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Abstract: Doxorubicin (DOX), a category D pregnancy drug, is a chemotherapeutic agent that has
been shown in animal studies to induce fetal toxicity, including renal abnormalities. Upregulation
of the transient receptor potential cation (TRPC) 6 channel is involved in DOX-induced podocyte
apoptosis. We have previously reported that TRPC6-mediated Ca2+ signaling promotes neonatal
glomerular mesangial cell (GMC) death. However, it is unknown whether DOX alters mesangial
TRPC expression or viability in the fetus. In this study, cell growth was tracked in control and
DOX-treated primary GMCs derived from fetal pigs. Live-cell imaging demonstrated that exposure
to DOX inhibited the proliferation of fetal pig GMCs and induced cell death. DOX did not alter
the TRPC3 expression levels. By contrast, TRPC6 protein expression in the cells was markedly
reduced by DOX. DOX treatment also attenuated the TRPC6-mediated intracellular Ca2+ elevation.
DOX stimulated mitochondrial reactive oxygen species (mtROS) generation and mitophagy by the
GMCs. The DOX-induced mtROS generation and apoptosis were reversed by the mitochondria-
targeted antioxidant mitoquinone. These data suggest that DOX-induced fetal pig GMC apoptosis is
independent of TRPC6 channel upregulation but requires mtROS production. The mtROS-dependent
GMC death may contribute to DOX-induced fetal nephrotoxicity when administered prenatally.

Keywords: doxorubicin; TRPC; Ca2+; glomerular mesangial cell; apoptosis; mitochondrial reactive
oxygen species

1. Introduction

Kidney cells, including mesangial cells, parietal epithelial cells, endothelial cells, and
podocytes, sustain the structure and function of the glomerulus. Dysregulation of the
associated cell functions is of pathological significance in a wide variety of diseases [1]. The
central stalk of the glomerulus contains mesangial cells that line the inter-capillary space
(mesangium) and generate extracellular matrix proteins [2,3]. The glomerular mesangial
cells (GMCs) produce vasoactive agents and express G-protein-coupled receptors (GPCRs)
and ion channels, including the transient receptor potential cation (TRPC) channels [2–5].
Activation of GPCRs and ion channels can contract or relax cultured GMCs to regulate
their planar surface area, the physiological significance of which is unresolved in intact
kidneys [2,3].

GMCs play critical roles in glomerulogenesis. Similar to endothelial cells, GMCs are re-
cruited into the vascular clefts of developing glomeruli, where they organize the glomerular
capillary network [6,7]. Formation of the capillary tuft and the commencement of filtration
requires mesangial factors [6,7]. Thus, mesangiolysis and targeted deletion of critical mesan-
gial cell genes, including ephrinB2, Notch, GATA3, and EBF1, have been demonstrated to
alter mesangial and capillary loop maturation and impair glomerulogenesis [6–11].
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Postnatal exposure to nephrotoxic medications, including aminoglycoside antibiotics
and nonsteroidal anti-inflammatory drugs, can have short- and long-term adverse effects
on immature kidneys and are a significant cause of acute kidney injury (AKI) and chronic
kidney disease (CKD) [12,13]. Furthermore, since nephrogenesis ends by the 36th week of
gestation in humans, medications administered to pregnant women or premature babies
before completing nephrogenesis may alter kidney development and cause morphological
and functional derangements of the nephrons [14,15]. Drug-induced impairment of kidney
development may have long-term adverse consequences to kidney and cardiovascular functions.

The anthracycline antibiotic, doxorubicin (DOX), is a potent chemotherapeutic drug
used to treat various cancers, including Hodgkin and non-Hodgkin lymphoma, and bone,
breast, and liver, and ovarian cancers [16,17]. DOX promotes cardiac fibrosis and ventricular
failure [16–19]. DOX treatment can also induce kidney injury and is an established rodent
model of CKD [20]. DOX nephrotoxicity is characterized by damage to the glomerular
capillaries, proteinuria, tubulointerstitial inflammation, and podocyte effacement [20]. DOX
is a pregnancy category D drug as animal studies have shown evidence of toxic cardiac
and kidney effects from its in utero exposure [21,22]. Administration of DOX to female
rats four weeks before fertilization resulted in the fetuses exhibiting mesangial matrix
accumulation, glomerulosclerosis, thickening of the glomerular basement membranes,
and tubular injury [23,24]. Fetuses of rats that received DOX early in gestation have also
been reported to exhibit hydronephrosis, cortical and medullary atrophy, and kidney
lesions [21,25,26].

