated BSA. In the presence of the vitamins C or E, however, the irradiated BSA was
protected from these structural changes caused by reactive oxygen species (ROS). The two vitamins
exhibited different patterns of attachment to the protein surface, as inspected by blind docking,
and their mechanisms of protection were different. The hydrophilicity of vitamin C resulted in the
predominant scavenging of ROS in the solvent, whereas hydrophobic vitamin E localized on the
nonpolar patches of the BSA surface, where it did not only form a barrier for diffusing ROS but
also encountered them as an antioxidant and neutralized them thanks to the moderate BSA binding
constant. Very low concentrations of vitamins C or E (0.005 mg/mL) appear to be sufficient to prevent
the oxidative damage of BSA.

Keywords: protein; gamma radiation; radioprotection; vitamin C and E

1. Introduction

Gamma radiation is a form of ionizing radiation used extensively in medicine, for ex-
ample, in nuclear diagnostic imaging or in the treatment of malign neoplasms [1]. Gamma
rays are electromagnetic waves with frequency in excess of 1019 Hz and wavelengths
lower than 100 pm, produced during the decay of the atomic nuclei of radioactive isotopes.
Because of their ability to penetrate matter deeper than other, more particulate forms of
radiation, such as alpha or beta particles, they are commonly used to interact with deep
tissues to achieve various diagnostic or therapeutic goals. Many classical and advanced
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medical tools, such as emission tomography or gamma knife radiosurgery, make use of
gamma radiation. As the application of methods based on ionization radiation, in gen-
eral, is on the rise among medical professionals, more attention must be paid to its side
effects and associated risks. For example, during radiation cancer therapy, noncancerous
cells, such as endothelial cells, may be damaged, especially at high radiation doses, thus
adversely affecting the therapeutic outcome [2].

Radiolysis of water by ionizing radiation is a major source of reactive oxygen species
(ROS) in cells and tissues irradiated by gamma rays. Oxidative stress conveyed through
the ROS activity causes deleterious effects on biomolecules, including protein oxidation,
misfolding and aggregation, DNA damage and mutations, and lipid peroxidation [3,4]. The
ROS can also induce changes to the secondary and tertiary structure of various proteins,
including myoglobin, human and bovine serum albumins (HSA and BSA), and sunflower
protein [5–8]. The ROS generated by radiation could also modify the primary structure
of the proteins via degradation, cross-linking, and aggregation of polypeptide chains [5],
which results in distortions of the secondary and tertiary structures [6]. The critical factor
in many age-related diseases, particularly the various neurodegenerative diseases such as
Alzheimer, Parkinson, or Huntington diseases, is the oxidation of proteins by the reactive
products of radiation, which leads to aggregated or misfolded protein forms as molecular
triggers of the given pathologies [7].

For this reason, the protection of protein molecules in the body is the primary concern
when the imbalance between the ROS production and antioxidant activity occurs due to ra-
diation exposure, as in radiotherapy. Overall, there is a great need to improve the radiation
safety of patients undergoing radiotherapy through the use of appropriate radioprotectors.

Many prior studies assessed the potentials of various synthetic and natural compounds
to act as radioprotection agents. To this date, only Amifostine has been approved by FDA
for patients undergoing radiotherapy. However, the prescription of this drug is limited
due to pronounced side effects [8,9]. The studies are, therefore, continuing to find and
develop synthetic or natural compounds as radioprotectors with higher biocompatibility,
nontoxicity, efficacy, and stability. Among them, vitamins C and E and their derivatives
have attracted the attention of researchers, given that innumerable in vitro and in vivo
studies have confirmed the ability of these two compounds to manage oxidative stress [3].

Vitamin C is the generic name for ascorbic acid. The chemical structure of this
water-soluble vitamin composed of hydroxyl groups bound to a furan ring makes it a
relatively suitable donor of electrons and protons. Therefore, this vitamin can be oxidized
simultaneously, as it reduces ROS compounds, such as the superoxide anion radical.
Competitive reactions of vitamin C with ROS cause the latter to be neutralized before they
reach the critical compartments of the cell [10,11]. Vitamin E, in turn, is the generic name for
all biologically active stereoisomeric compounds consisting of tocopherol and tocotrienol.
These chemical groups are well-known for their potent antioxidant properties and the
ensuing ability to scavenge ROS and free radicals. This ability is due to the hydroxyl group
on the chroman ring, which is a strong donor of protons that reduce free radicals [12].

Radioprotection experiments in this study were carried on BSA as a model protein.
BSA is not only one of the most significant blood carrier proteins, but it is also one of the
candidate protein markers for radiation biodosimetry based on the high damage degree of
the protein by gamma radiation [13]. In previous studies, the effects of different commonly
used doses (3 and 5 Gy) of gamma radiation on the molecular structure, size distribution,
and surface charge of BSA were investigated by several spectroscopic methods. The studies
have revealed a significant effect of gamma rays on the secondary and the tertiary structure
of the protein [14,15].

The analyses of changes made to the secondary and the tertiary structure of BSA by
irradiation with and without the vitamins were conducted using circular dichroism (CD)
and fluorescence spectroscopies. CD spectroscopy is a proven method for assessing the
secondary structure of proteins based on the unique degrees of ellipticity at characteristic
wavelengths of polarized light produced by different structural alignments of amide
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chromophores in an amino acid chain [16]. CD spectroscopy allows for the discernment of
different secondary structural motifs in a protein based on the unique CD spectra generated
by each. Fluorescence spectroscopy of proteins, in turn, is based on measuring the intrinsic
fluorescence of optically active amino acid side chains, including those of Trp, Tyr, and
Phe, upon appropriate optical excitation. This spectroscopy allows for the acquisition of
information regarding the tertiary structure of proteins based on the intensity changes in
fluorescence, which correlate with the 3-D localization of these three fluorophores [17].

