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Abstract

The increasing amount of scientific literature in biological and biomedical science research has 

created a challenge in continuous and reliable curation of the latest knowledge discovered, and 

automatic biomedical text-mining has been one of the answers to this challenge. In this paper, we 

aim to further improve the reliability of biomedical text-mining by training the system to directly 

simulate the human behaviors such as querying the PubMed, selecting articles from queried 

results, and reading selected articles for knowledge. We take advantage of the efficiency of 

biomedical text-mining, the flexibility of deep reinforcement learning, and the massive amount of 

knowledge collected in UMLS into an integrative artificial intelligent reader that can automatically 

identify the authentic articles and effectively acquire the knowledge conveyed in the articles. We 

construct a system, whose current primary task is to build the genetic association database 

between genes and complex traits of human. Our contributions in this paper are three-fold: 1) We 

propose to improve the reliability of text-mining by building a system that can directly simulate 

the behavior of a researcher, and we develop corresponding methods, such as Bi-directional LSTM 

for text mining and Deep Q-Network for organizing behaviors. 2) We demonstrate the 

effectiveness of our system with an example in constructing a genetic association database. 3) We 

release our implementation as a generic framework for researchers in the community to 

conveniently construct other databases.
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1. Introduction

Understanding the biological and biomedical science is one of the most fundamental goals 

of research and an essential step towards the realization of “precision medicine” in this era. 

Scientists all over the world are collaboratively contributing to this final goal, leading to an 

accompanying growth of the scientific literature. For example, PubMeda has seen 

exponential growth regarding the number of publications in recent years1 and has collected 

over 27 million abstracts.2 These massive amount of articles consequently bring in the 

challenge of integrating the information conveyed effectively and accurately.

Biomedical information extraction has been the answer to this challenge for a long time.3,4 

However, due to the demand of high reliability in biomedical research, following a typical 

general-purpose information extraction protocol and examining every article in the corpus 

nondiscriminatorily may lead to falsely constructed knowledge because of the non-

negligible number of scientific literature with the issues of reproducibility.5–7

To fulfill the need of reliability in text mining and knowledge-base construction, instead of 

requiring the system to scan the entire corpus uniformly, we propose to train the system to 

directly simulate the behavior of a scientist with a sequence of actions including 1) querying 

the web, 2) evaluating the article, 3) studying the article for knowledge if necessary, 4) 

rejecting the knowledge if necessary, and 5) storing the knowledge. The 2nd and 4th steps 

play the essential roles in maintaining the reliability in constructed databases in our 

proposed system. Boosted by the power of deep reinforcement learning in organizing these 

actions, the ability of deep Bidirectional long short-term memory (LSTM) in text mining, 

and massive amount of knowledge encoded in Unified Medical Language System (UMLS),8 

we are able to present our humanlike system that can imitate the behaviors of a real scientist 

and construct the database of reliable and cutting-edge biomedical publications efficiently 

and endlessly. Therefore, we name our system the Everlasting Iatric Reader (Eir)b. We 

further apply our system to construct a genetic association database, where we can verify the 

performance of Eir with a manually crafted database of 167k gene-trait associations from 

high quality articles.9

The contributions of this paper are three-fold:

• We propose to improve the reliability of text-mining by building a system that 

can directly simulate the behavior of a researcher, and we develop corresponding 

methods, such as Bi-directional LSTM for text mining and Deep Q-Network for 

organizing behaviors.

athe database maintained by the National Center for Biotechnology Information (NCBI)
bWe name our system Everlasting Iatric Reader because it can endlessly construct the knowledge in the medical area, where the high 
reliability is an issue, and also because the acronym (Eir) shares the name of the goddess of medical knowledge in Norse mythology, 
which is related to the final goal of this and following-up projects.
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• We demonstrate the effectiveness of our system with an example in constructing 

a genetic association database.

• We release our implementation as a generic framework for researchers in the 

community to conveniently construct other databases.

The remainder of this paper is organized as follows. In Section 2, we will introduce the 

related works in biomedical text mining. In Section 3, we will systematically introduce our 

system, mainly with deep reinforcement learning module that organizes the actions, text 

mining module that extracts the information, and implementation specifications. In Section 

4, we will compare the performance to validate the strategy of Eir. Finally, in Section 5, we 

will draw conclusions and discuss about the future work.

2. Related Work

Text mining from biomedical literature has been studied extensively for a long time with a 

variety of different applications, such as patient analysis from electronic health records,10–12 

gene annotations from protein networks,13 and drug repositioning from literature.14 One can 

refer to comprehensive reviews4,15,16 and the references therein for more detailed 

discussions.