Normal proliferation, differentiation, and survival of kidney cells are critical pro-
cesses during nephrogenesis [27,28]. Since an increase in cell growth or death can result
in glomerular injury [29,30], mechanisms that control propagation and senescence are
vital. This includes signal transduction pathways that can be modulated by changes in
intracellular Ca2+ concentrations ([Ca2+]i) as [Ca2+]i is a regulator of signal transduction
processes controlling the cell cycle and survival [31,32]. Upregulation of TRPC6 channel
expression has been demonstrated to contribute to DOX-induced podocyte apoptosis and
glomerulosclerosis [33,34]. We have reported that TRPC6-mediated Ca2+ signaling pro-
motes neonatal GMC death [35]. Whether DOX alters TRPC6 expression or mesangial
viability in fetal GMCs is unclear. In this study, we examined the effects of DOX on fetal
pig primary GMCs. We tested the hypothesis that DOX-induced upregulation of TRPC6
expression and TRPC6-dependent [Ca2+]i elevation is associated with fetal GMC apoptosis.

2. Results
2.1. DOX Inhibited Fetal GMC Proliferation

Figure 1 shows the concentration- and time-response effects of DOX on fetal GMC
proliferation. Automatic quantification of proliferation over 72 h indicated that 1 and 3 nM
of DOX did not alter cell growth. Although 10–100 nM of DOX inhibited proliferation,
0.3–10 µM caused the death of the cells less than 30 h after treatment. These data suggest
that DOX impedes proliferation and induces the death of fetal pig GMCs.
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Figure 1. DOX inhibits fetal GMC proliferation. (A) Representative microplate graphs; (B) phase- 
contrast images; and (C) cell growth curves showing time- and concentration-dependent effect of 
DOX on fetal pig GMCs. Both control and DOX-treated cells show normal morphology at 0 h. DOX 
concentrations of 1 and 3 nM did not alter cell growth. Whereas 10–100 nM of DOX inhibited pro-
liferation and 0.3–10 µM caused the death of the cells less than 30 h characterized by circular rather 
than elongated appearance. * p < 0.05 vs. control (10 nM: 30–72 h; 30 nM: 24–72 h; 100 nM: 30–72 h; 
300 nM: 30–72 h; 1 µM: 24–72 h; 3 µM: 24–72 h; 10 µM: 24–72 h) (two-way ANOVA, with Tukey’s 
post hoc test) (n = 5 each). Scale bar = 300 µM.  

2.2. DOX Reduced TRPC6 Channel Expression in Fetal GMCs 
Western immunoblotting of protein lysates isolated from fetal pig GMCs revealed 

TRPC3 and TRPC6 expression in the cells (Figure 2A–D). Although TRPC3 expression 
was not altered, the protein expression levels of TRPC6 were significantly reduced in 
GMC treated for 18 h with 100 nM of DOX (Figure 2A–D). 

Figure 1. DOX inhibits fetal GMC proliferation. (A) Representative microplate graphs; (B) phase-contrast images; and
(C) cell growth curves showing time- and concentration-dependent effect of DOX on fetal pig GMCs. Both control and
DOX-treated cells show normal morphology at 0 h. DOX concentrations of 1 and 3 nM did not alter cell growth. Whereas
10–100 nM of DOX inhibited proliferation and 0.3–10 µM caused the death of the cells less than 30 h characterized by
circular rather than elongated appearance. * p < 0.05 vs. control (10 nM: 30–72 h; 30 nM: 24–72 h; 100 nM: 30–72 h; 300 nM:
30–72 h; 1 µM: 24–72 h; 3 µM: 24–72 h; 10 µM: 24–72 h) (two-way ANOVA, with Tukey’s post hoc test) (n = 5 each). Scale
bar = 300 µM.