To the best of our knowledge, there has been a persistent lack of studies investigating
the antioxidant and radioprotective effect of vitamins C and E on macromolecules such
as proteins [18], although there have been numerous studies performed in vivo [19–21].
Therefore, in this study, the radioprotection effect of vitamins C and E on 3 Gy dose gamma
radiation-induced BSA structural changes were investigated to gain a better understanding
of the potential for application of these common dietary ingredients in improving the safety
of radiotherapy.

2. Materials and Methods
2.1. Reagents and Apparatus

Bovine serum albumin (BSA) (used without further purification), sodium chloride
(NaCl), sodium hydroxide (NaOH), potassium dihydrogen phosphate (KH2PO4), potas-
sium hydrogen phosphate (K2HPO4), and acetonitrile were purchased from Merck (Darm-
stadt, Germany). Vitamin E and vitamin C were purchased from Eastman (Eastman Kodak
Company, Rochester, NY, USA) and Merck (Germany), respectively. The solutions were
prepared in deionized double distilled water (Barnstead, Nano pure infinity, Dubuque, IA,
USA), and all experiments were carried out at room temperature. Spectroscopic measure-
ments were performed using a spectrofluorometer (Carry Eclipse, Varian, and Australia)
and Circular Dichroism Spectrometer (Model 215, Aviv, New Jersey, NJ, USA). Each BSA
sample was prepared in no less than triplicates and then scanned using CD and the fluores-
cence spectrophotometer. All experiments were conducted at room temperature.

2.2. Sample Preparation and Gamma Irradiation

First, a stock containing 0.8% and 0.1% of BSA and different concentrations of vitamins C
or E were prepared in 10 mM PBS. Vitamin E is fat-soluble, and a small amount of acetone
was used to dissolve it in the buffer. To prepare 0.1% stock solution of vitamin E, 1 mg
of vitamin E was dissolved in 4 µL of acetone, and the final volume reached 1 mL with
the addition of the buffer. Then, BSA samples with the final concentration of 0.4 mg/mL
(0.04% w/v) were prepared in the absence and in the presence of vitamins C or E with
0.002, 0.005, 0.0075, 0.0125 and 0.02 mg/mL concentrations. The prepared BSA samples
with and without vitamins C or E were irradiated at room temperature using 60Co gamma
ray irradiator (Theratron 780-E, Canada) with a dose rate of 10 Gy/min. Irradiation
experiments were performed at the Imam Khomeini Hospital (Tehran, Iran). In this
treatment, BSA absorbed gamma radiation at total doses of 0.1, 0.5, 1, 2, and 3 Gy. The
source skin distance (SSD) and the field of view (FOV) of irradiation were 80 cm and
25 cm × 25 cm, respectively. To achieve the electron balance in the wall of the glass vials
containing the protein samples during irradiation, the vials were placed in a large water
pool made of plexiglass (20 × 20 × 10 cm3). The plexiglass container was located in front
of the 60Co source, at the center of the FOV.

2.3. Circular Dichroism (CD) and Fluorescence Spectroscopy

The far CD measurements of all nonirradiated BSA and irradiated BSA (IR-BSA) sam-
ples were performed in the 190–260 nm range and at the 200 nm/min scanning speed. All of
the CD spectra were baseline-subtracted by using a spectrum of the solvent obtained under
the same experimental conditions. Raw data were analyzed using the CDNN 2.1 software
(Circular Dichroism analysis using Neural Networks). The fluorescence emission intensity
of BSA and IR-BSA were recorded by excitation at 280 nm in the 300–440 nm range.
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2.4. Molecular Docking

4F5S X-ray diffraction structure of BSA with 2.47 Å resolution retrieved from PDB
(Protein Data Bank) was used for all simulation and docking studies [22]. Electrostatic
properties of the protein were calculated using PDB2PQR, which solves the equations of
continuum electrostatics for biological macromolecules [23]. CB-Dock was used to predict
the possible binding modes in the absence of additional information about binding sites [24].
This algorithm utilizes a novel curvature-based protein cavity detection approach to predict
binding sites followed by docking with Autodock Vina based on the calculated centers
on the protein’s surface [24,25]. Ligplot (v.1.4.5) was applied to analyze protein-ligand
contacts by representing the 2D ligand–protein interaction diagrams [26]. Protein surface
properties were calculated using Protein Interfaces, Surfaces and Assemblies service (PISA)
and Volume, Area, Dihedral Angle Reporter (VADAR) [27,28]. UCSF Chimera software
(1.15) was used to represent the 3D models of the protein [29].

3. Results
3.1. Effect of Gamma Radiation at Therapeutic Doses on the Secondary and Tertiary Structure of BSA

To investigate changes caused by gamma rays to the structure of the BSA protein at
the therapeutic doses of 0.1, 0.5, 1, 2, and 3 Gy, CD and fluorescence spectroscopy were
used to study the secondary and the tertiary structure, respectively.

CD spectroscopic data obtained in the far-UV region and intrinsic fluorescence spectra
of BSA and IR- BSA solutions irradiated with the therapeutic doses of gamma rays are
shown in Figure 1A,B. The former spectra exhibit a signal characteristic of the α-helix
structure with two negative bands in the far-UV region at 208 and 222 nm [30], originating
from the n→π* transfer for the peptide bond in α-helix [31]. To gain a more quantitative
structural insight, the percentage of the secondary structure elements in control BSA and
IR-BSA for different therapeutic radiation doses was analyzed by the CDNN software.