The text mining usually leads to automatic construction of knowledge bases. In recent years, 

Mallory et al.17 curated a database of gene-gene interactions. They applied the information 

extraction engine DeepDive18 to around 100k full text PLOS articles for extracting direct 

and indirect gene-gene interactions. Poon et al.19 introduced the Literome project, where 

they extracted directed genic interactions and genotype-phenotype associations from 

PubMed articles. Lossio-Ventura et al.20 introduced a pipeline to build an obesity and cancer 

knowledge base. Very recently, Lossio-Ventura et al. also noticed the reliability issue of 

knowledge base, so they further proposed to incorporate cross-sourcing process to improve 

the reliability of the their previously developed knowledge base.21

On the other hand, the boom of deep learning techniques has allowed many more advanced 

methods developed for biomedical applications.22–24 As a result, LSTM and its variants,25,26 

and word embedding techniques27,28 have been studied extensively for a variety of 

applications.

In comparison, a difference between most of previous work and our work is that we aim to 

improve the reliability of the extracted knowledge by examining the source unstructured data 

(i.e. the PubMed literature in our case). To put in simpler words, while most previous work 

are extending human’s intelligence of comprehending the articles, our system aims to extend 

human’s intelligence of the entire research process that starts with querying the web and 

selecting the interesting article. To the best of our knowledge, this paper is the first one that 

simulates the entire research process in biomedical information extraction to improve the 

reliability of the constructed knowledge base. However, many similar concepts29–31 have 

been proposed previously. Most relevantly, Kanani et al32 utilized reinforcement learning to 

reduce computational bottlenecks, minimizing the number of queries, document downloads 

and extraction action, a similar strategy has been proposed independently for biomedical text 
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mining with the concept “focused machine reading”,33 which is inspired by Narasimhan et 
al,34 who built an information extraction system that can query the web for extra information 

with reinforcement learning.

3. Method

In this section, we officially introduce the our system. We will start with the main 

framework, and continue to introduce the deep reinforcement learning module that organize 

different actions of the system, which is followed by the discussions of proprecessing 

module and biomedical text mining module. After a systematic introduction of the detailed 

algorithms, this section is concluded with implementation specifications.

3.1. Model Framework

Eir’s research process is a markov decision process (MDP), where the model learns to query 

the search engine for scientific articles to read for the knowledge. We represent the MDP as 

a tuple < S,A,T,R >, where S = s is the space of all possible states, A = a is the set of all 

actions, R(s, a) is the reward function, and T(s’|s, a) is the transition function.

We present the details of these components as following:

• Actions: Action (we use a to denote action throughout this paper) is a set of Eir’s 

behaviors to simulate a real researcher, including

1. Query the search engine.

2. Evaluate whether the article is reliable.

3. Read the article for detailed information.

4. Exam credibility of the information and querying again.

5. Stop.

As shown in Figure 1, for every interesting query, Eir starts with the 1st action and then 

enters the loop from the 2nd action to the 4th action until Eir is satisfied with the finding of 

current research interest and ceases with the 5th action. Then Eir repeats the entire process 

with another query.

• States: The state s in the MDP describes the research status of Eir, possible 

candidate states include the ones that are precedent or after each aforementioned 

action. There are only a countable number of actions, but we use continuous real-

valued vector to represent each state so that we could have a better modeling 

power to distinguish Eir’s research status after each action. The state is 

constructed with a variety of information, including the embedding vector that 

the Bidirectional LSTM yields, the confidence of biomedical text mining 

module, the confidence of selecting an article to read, etc.

• Rewards: The reward function is chosen to maximize the intermediate paper 

selection accuracy and final extraction accuracy together while minimizing the 

number of queries. The accuracy component is calculated using the difference 

between the accuracy of the current and the previous set of entity values.
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• Transitions: Transition T(s’|s, a) is modeled as a function of how the next state 

s’ is updated given the current state s and action a taken.

3.2. Deep Reinforcement Learning for Organizing Actions

As we have introduced previously, we utilized deep reinforcement learning to arrange the 

sequence of actions a to perform, given a state function denoted as Q(s, a). To update Q(s, 

a), we used the popular Q-learning,35: which iteratively updates Q(s; a) as following:

Qi + 1(s, a) = E r + γmax
a′

Qi s′, a′ s, a

where r = R(s, a) is the reward and λis a discounting factor.

Because of the continuous nature of our state space S, we use a deep Q-network (DQN)36 as 

a function approximator Q(s, a) = Q(s, a;θ). The Q-function of DQN is approximated by a 

neural network, whose parameters (i.e. θ) are updated through stochastic gradient descent. 

We followed the detailed parameter learning strategies introduced previously.34

3.3. Preprocessing and Name Entity Recognition with UMLS

Before we feed in the texts into the text mining module, we notice that the literature is filled 

with alternative, idiosyncratic and arbitrary names and symbols. The text mining module 

will only exhibit its full power when the texts are processed into a uniform representation. 