2.2. DOX Reduced TRPC6 Channel Expression in Fetal GMCs

Western immunoblotting of protein lysates isolated from fetal pig GMCs revealed
TRPC3 and TRPC6 expression in the cells (Figure 2A–D). Although TRPC3 expression was
not altered, the protein expression levels of TRPC6 were significantly reduced in GMC
treated for 18 h with 100 nM of DOX (Figure 2A–D).
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Figure 2. DOX reduces TRPC6 channel expression and TRPC6-mediated [Ca2+]i in fetal GMCs. West-
ern blot images and bar charts showing the expression levels of TRPC3 (A,B) and TRPC6 (C,D) in 
control (DMSO)- and DOX (100 nM)-treated fetal pig GMCs (18 h). (E,F) Exemplar traces and bar 
charts demonstrating the levels of Hyp9 (10 µM) (TRPC6 agonist)-induced [Ca2+]i elevation in con-
trol (DMSO)- and DOX (100 nM)-treated fetal GMCs (18 h). * p < 0.05 vs. control (two-tailed unpaired 
t-test); NS = not significant. 

2.3. DOX Inhibited TRPC6-Mediated [Ca2+]i Elevation in Fetal GMCs 
TRPC6 channels regulate neonatal pig GMC [Ca2+]i concentrations [35]. To determine 

whether DOX modulates TRPC6-dependent [Ca2+]i elevation, we explored the effect of 
Hyp9, a TRPC6 channel activator on [Ca2+]i levels. Hyp9 increased [Ca2+]i in control fetal 
pig GMCs (treated with DMSO) (Figure 2E,F). However, DOX treatment attenuated the 
Hyp9-induced [Ca2+]i elevation by ~36%. 

2.4. DOX Stimulated Mitochondrial ROS Generation in Fetal GMCs 
DOX localizes to the mitochondria (mt) and promotes mt-dependent intracellular 

ROS generation in various cells. Here, we used the MitoSOX Red fluorogenic dye to eval-
uate superoxide generation, specifically in the mitochondria of live fetal pig GMCs. Oxi-
dation from MitoSOX Red by superoxide produces red fluorescence, which was amplified 
in DOX-treated cells (Figure 3A,B). Pretreatment of the cells with the mitochondria-tar-
geted antioxidant mitoquinone (MitoQ) decreased DOX-induced MitoSOX oxidation (Fig-
ure 3A,B). Increased mtROS stimulates mitophagy [36–38]; Figure 3C shows that mitoph-
agy was essentially absent in the DMSO-treated fetal pig GMCs but was induced in the 
DOX-treated cells. Together, these data indicate that DOX stimulates mtROS generation 
in fetal GMCs. 

Figure 2. DOX reduces TRPC6 channel expression and TRPC6-mediated [Ca2+]i in fetal GMCs.
Western blot images and bar charts showing the expression levels of TRPC3 (A,B) and TRPC6 (C,D)
in control (DMSO)- and DOX (100 nM)-treated fetal pig GMCs (18 h). (E,F) Exemplar traces and
bar charts demonstrating the levels of Hyp9 (10 µM) (TRPC6 agonist)-induced [Ca2+]i elevation in
control (DMSO)- and DOX (100 nM)-treated fetal GMCs (18 h). * p < 0.05 vs. control (two-tailed
unpaired t-test); NS = not significant.

2.3. DOX Inhibited TRPC6-Mediated [Ca2+]i Elevation in Fetal GMCs

TRPC6 channels regulate neonatal pig GMC [Ca2+]i concentrations [35]. To determine
whether DOX modulates TRPC6-dependent [Ca2+]i elevation, we explored the effect of
Hyp9, a TRPC6 channel activator on [Ca2+]i levels. Hyp9 increased [Ca2+]i in control fetal
pig GMCs (treated with DMSO) (Figure 2E,F). However, DOX treatment attenuated the
Hyp9-induced [Ca2+]i elevation by ~36%.