BSA is a single-chain midsize protein composed of 583 residues and has a molecular
weight of ~66.5 kDa. It is a water-soluble globular protein, and its main secondary structure
motifs are helices, which form 67% of its structure [32,33]. The results displayed in Table 1
indicate that irradiation caused a 5.5–7% decrease in the content of α-helices in the protein,
an increase of 2.5–3.5% in the content of random coils, and an increase of 1.5–3% in the
content of β-structures. Therefore, irradiation can be said to have caused significant changes
to the secondary structure of irradiated samples as compared to nonirradiated control
samples. In addition, the α-to-β helix transfer in irradiated protein samples increased with
the radiation dose. Irradiation at 3 Gy, correspondingly, displayed the highest α-to-β helix
conversion and irradiations at 0.1 and 0.5 Gy the lowest. Still, the degree of helix conversion
achieved with an increase of the radiation dose from 0.1 to 3 Gy was at around 1%, only a
portion of the 9% change observed at the 0.1 Gy dose relative to the nonirradiated BSA.
This suggests that the radiation-induced changes to the protein structure, if not the number
of ROS produced, are only marginally higher at the highest tested dose of 3 Gy compared
to the lowest dose of 0.1 Gy. Even one such relatively low radiation dose is sufficient to
produce considerable changes to the protein structure, almost identical to those observed
at 3 Gy.

The intrinsic fluorescence results indicate a significant reduction in the emission inten-
sity of IR-BSA samples compared with the nonirradiated sample. Earlier, the irradiation of
BSA at therapeutic doses caused tryptophan (Trp) residues buried in hydrophobic regions
to relocate to a hydrophilic region and reduce fluorescence intensity [34]. This change in
the location of tryptophan residues is directly related to the radiation dose. As a result,
the environment around the Trp residues becomes progressively more hydrophilic with
increasing the radiation dose. The maximum emission wavelength for all samples was
approximately constant and detected at 345 nm.
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Figure 1. CD spectra in the far-UV region (A) and intrinsic fluorescent emission spectra after
excitation by 280 nm wavelength (B) of BSA and IR-BSA solutions at therapeutic radiation doses
[0.1–3 Gy]. All spectra were obtained on solutions containing the protein concentration of 0.4 mg/mL
and prepared in a 10 mM phosphate buffer at pH = 7 at room temperature.

Table 1. Percentage of secondary structural motifs of BSA obtained from the analysis of the CD
spectra in Figure 1 using the deconvolution software CDNN2.1.

Dose (Gy) α-Helix
(%)

β-Sheet
(%)

β-Turn
(%)

Random Coil
(%)

0 60.10 7.50 12.98 17.40
0.1 54.73 8.90 13.70 19.83
0.5 54.78 8.88 13.68 19.88
1 54.23 9.03 13.78 20.15
2 54.10 9.08 13.80 20.15
3 53.32 9.25 13.85 20.65
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3.2. Investigation of the Effect of Gamma Rays at the 3 Gy Dose on the Structure BSA in the
Presence of Natural Protectors
3.2.1. Radioprotection of the Secondary Structure of IR-BSA with Vitamin C

Before the radioprotection properties of vitamin C and E can be assessed, it is necessary
to consider their direct effects on the conformational changes of BSA in the absence of
gamma radiation. Accordingly, changes to the secondary and tertiary structures of BSA
and IR-BSA in the presence of different concentrations of vitamin C and vitamin E were
studied first and compared using far-UV CD and fluorescence spectroscopy.

The CD spectra of BSA and IR-BSA in the far-UV region at the radiation dose of 3 Gy in
the presence of different concentrations of vitamin C are shown in Figure 2A,B, respectively.
The results of the secondary structure content analysis are summarized statistically in
Figure 3 for better review and comparison.

Figure 2. CD spectra in the far-UV region: (A) BSA and (B) IR-BSA (3 Gy) in the presence of different
concentrations of vitamin C. All samples analyzed contained BSA at the concentration of 0.4 mL/mg
in 10 mM phosphate buffer (pH = 7) at room temperature.
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Figure 3. Percentage of secondary structural motifs of BSA (A) and IR-BSA (B) in the presence of different concentrations of
vitamin C obtained from the analysis of the CD spectra using the deconvolution software CDNN2.1. The error bars represent
the standard deviation of five measurements. The * sign indicates a p-value < 0.05 and a statistically significant difference.

The α-helix content of BSA decreased with increasing the concentration of vitamin C
(up to 0.008 mg/mL) and then reached an almost stable state. The secondary struc-
ture changes of BSA at low concentrations of vitamin C (≤0.005 mL), on the other hand,
were negligible.

To evaluate the structural difference in BSA and IR-BSA in the presence of different
concentrations of vitamin C, an unpaired t-test was performed using SPSS version 16(IBM).
Two separate t-tests were performed to compare, (1) BSA in the absence of vitamin and
BSA in the presence of vitamin, and (2) BSA in the absence of vitamin and IR-BSA in
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the presence of vitamin. We set a p-value of less than 0.05 (*) as statistically significant.
As can be seen in Figure 3, the secondary structure content of IR-BSA is most similar to
native BSA at low (≤0.002 mg/mL) and high (≥0.012 mg/mL) vitamin C concentrations.
Vitamin C and ROS are two agents that can cause conformational changes to BSA as
quenchers in the irradiated medium. At low concentrations of vitamin C, the contribution
of non-neutralized free radicals—including ROS and the ascorbyl radical—on the protein
structure change is greater than that of vitamin C, and the opposite applies at higher
vitamin C concentrations. In other words, the damaging effects of ROS expectedly decline
by increasing the concentration of vitamin C as the scavenging agent. The α-helix content
of IR-BSA is higher than that of BSA at vitamin C concentrations >0.008 mg/mL, but still
somewhat lesser than that of the native BSA.

3.2.2. Radioprotection of the Tertiary Structure of IR-BSA with Vitamin C

Figure 4A,B shows the fluorescence spectra of BSA and IR-BSA in the presence of
different concentrations of vitamin C, while Figure 5 shows maximal intensities of these
spectra. The fluorescence intensity of BSA decreased with increasing the vitamin C con-
centration, indicating its quenching effect on the protein. This effect is due to increased
exposure of hydrophobic areas (and subsequently fluorescing Trp, Phe, and Tyr residues
buried in the hydrophobic core) in hydrophilic regions due to partial unfolding of BSA,
which appears to be directly related to the concentration of the vitamin [17,34,35]. From
these data, it can be concluded that vitamin C has a high binding affinity for BSA as
a ligand.

The fluorescence intensity of IR-BSA also declined by increasing the vitamin C con-
centration (Figures 4B and 5). IR-BSA exhibited a higher fluorescence emission intensity
than BSA at comparative concentrations of vitamin C. This indicates that the direct in-
teraction between vitamin C and ROS reduces the direct interaction between BSA and
vitamin C. These results also indicate that the quenching effect of vitamin C on BSA at high
concentrations is more dominant than the quenching effect caused by ROS species.

3.2.3. Radioprotection of the Secondary Structure of IR-BSA with Vitamin E

Figure 6A,B shows the CD spectra of BSA and IR-BSA in the far-UV region at the
radiation dose of 3 Gy in the presence of different concentrations of vitamin E. For a
better review, the percentage of secondary structure elements extracted from Figure 6 is
summarized in Figure 7.

The results confirm that the presence of vitamin E, regardless of the concentration,
had minimal effect on the secondary structure of both BSA and IR-BSA, except for BSA
at 0.002 mg/mL vitamin E. Therefore, vitamin E can be said to have produced negligible
changes to the secondary structure of BSA. The low concentration exception may be because
the hydrophobic affinity among the hydrocarbon tail of vitamin E molecules increases with
concentration. As a result, the penetration of such vitamin aggregates into the BSA protein
structure decreases as compared to the low concentration scenario, which in turn reduces
secondary structure disturbances.

The results also reveal that the amount of α-helices in IR-BSA in the presence of
vitamin E increases (6–7%) compared with IR-BSA in the absence of vitamin E. This applies
to all vitamin E concentrations, which yield values similar to the content present in native
BSA, indicating that even a low vitamin E concentration (0.002 mg/mL) can provide good
radiation protection and prevent structural changes in BSA.

3.2.4. Radioprotection of the Tertiary Structure of IR-BSA with Vitamin E

The intrinsic fluorescence spectra of BSA and IR-BSA in the presence of various
concentrations of vitamin E are shown in Figure 8A,B, respectively, while Figure 9 shows
maximal intensities of these spectra. The maximum emission wavelength for all the samples
was approximately constant and detectable at 345 nm.
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Figure 4. Intrinsic fluorescence emission spectra of BSA (A) and IR-BSA (B) in the presence of different concentrations of
vitamin C. The solutions containing 0.4 mg/mL BSA in 10 mM PBS (pH 7.0) were excited at 280 nm, and the emission
spectra were recorded in the 300–440 nm range.

The fluorescence intensity of BSA decreased with increasing the concentration of
vitamin E, indicating its quenching effect on the protein. Mechanistically, the presence of
vitamin E caused changes in the microenvironment around Trp, Phe, and Tyr residues,
exposing them to the hydrophilic solvent [17,34,35]. On the other hand, no significant
difference between the emission fluorescence intensity of IR-BSA samples containing
different vitamin E concentrations was generally observed. Their emission intensities were
either somewhat greater or similar than those of IR-BSA in the absence of vitamin E.

According to Figure 8, IR-BSA samples containing vitamin E exhibited higher fluores-
cence intensities than nonirradiated BSA samples containing comparative concentrations
of vitamin E, which indicates that the areas around Trp, Phe, and Tyr residues in BSA are
more hydrophobic than those in IR-BSA. The difference between the maximum emission
intensities of BSA and IR-BSA increased with increasing the vitamin E concentration. Based
on these data, it can be inferred that vitamin E is an excellent radiation protector, capa-
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ble of maintaining the tertiary structure of BSA and preventing the destructive effects of
gamma radiation.

Figure 5. The maximum fluorescence emission of BSA and IR-BSA treated with different concentrations of vitamin C (Vit C).
The experimental conditions were the same as mentioned in Figure 4.

3.3. Fluorescence Quenching Mechanism and the Binding of Vitamins C and E to BSA

To further investigate the quenching mechanism of BSA and IR-BSA, as induced by
vitamin C or E, the fluorescence data were analyzed with the Stern–Volmer equation [36,37]:

F0/F = 1 + Kqτ0 [Q] = 1 + KSV (1)

where F0 and F are steady-state fluorescence intensities in the absence and in the presence
of the quencher, respectively, KSV is the Stern–Volmer quenching constant, [Q] is the
concentration of the quencher (i.e., vitamins), Kq is the bimolecular quenching rate constant,
and τ0 is the average lifetime of the fluorophore in the excited state, with its value usually
being 10−8 s for a biological macromolecule. The linearity of the F0/F versus [Q] plots
for both BSA and IR-BSA is shown in Figure 10, whereas the estimated values of KSV and
Kq at room temperature are shown in Table 2. Two main points can be extracted from
these data: (1) the quenching constant of vitamin C is larger than that of vitamin E for
both BSA and IR-BSA, and (2) the quenching constants for both vitamins are lower for
IR-BSA than for BSA. The quenching constant of vitamin C is about 1.7 and 13 times that of
vitamin E for BSA and IR-BSA, respectively. In addition, the Kq for all BSA-vitamin C/E
and IR-BSA–vitamin C/E combinations shown in Table 2 is larger than 2.0 × 1010 mol·L−1,
which is the maximum diffusion collision quenching rate constant considering various
quenchers of biopolymers. This reveals that the quenching fluorescence mechanism most
probably follows a static quenching process rather than a dynamic one. The fluorescence
data were further examined using the modified Stern–Volmer equation [36,37]:

F0/∆F = [1/fa Ka][1/[Q]] + 1/fa (2)
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where fa is the fraction of the initial fluorescence accessible to the quencher; Ka is the
effective Stern–Volmer quenching constant of the accessible fraction, and [Q] is the con-
centration of quencher. The F0/∆F (F0/F0 − F) versus 1/[Q] dependence is displayed in
Figure 11. Both Stern–Volmer equations shown a linearly increasing trend from all vitamin-
BSA combinations except for IR-BSA with vitamin E, which shows a partial (Figure 11) or
complete (Figure 10) plateau. Therefore, the Ka value for the IR-BSA–vitamin E complex is
not reportable. The results obtained using Equation (2) also reiterate that the quenching
mechanism is based on static quenching.

Figure 6. CD spectra in the far-UV region: (A) BSA and (B) IR-BSA (3 Gy) in the presence of different
concentrations of vitamin E. All samples analyzed contained BSA at the concentration of 0.4 mL/mg
in 10 mM phosphate buffer (pH = 7) at room temperature.
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Figure 7. Percentage of secondary structural motifs of BSA (A) and IR-BSA (B) in the presence of different concentrations of
vitamin E obtained from the analysis of the CD spectra using the deconvolution software CDNN2.1. The error bars represent
the standard deviation of five measurements. The * sign indicates a p-value < 0.05 and a statistically significant difference.

The number of binding sites (n) and the binding constant (K) for the quenching interac-
tion of vitamins C or E with BSA and IR-BSA can be calculated using Equation (3) [36,37]:

log[F0 − F/F] = logK + n log[Q] (3)

where F0, F, and [Q] are the same parameters as those in Equation (1). Equation (3) indicates
the equilibrium between the free and the bound molecules. A plot of log [(F0 − F)/F]
versus log [Q] gives a straight line (Figure 12), whose slope equals n and the intercept on
the Y-axis equals log K. The values of K and n at room temperature are listed in Table 2.
The values of n are approximately equal to 1 for BSA-vitamin C/E complexes and indicate
the existence of a single binding site on BSA for both vitamins. In the case of vitamin C,
the value of n does not change significantly depending on whether BSA is irradiated or
not. However, for the IR-BSA–vitamin E complex, the value of n is reduced dramatically,
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by order of magnitude, down to only 0.1. The binding constant (K) for all BSA–vitamin
combinations except IR-BSA–vitamin E are in the 1–150 × 104 range, confirming the
reversible binding and moderate affinity of vitamins to BSA [36]. Such a low value of n
and K for the IR-BSA–vitamin E complex reveals the vitamin E dissociation from BSA in
the presence of ROS. The binding constant of vitamin C is higher than that of vitamin E
due to its hydrophilic properties and smaller size, which allow it to interact freely with
BSA. Although the binding constant of the IR-BSA–vitamin C complex is greater than that
of the BSA–vitamin E complex, it shows lower KSV and Ka.

Figure 8. Intrinsic fluorescence emission spectra of BSA (A) and IR-BSA (B) in the presence of
different concentrations of vitamin E. The experimental conditions were the same as mentioned in
Figure 6.
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Figure 9. The maximum fluorescence emission of BSA and IR-BSA treated with different concentra-
tions of vitamin E (Vit E). The experimental conditions were the same as mentioned in Figure 8.

Figure 10. Stern–Volmer plots for binding vitamins C and E to BSA and IR-BSA at room temperature.

Table 2. Binding parameters for the different complexes of BSA and IR-BSA with vitamins C (Vit C)
and E (Vit-E) at room temperature.

Complex KSV (M−1) Kq (M−1s−1) Ka (M−1) K (M−1) n

BSA–Vit C 25,270 2.527 × 1012 27,315 20,792 0.99
IR-BSA–Vit C 21,134 2.1134 × 1012 15,593 29,580 1.04

BSA–Vit E 15,241 1.5241 × 1012 12,371 12,103 0.97
IR-BSA–Vit E 1592 1.592 × 1011 – 1.5 0.1

Stern–Volmer quenching constant (KSV), bimolecular quenching rate constant (Kq), effective quenching constant
for the accessible fluorophores (Ka), binding constant (K), and the number of binding sites (n).
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Figure 11. Modified Stern–Volmer plots for the binding of vitamin E to BSA and IR-BSA at
room temperature.

Figure 12. The plots of log (F0 − F)/F versus log[Q] at different concentrations of vitamin C or E.

3.4. Molecular Docking Analysis

Molecular docking simulations were performed to derive the possible binding sites for
vitamins C and E on the surface of BSA and are illustrated in Figure 13. Additionally, 2D
interaction plots for the lowest free energies of binding are represented in Figure 14. As can
be inferred from the simulations, both vitamins can attach to various parts of the protein.
However, lipophilic vitamin E is predominantly surrounded by hydrophobic side chains,
with the polar chroman head being observable in the vicinity of the positively charged
patch near Trp 213. Vitamin E binding is primarily based on van der Waals interactions,
as can be seen in the C-terminal binding pocket, where multiple hydrophobic residues
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can be involved, including Phe 550, Val 546, 551, 546 and 556, Leu 528, Met 547, and Ala
527 (Figure 14B). Hydrophilic vitamin C, in contrast, generally interacts with polar and
charged residues, namely Tyr 149, 156, Ser 191, and Arg 198 (Figure 14A).

Figure 13. The most probable binding sites of vitamins C (orange) and E (green) on the BSA surface and amino acids
involved in these interactions. (A,B) Electrostatic representations of the protein surface, with negative and positive potentials,
are colored in red and blue, respectively. (C) Secondary structure illustration of the possible binding sites for vitamins C
and E and their proximity to Trp 134 and 213.