2.4. DOX Stimulated Mitochondrial ROS Generation in Fetal GMCs

DOX localizes to the mitochondria (mt) and promotes mt-dependent intracellular ROS
generation in various cells. Here, we used the MitoSOX Red fluorogenic dye to evaluate
superoxide generation, specifically in the mitochondria of live fetal pig GMCs. Oxidation
from MitoSOX Red by superoxide produces red fluorescence, which was amplified in DOX-
treated cells (Figure 3A,B). Pretreatment of the cells with the mitochondria-targeted an-
tioxidant mitoquinone (MitoQ) decreased DOX-induced MitoSOX oxidation (Figure 3A,B).
Increased mtROS stimulates mitophagy [36–38]; Figure 3C shows that mitophagy was
essentially absent in the DMSO-treated fetal pig GMCs but was induced in the DOX-treated
cells. Together, these data indicate that DOX stimulates mtROS generation in fetal GMCs.
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Figure 3. DOX stimulates mtROS generation in fetal GMCs. (A,B) Confocal microscopy images and 
charts showing increased MitoSOX Red staining (indicating ROS generation) in DOX (100 nM; 30 
min)-treated cells and reversal by the mitochondria-targeted antioxidant mitoquinone (MitoQ 1 
µM). (C) Representative confocal microscopy images (n = 4) showing induction of the mitophagy 
dye staining in DOX-treated cells. The mitophagy dye exhibits a weak basal fluorescence, but the 
fluorescence is induced when injured mitochondria fuse to the lysosome. The Lyso dye detects ly-
sosomes in the cells. * p < 0.05 vs. DMSO/DOX (one-way ANOVA, with Tukey post hoc test). Scale 
bar = 100 µM. 

2.5. MitoQ Reversed DOX-Induced Apoptosis in Fetal GMCs 
Figure 1 indicates significant cell death in the DOX-treated cells. To examine whether 

DOX induces fetal pig GMC apoptosis, we measured caspase-3/7 activity in the cells. As 
shown in Figure 4A,B, DOX engendered an increase in caspase-3/7 activity in a concen-
tration- and time-dependent manner. Pretreatment of the cells with MitoQ and Ac-DEVD-
CHO (a caspase-3 and caspase-7 inhibitor) reversed DOX-induced caspase-3/7 activation, 
indicating that mtROS mediates DOX-induced apoptosis in fetal pig GMCs (Figure 4A,B). 

Figure 3. DOX stimulates mtROS generation in fetal GMCs. (A,B) Confocal microscopy images and charts showing increased
MitoSOX Red staining (indicating ROS generation) in DOX (100 nM; 30 min)-treated cells and reversal by the mitochondria-
targeted antioxidant mitoquinone (MitoQ 1 µM). (C) Representative confocal microscopy images (n = 4) showing induction
of the mitophagy dye staining in DOX-treated cells. The mitophagy dye exhibits a weak basal fluorescence, but the
fluorescence is induced when injured mitochondria fuse to the lysosome. The Lyso dye detects lysosomes in the cells.
* p < 0.05 vs. DMSO/DOX (one-way ANOVA, with Tukey post hoc test). Scale bar = 100 µM.

2.5. MitoQ Reversed DOX-Induced Apoptosis in Fetal GMCs

Figure 1 indicates significant cell death in the DOX-treated cells. To examine whether
DOX induces fetal pig GMC apoptosis, we measured caspase-3/7 activity in the cells.
As shown in Figure 4A,B, DOX engendered an increase in caspase-3/7 activity in a
concentration- and time-dependent manner. Pretreatment of the cells with MitoQ and
Ac-DEVD-CHO (a caspase-3 and caspase-7 inhibitor) reversed DOX-induced caspase-3/7
activation, indicating that mtROS mediates DOX-induced apoptosis in fetal pig GMCs
(Figure 4A,B).
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Figure 4. DOX-induced mtROS promotes caspase-3/7 activation in fetal GMCs. (A) Images (green 
fluorescence staining of the nuclear DNA in apoptotic cells) and (B) caspase 3/7 object count demon-
strating that DOX induces apoptosis in fetal GMCs and reversal by MitoQ (1 µM) and Ac-DEVD-
CHO (50 µM; a caspase-3 and caspase-7 inhibitor). ¥ p < 0.05 vs. control (2–24 h); * p < 0.05 vs. control 
(24 h) &,# p < 0.05 vs. DOX (1 µM; 2–24 h) (two-way ANOVA, with Tukey’s post hoc test); n = 5 each. 
Scale bar = 100 µM. 
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The data presented here show that DOX inhibits the proliferation of fetal GMCs. The 

small and rounded appearance of the cells treated with ≥0.3 µM of DOX is indicative of 
cell death. DOX-induced apoptosis was confirmed by a concentration- and time-depend-
ent increase in caspase-3/7 activity in the cells. The apoptotic activity of DOX is consistent 
with its effects on rat mesangial cells and other kidney cell types, including tubular and 
glomerular endothelial cells, and podocytes [39–42]. 

DOX kills cancer cells by inducing double-strand DNA breaks via intercalation into 
DNA and inhibiting topoisomerase-II-mediated DNA repair [16,43]. DOX also promotes 
cellular injury by generating deleterious ROS leading to oxidative DNA damage and cell 
death [16,43]. Increased renal TRPC6 expression is associated with podocyte injury and 
death in DOX nephropathy [33,44,45]. Treatment of mouse podocytes with DOX caused 

Figure 4. DOX-induced mtROS promotes caspase-3/7 activation in fetal GMCs. (A) Images (green
fluorescence staining of the nuclear DNA in apoptotic cells) and (B) caspase 3/7 object count demon-
strating that DOX induces apoptosis in fetal GMCs and reversal by MitoQ (1 µM) and Ac-DEVD-CHO
(50 µM; a caspase-3 and caspase-7 inhibitor). ¥ p < 0.05 vs. control (2–24 h); * p < 0.05 vs. control (24 h)
&,# p < 0.05 vs. DOX (1 µM; 2–24 h) (two-way ANOVA, with Tukey’s post hoc test); n = 5 each. Scale
bar = 100 µM.

3. Discussion

The data presented here show that DOX inhibits the proliferation of fetal GMCs. The
small and rounded appearance of the cells treated with ≥0.3 µM of DOX is indicative of
cell death. DOX-induced apoptosis was confirmed by a concentration- and time-dependent
increase in caspase-3/7 activity in the cells. The apoptotic activity of DOX is consistent
with its effects on rat mesangial cells and other kidney cell types, including tubular and
glomerular endothelial cells, and podocytes [39–42].

DOX kills cancer cells by inducing double-strand DNA breaks via intercalation into
DNA and inhibiting topoisomerase-II-mediated DNA repair [16,43]. DOX also promotes
cellular injury by generating deleterious ROS leading to oxidative DNA damage and
cell death [16,43]. Increased renal TRPC6 expression is associated with podocyte injury
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and death in DOX nephropathy [33,44,45]. Treatment of mouse podocytes with DOX
caused time-dependent apoptosis and was correlated with an increase in mRNA and
protein expression of the TRPC6 channels [34]. Moreover, siRNA-mediated knockdown
of TRPC6 reduced DOX-induced apoptosis in cultured mouse podocytes [34]. Together,
these studies suggest that TRPC6-dependent Ca2+ signaling contributes to DOX-induced
podocyte dysfunction.