Previous studies have found that among the amino acids, Tyr, Cys, Met, and Trp are
particularly sensitive to ROS [38,39]. Since these sensitive residues are distributed on the
surface of BSA, preference for different binding sites on the protein surface could be the
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critical determining factor for the antioxidant activity of the two vitamins. Movie 1 shows
the distribution of possible binding sites involving the disulfide bonds and Trp and Met
residues. Based on these results, the presence of the vitamins as protective molecular agents
could lead to the following mechanisms of protection:

• The chemical effect, in which case vitamins scavenge radicals and thus prevent them
from interacting with the protein.

• The steric effect, in which case the interaction of vitamins with BSA, causes steric
alterations at or around the binding site, thereby inhibiting radicals from interacting
with the protein. This scenario is important when the binding pocket is near the
sensitive amino acids.

• The colloidal effect, in which case the presence of vitamins stabilizes the protein
dispersion behavior and prevents aggregation.

The free energy of binding for vitamins C and E is predicted to be −10.7 and
−7.0 kcal/mol. Here, vitamin E exhibits a higher affinity for hydrophobic patches of
BSA, while smaller and water-soluble vitamin C prefers polar environments and gravitates
around smaller binding pockets on the BSA surface. This might be the reason for the
rapid fluorescence quenching effect exhibited by vitamin C. Therefore, while vitamin C
floats in the solvent around the protein, vitamin E attaches to the hydrophobic parts of
the BSA surface. Vitamin E binding always involves the hydrocarbon chains of multiple
residues and depends on an accessible hydrophobic area. Due to hydrophobic interaction,
this binding is stable in the close vicinity of the protein surface. In fact, the formation of
multiple hydrophobic interactions involving the phytyl side chain makes this attachment
notably stable.

The computational analysis comparing BSA with HSA showed that the human and
the bovine have sequence identity (75.5%) and similarity (87.5%). However, these two
homolog proteins have very common surface properties and the same isoelectric point of
5.4. The results of the comparative BSA and HSA surface analysis, taking into account the
accessible surface area (ASA), are shown in Figure 15. HSA and BSA possess not only a
nearly identical secondary structure content but also highly similar surface properties in
terms of the hydrophobic/hydrophilic ratio. Hence, since the amount of vitamin E binding
can be directly related to the inhibition of protein oxidation, it is likely that similar behavior
as that evidenced on BSA would apply to HSA as well.
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Figure 14. 2-D plots of vitamin C (A) and vitamin E (B) in interaction with BSA selected based on the lowest free energy
of interaction.
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Figure 15. BSA and HSA surface analysis. Accessible surface area is abbreviated as ASA.

4. Discussion

Oxidative damage in proteins correlates with aging, environmental factors, and stress
and could rapidly affect cell viability by diminishing the function of enzymes and other
proteins [39,40]. These phenomena start with the oxidation of specific amino acids and are
followed by protein degradation at the point when the protein can no longer compensate
for the damage by altering its unique chemical and topological characteristics. Here, Cys,
Met, Trp, and Tyr residues are believed to be most sensitive to ROS, even at low ROS
concentrations resulting from exposure to low-dose radiation [38,39]. Generally speaking,
the degree of oxidation for specific fragments of the polypeptide chain is directly related to
the accessibility (based on RMSD) and the number of hydrogen bonds [41].

Previous studies indicated that degradation and aggregation of proteins were neg-
ligible at low radiation doses, but irreversible effects on the secondary and the tertiary
structure of proteins were significant [6,14,15]. Thus, measurements in this study were
focused on the secondary and tertiary structures of BSA, given that the damage imposed
at that structural level precedes a more obvious deterioration of the protein structure and
function. Therefore, investigation of the radiation effects on the primary structure of BSA,
as with SDS-PAGE or chromatography, was ignored. Vitamins C and E are two types
of natural molecules that have been chosen to investigate their protective effect on the
BSA structure against gamma radiation delivered at the dose of 3 Gy. The radioprotective
effect of these two vitamins against the protein damage induced by gamma radiation was
investigated specifically as an initiatory stage of pathogenesis. Although the protective
effect against oxidation-induced structural alterations evidenced in this study is likely to
be relevant for the prevention of specific disease states associated with radiation exposure,
this effect can also be viewed in a broader context. In what follows, we will discuss the
radioprotection properties of these two vitamins first sequentially and then in comparison
with one another and with a nano-protector of choice.

Vitamin C: The difference between the secondary structure contents of BSA and IR-
BSA at low concentrations of vitamin C (less than 0.008 mg/mL) is mainly related to the
presence of non-neutralized ROS due to the insufficient amount of vitamin C required to
scavenge them. Meanwhile, the direct effect of vitamin C on BSA at low concentrations
of the vitamin is negligible, considering almost the same secondary structure of BSA in
the absence and in the presence of vitamin C in this concentration range. The structural
difference of the IR-BSA protein molecules in the presence of vitamin C compared to native
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BSA stems primarily from their mutual binding, which remains intact in the presence of
the ROS.

The α-helix content of IR-BSA at the vitamin C concentration higher than 0.008 mg/mL
is lesser than that of the native BSA, but it is higher than that of the native BSA in the
presence of vitamin C. The first of these two effects is due to the interaction of ascorbate or
dehydroascorbate with BSA, alongside the definite scavenging of ROS species by vitamin C
in the solution. The latter effect, on the other hand, may be related to the lesser net effect
of ascorbate and dehydroascorbate than to ascorbate alone due to the conversion of O-H
groups to =O in dehydroascorbate.