TRPC6 is a member of the TRPC3/6/7 subgroup of cation channels within the TRPC
family. These Ca2+ permeable channels share approximately 75% amino acid identity, are
gated by diacylglycerol analogs, and co-assemble, forming a functional channel [46,47].
We have previously shown that TRPC6 activation and successive [Ca2+]i elevation caused
apoptosis in primary neonatal pig GMCs [35]. TRPC6-mediated GMC apoptosis was in-
dependent of ROS generation but involved induction of the calcineurin/NFAT, FasL/Fas,
and caspase signaling pathways [35]. As a first step in determining whether DOX-induced
upregulation of TRPC3 or TRPC6 is involved in fetal GMC apoptosis, we investigated
the protein expression levels of these channels in DOX-treated cells. DOX did not change
TRPC3 but reduced the protein expression levels of TRPC6 in fetal GMCs. Correspond-
ingly, the TRPC6-mediated increase in [Ca2+]i was significantly reduced in cells treated
with DOX. These findings indicate that, unlike the podocytes, DOX does not promote
TRPC6 upregulation in fetal pig GMCs. Instead, it reduced the expression of the channels.
Hence, the TRPC6 channels upregulation may not contribute to fetal pig GMC death. The
pathophysiological significance of DOX-induced reduction in TRPC6 protein expression
levels requires further investigation.

Anticancer drugs, including DOX, are associated with cell death triggered by mitochondrial-
dependent and -independent ROS production [48–50]. Oxidative stress-induced alterations
in mitochondrial bioenergetics, loss of mitochondrial membrane potential, and disrup-
tion to the electron transport chain are mechanisms that underlie DOX-induced cellular
dysfunction, especially in the cardiomyocytes [16,43,51,52]. However, the role of ROS in
DOX-induced fetal mesangial cell death was unclear. We showed here that DOX engenders
mtROS generation in fetal pig GMCs, an effect attenuated by the mitochondria-targeted an-
tioxidant MitoQ. Mitophagy, a selective form of the autophagy mechanism that eliminates
injured mitochondria, has been implicated in DOX cardiomyopathy [53–56]. Increased pro-
duction of mtROS stimulates mitophagy [36–38]. In cardiac cells, DOX produced excessive
elimination of the mitochondria via mitophagy [53–56]. Hence, our data showing that DOX
triggered mitophagy in fetal pig GMCs supports the concept that DOX induces mtROS
generation in the cells and promotes mitochondrial degradation. Furthermore, the reversal
of DOX-induced apoptosis by MitoQ indicates that mitochondrial-derived oxidative stress
is involved in DOX-induced fetal GMC apoptosis. Hence, pharmacological inhibition of
mtROS could be a potential therapy for the treatment of DOX-induced fetal nephrotoxicity.

In summary, we demonstrated that DOX-induced fetal mesangial cell death occurs
independently of TRPC6 channel upregulation but involves mtROS production. Further
studies that use whole animal models are necessary to elucidate whether DOX-induced
GMC death may contribute to its fetal nephrotoxic effects when administered prenatally.

4. Materials and Methods
4.1. Animals

Kidneys were harvested from fetuses delivered by caesarian section at 100–105 days
of gestation (87–91% of term) from timed pregnancy sows of the same genetic lineage.

4.2. Primary GMC Culture

The fetal pigs were euthanized after delivery by euthasol (1 mL/kg; IV) followed
by exsanguination (severing the abdominal aorta). After euthanasia, the kidneys were
removed and placed in Dulbecco’s modified Eagle’s medium (DMEM; Life Technologies,
Grand Island, NY, USA). Renal glomeruli were isolated from the fetal pigs by serial sieving
of renal cortical homogenates using sterile stainless steel meshes. The glomeruli were
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decapsulated and cultured under conditions that favored GMC growth, as previously
described [35,57].

4.3. Live-Cell Imaging

Real-time cell proliferation and kinetic quantification of apoptosis in fetal pig GMCs
were performed using the IncuCyte ZOOM live content microscopy system (Essen Instru-
ments, Ann Arbor, MI, USA) that has been previously described [35,57–60]. Briefly, GMCs
were seeded in flat-bottom tissue culture plates and starved overnight by culturing in
FBS/DMEM. The cells were treated with respective reagents, and the IncuCyte interface
and software monitored their growth and kinetic activation of caspase-3/7.

4.4. Western Immunoblotting

Cultured GMCs were scrapped from flasks and homogenized in ice-cold RIPA buffer
supplemented with a protease inhibitor cocktail (Thermo Scientific, Rockford, IL, USA). The
proteins were then isolated and separated by 4–20% ExpressPlus PAGE Gels (GenScript,
Piscataway, NJ, USA) and transferred onto PVDF membranes using a Semi-Dry Blotter
(Thermo Scientific). The membranes were blocked with a 5% BSA blocking buffer for ~1 h
at room temperature. The membranes were then probed overnight at 4 ◦C with respective
primary antibodies. After a wash in Tris-buffered saline supplemented with 0.05% Tween
20 (TBST), the membranes were probed with horseradish peroxidase-conjugated secondary
antibodies for 45 min at room temperature and washed in TBST. The membranes were then
incubated with a chemiluminescence reagent (Thermo Scientific), and the immunoreactive
protein bands were visualized and documented using the ChemiDoc imaging system
(Bio-Rad Laboratories, Inc., Hercules, CA, USA).

4.5. Intracellular Ca2+ [Ca2+]i Imaging

GMCs cultured in glass-bottom dishes were washed with PBS and incubated with
Fura-2-acetoxymethyl ester (Fura-2 AM; 10 µM), and 0.5% pluronic F-127 for ~1 h at
room temperature in modified Krebs’ solution (134 mM NaCl, 6 mM KCl, 1.2 mM CaCl2,
1 mM MgCl2, 10 mM HEPES, and 5.5 mM glucose, pH 7.4). Ca2+ imaging was performed
using a ratiometric fluorescence system (Ionoptix Corp., Milton, MA, USA) that has been
previously described [35,57,61].

4.6. Determination of Mitochondria ROS and Mitophagy Assay

The production of superoxides by the mitochondria was determined in live GMCs
using the MitoSOX Red mitochondrial superoxide indicator Kit (Thermo Scientific). Live
GMCs were loaded with 5 µM of the MitoSOX reagent and Hoechst 33342 nuclear stain
for 10 min at 37 ◦C. Following 3 washes, the cells were immediately visualized, and
random fluorescence images were documented using a Zeiss LSM 710 laser-scanning
confocal microscope.

Mitophagy was documented in sparsely seeded GMCs using a mitophagy detection kit
(Dojindo Molecular Technologies Inc., Rockville, MD, USA) following the manufacturer’s
instructions. Briefly, the cells were washed with PBS and loaded with 100 nM of Mtphagy
dye (mitophagy staining) for 30 min at 37 ◦C. The cells were then washed and treated
with DMSO (control) or DOX for 18 h. The culture medium was removed, and cells were
incubated in the dark with 1 µM Lyso dye (lysosome staining) at 37 ◦C for 30 min. The cells
were washed with PBS, after which the co-localization between Mtphagy (Ex. 561 nM/Em.
650 nM) and Lyso (Ex. 488 nM/Em. 502–554 nM) dyes were documented with a Zeiss LSM
710 laser-scanning confocal microscope.

4.7. Antibodies (Catalog Numbers Are in Parentheses) and Chemicals

Rabbit polyclonal anti-TRPC3 (AG1456), and anti-TRPC6 (ACC-120) antibodies were
purchased from Abgent Inc. (San Diego, CA, USA) and Alomone Labs (Jerusalem, Israel),
respectively. Mouse monoclonal anti-actin (ab3280) was purchased from Abcam (Cam-



Int. J. Mol. Sci. 2021, 22, 7589 9 of 11

bridge, MA, USA). HRP-conjugated anti-rabbit (ab96919) and anti-mouse (ab98795) sec-
ondary antibodies were purchased from Abcam. All chemicals, unless otherwise stated,
were purchased from Sigma-Aldrich (St. Louis, MO, USA). DOX and mitoquinone were
purchased from LC Laboratories (Woburn, MA, USA) and MedKoo Biosciences (Morrisville,
NC, USA), respectively.

4.8. Data Analysis

The Prism software (Graph Pad, Sacramento, CA, USA) was used for data analysis.
Statistical significance was determined using the Student’s t-tests for unpaired data and the
Tukey’s test for the analysis of variance for multiple comparisons. All data were expressed
as the mean ± standard error of the mean (SEM). A p-value of <0.05 was considered significant.
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