The free radical form of vitamin C, a.k.a. the ascorbyl radical, is generated by donating
an electron to a ROS such as the OH radical, a main reactive species scavenged after
irradiation. Two pairs of ascorbyl radicals in the solution react rapidly to convert, albeit
disproportionately, to ascorbate and dehydroascorbate, which eventually convert to 2,
3-diketo-1-gulonic acid. The main form of ascorbic acid (AcsH2) becomes deprotonized
(AscH-) at neutral pH of 7 [42].

Although the interaction of the highly reactive ascorbyl radical with BSA is possible,
the radical form of vitamin C should not be particularly challenging for the structure of BSA
because the ascorbyl radical rapidly converts to the nonradical form. The effect, however,
is expected to be more prominent at higher vitamin concentrations and radiation doses
when the production of the ascorbyl radical in water due to radiolysis is more pronounced.
The relative molar concentrations of vitamin C to BSA corresponding to 0.002, 0.005, 0.008,
0.0125, 0.02, and 0.025 mg/mL vitamin C are 1.9, 4.7, 7, 12, 19, and 24, respectively, and
the effects of the ascorbyl radical are expected to be more elicited at these higher relative
concentrations.

Vitamin E: Contrary to Vitamin C, which is hydrophilic (logP = −1.8), vitamin E
(α-tocopherol) is hydrophobic (logP = 12.2), and its structure is composed of two parts: the
chromane head and the phythyl tail, where the OH head group is responsible for interaction
with the radicals and the antioxidant activity. In accord with the earlier studies [35,43],
our work has confirmed that the interaction between vitamin E and BSA proceeds mainly
via hydrophobic forces. Therefore, vitamin E has the natural propensity to localize to the
BSA protein surface through hydrophobic interaction with the hydrophobic patches on the
protein surface wherefrom it may exert its protective effect.

The CD results unequivocally demonstrate that the secondary structure of IR-BSA is
protected by vitamin E, even at very low vitamin doses. Under this condition, the generated
ROS diffuse through the water toward the BSA–vitamin E complex to encounter them. The
interaction of ROS with vitamin E here is more probable and greater than that with the
BSA protein because of the higher concentration of vitamin E and the shell effect around
BSA, which leads to its physical shielding [44]. Namely, the molar concentration ratios
of vitamin E to BSA corresponding to 0.002, 0.005, 0.008, 0.0125, 0.02, and 0.025 mg/mL
vitamin E are 1, 2, 3, 5, and 10, respectively. Therefore, the diffusing ROS encounter
vitamin E in this outer protective layer and convert it to α-tocopherol radical by altering
the OH group of the chroman head. This radical is fairly stable due to the unpaired electron
of oxygen delocalized in the aromatic ring and is not reactive enough to initiate protein
peroxidation itself. Rather, it tends to recombine with another radical to convert to a
nonradical product [45]. Most likely, α-tocopherol radicals attack one another, producing α-
tocopherol dimers and trimers, but also 4a, 5- epoxy-8a-hydroperoxy α-tocopherol. While
α-tocopherol dimers and trimers may cause spatial hindering that prohibits their mutual
interaction and the interaction of diffusing ROS with BSA, α-tocopherol dimers and trimers
have a relatively high reaction rate constant (in the order of 103) [46]. All in all, the presence
of vitamin E in IR-BSA samples effectively neutralizes ROS and prevents its binding to
BSA through the inherent antioxidant activity and the production of new molecular forms.

The comparison between vitamins C and E: Generally, vitamins C and E act as
ligands for BSA with moderate binding constants. Hydrogen bonds and hydrophobic
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interactions are the main driving forces for the binding of vitamins C and E, respectively,
to BSA.

Vitamin C is significantly more polar and smaller than vitamin E. Therefore, it can
form hydrogen bonds around different regions of the protein and reduce the solvation
of the protein by lowering the number of hydrogen bonds formed between the protein
and the water molecules solvating it. On the other hand, due to its relatively small size,
it is more likely to reach groves on the protein surface that are not well fitted for bulkier
ligands. This may explain the broader range of fluorescence quenching accompanied by
slight secondary structure changes observed in BSA stabilized by vitamin C.

The CD results showed that the secondary structure contents of both BSA and IR-BSA
are preserved in the presence of vitamin E, indicating the surface hydrophobic interactions
could not cause substantial changes to BSA. The results also indicate that the oxidized
molecular forms of vitamins C and E in IR-BSA samples, i.e., the dehydroascorbate and
α-tocopherol dimers and trimer, respectively, have a lower quenching effect on BSA as
compared to nonirradiated samples. Together, along with the different antioxidant mecha-
nisms of vitamins C and E, the difference in the distribution of these vitamins on the BSA
surface and the hydrophobic/hydrophilic ratio of the protein seem to be very important
for a proper study of the radioprotective effects of vitamins. In any case, a very low con-
centration of both vitamins C and E, in the order of 0.005 mg/mL, is sufficient to strongly
scavenge the ROS produced by ionizing radiation.

Whereas the scavenging activity of vitamin C is primarily exerted in the solvent,
the suppression of ROS by vitamin E stems from its ability to bind to BSA. This is in
agreement with the physiological fact that while vitamin C does not bind to serum proteins
and circulates through the blood in the form of a free ascorbate anion [47], vitamin E is
transported by a specific vitamin D binding protein, a member of the albuminoid family
of proteins [48]. One question to consider at this point is whether additional drugs, drug
carriers, or biomolecules would compete for the BSA surface with the vitamins and reduce
their antioxidant efficacy. In such scenarios, exerting the mechanism of action in a diffused
state, as with vitamin C, may prove to be an advantage. On the other hand, such synergetic
activities may prompt the dehydrogenated vitamin C and vitamin E dimers and trimers
mentioned above to lose their antioxidant activities. The formation of radical forms of
vitamins is coupled to recycler pathways to convert them via chemical reduction to the
nonradical native form in vivo [45,49]. Such mechanism intrinsically lacks in an in vitro
setting and may drastically affect the antioxidant activities of vitamins.

It is worth mentioning that vitamins C and E exhibit the same effect as some common
ROS scavengers. An in vitro study on irradiated human blood lymphocytes, for example,
indicated that all common ROS scavengers including N-acetylcysteine (NAC), ß-carotene,
selenium, vitamin E, vitamin C, and Q10 led to a significant reduction of double-strand
breaks [50]. In another study, the radiation protection capacity of vitamins C and E
with respect to human blood lymphocytes led to a significant reduction in X-ray-induced
chromosomal damage, interestingly greater than that achieved by Amifostine, a drug
characterized by high toxicity [51]. In addition, an in vivo study also showed that the
radio-protective effect of vitamin C and E is equal to that of NAC in terms of preventing
hepatoxic effects of amiodarone drug [52]. Compared to many of these drugs, the advantage
of vitamins C and E lies in their nontoxic nature, alongside general dietary benefits.

Comparison between vitamins C and E and a nano-radioprotector: In our previous
study, the radioprotective effect of synthesized ceria nanoparticles (CNPs) and magnetic
flower-like iron oxide microparticles (FIOMPs) on irradiated BSA was investigated [14].
Some differences and similarities between these NPs and MPs with respect to the radiopro-
tection of vitamins C and E will be discussed here.

First, the binding strength of the radioprotector to BSA is the key factor in determining
its availability to disassociate reversibly from the protein and scavenge the ROS effectively.
The K values indicated that the binding of vitamins C and E to BSA (in the order of 104)
and of NPs/MPs to BSA (less than 103) is moderate and very weak, respectively. Both
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systems, especially the NPs/MPs, are bound reversibly to BSA, with the caveat that most
NPs/MPs are unbound to BSA. Although the low affinity of the radioprotector to its target
can be an advantage because it produces lesser side effects on the conformational changes
of the protein, it cannot be an important factor in the case that it reversibly detaches to
play its antioxidant and ROS scavenging roles. The latter role is clearly displayed by both
vitamins C and E when the BSA sample is exposed to gamma radiation, and the vitamins
neutralize the ROS in the solvent and radical amino acids on the protein, respectively, with
their affinity to the protein per se being reduced. In other words, the reversible binding of
vitamins C and E to BSA is not only important in preserving the ability of albumin to act as
a plasma carrier protein open for other targets but also in achieving this ability to detach
from the protected protein to interact effectively with the radicals.

Two general categories of antioxidants are found in the body: nonenzymatic ones,
such as vitamin C, vitamin E, minerals, etc., and enzymatic ones, such as catalase (CAT),
superoxide dismutase (SOD), glutathione peroxidase, etc. [48,53]. The CNPs/FIOMPs
radioprotectors are an enzymatic type due to enzyme mimetic activities, including CAT,
SOD, and peroxidase [45,53]. The main difference between them is that the radical forms
of nonenzymatic antioxidants need to convert back to the molecularly stable form by the
recycler system. Such recycler enzymes or other biomolecules are present naturally in vivo
but are challenging to implement in an in vitro study, such as the one conducted here.
Therefore, there is a pending concern about the vitamin radical attack on amino acids
of the BSA protein, whereas no such concern applies to NPs/MPs radioprotectors. This
concern for both vitamins C and E can be considered negligible for the aforementioned
vitamin to BSA concentration ratios, although some attack of the radical vitamin forms
on the BSA protein may still be present. It is interesting that based on this argumentation,
the in vitro radioprotection of inorganic nano-radioprotectors can be more similar to the
in vivo scenario than the in vitro radioprotection of organic molecules namely vitamins C
and E. Nevertheless, the clear and precise idea about the difference between the mechanism
of action of these two antioxidant agents is not easy to infer due to the complexity of the
mechanisms involved, particularly in vivo.

Taken together, the natural and the synthetic radioprotectors discussed both show
good radioprotection properties according to in vitro research presented here and else-
where [14].

5. Conclusions and Future Directions

In this study, the radioprotective effect of vitamins C and E was investigated with
respect to the gamma radiation-induced structural changes to BSA as a model protein at
the therapeutic dose of 3 Gy. Various prior cellular and in vivo reports on the potential of
vitamins C and E for radioprotection motivated our group to investigate this potential on
the molecular level.

The preirradiation analyses carried out using CD and fluorescence spectroscopies
showed nonspecific and reversible binding of vitamins C and E to BSA. Spectroscopic
measurements further showed that gamma irradiation of BSA in the absence of vitamins
results in changes of protein conformation accompanied by a decrease in the number of
alpha-helices, an increase in the amount of complementary secondary structures, and
a decrease in the fluorescence emission. In the presence of either of the two vitamins,
irradiated BSA was protected from the structural changes induced by radiation. The
reversible binding of vitamins C and E to BSA ensures that the vitamins dissociate easily
and scavenge ROS, after which their radical forms convert to the native ones in vivo via
a related biomolecule or enzyme, and BSA can transport them to the target tissue. At
reasonable concentrations, vitamins C and E are not only nontoxic but are also predisposed
for optimal antioxidant activity. The results of this study may confirm that the prescription
of these vitamins after radiotherapy is a viable option, especially because these molecules
exhibit no side effects, unlike other common drugs.
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It is also expected that the results of this study on serum albumin as a primary and
abundant blood protein can be used as a biomarker for the design of a novel biological
dosimeter. Finally, regarding the complementary advantages of natural radioprotectors
such as vitamins C and E and the synthetic ones such as the nano-material radioprotectors
discussed earlier in the text, including low toxicity for the former and higher bioavailability
due to resistance to digestion and potential for surface functionalization to yield enhanced
target-specificity for the latter, a radioprotection system based on the synergic effect of
these two radioprotectors can be proposed.
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