Therefore, we utilize the rich information collected by the unified medical language system 

(UMLS).8 UMLS defines a unique concept for all the terms that are interchangeable. For 

example, “Alzheimer’s disease”, “Alzheimer’s”, and “alzheimer” will be mapped into the 

same concept. UMLS contains over one million biomedical concepts that are split into 133 

broad categories (such as “Organisms”, “Anatomical structures”, “Biologic function”). With 

the help of MetaMap,37 we are able to translate the unstructured texts into a sequence of 

concepts, together with the category information, an associated confidence score, and two 

binary values to indicate whether the concept is in gene ontology, and in disease ontology 

respectively.

3.4. Bidirectional LSTM for Relation Classification

As Eir queries PubMed with a gene-trait pair, the text mining model only needs to classify 

whether the returned texts from PubMed can be seen as evidences to support that there is 

association between the queried gene-trait pair. Therefore, the text mining module can be 

conveniently regarded as a classification module. We use a Bidirectional LSTM38 for 

classifying whether the text describes as association relationship between the gene and the 

trait the system queried. We choose this Bidirectional LSTM architecture mainly because we 

notice that it is empirically the best performing method among other neural architecture for 

our specific task. We first treat the sequence of concepts as words in text and created a 512-

dimension vector of continuous values to represent each concept. Further, we feed in this 

concept-embedding, together with an one-hot representation of the category information, 

and the two binary values into the Bidirectional LSTM, which is trained through Adam.
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3.5. Algorithm

Algorithm 1 describes the overall algorithm of the MDP process of Eir, where g and t stands 

for gene and trait respectively, a stands for action, s stands for state, and r stands for reward. 

“Agent” refers to DQN, which organizes the sequence of actions given states and reward. 

Details including the methodology of updating (s, r) has been discussed in previous sections.

3.6. Implementation Specification

The Deep Reinforcement Learning component of Eir is implemented as an extension of 

Narasimhan et al,34 we also use a DQN consisting of two linear layers (20 hidden units 

each) followed by rectified linear units (ReLU), along with two separate output layers.

The web query component is built with a web crawling engine Scrapyc communicating with 

NCBI PubMed search engine. At this moment, we only query for the abstracts of the 

articles. We only work with abstracts for three reasons: 1) this allow us to conveniently 

access and scan a large amount literature, 2) we notice that a majority of articles disclose the 

most important findings in the abstract with a straightforward style of writing, 3) previous 

work notice that mining from full texts may lead to more false positives.39

The preprocessing module is built as a python script that runs MetaMap, which is a binary 

software that allows users to conveiently annotate words and phrases of texts with manually 

defined concepts in UMLS.

The sentences are truncated with max length of 300 concepts. We only consider the 30,000 

most frequent concepts together with the specific defined ‘SOS’ (start of sentence), ‘EOS’ 

(end of sentence), ‘UNK’ (unknown) and ‘PAD’ (padding the sentences shorter than 300) 

concepts. We use a 2-layer Bidirectional LSTM with hidden dimension set to 1000, and feed 

512 dimension concept embedding, one dimension gene ontology, one dimension disease 

ontology, and 136 dimension semantic type as the input of LSTM. The LSTM is trained 

jointly with the embedding matrix using Adam with step size set to 0.00004 and batch size 

set to 64.

Then We train the Eir models for 10000 steps every epoch using the Maxent classifier as the 

base extractor, and evaluate on the entire test set every epoch. The final accuracy reported 

are averaged over three independent runs; each runs score is averaged over 5 epochs after 45 

epochs of training. The penalty per step is set to −0.001. We used a replay memory of size 

500k, and a discount γ of 0.8. We set the learning rate to 2.5E5. The ϵ in ϵ-greedy 

exploration is annealed from 1 to 0.1 over 500k transitions. The target-Q network is updated 

every 5k steps. The whole framework was trained to optimize the reward function.

We release our implementationd for the community to use our system or build more 

advanced text mining module into our system for better performance.

chttps://scrapy.org/
dhttps://github.com/lebronlambert/Eir
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Algorithm 1 MDP framework of Eir

 for epoch = 1,M do

  for g, t in query list do

   Query the search engine with g and t.

   Update and send state (s, r) to agent

   Get action a from agent

   while a is not “stop” do

    if a is “select” then

     Update (s, r) with selection

    else if a is “reject” then

     Update (s, r) with rejection

    else

     Translate texts into sequence of concept embeddings.

     Relation classification with Bidirectional LSTM

     Update (s, r) with classified relation

    end if

    Send state (s, r) to agent

    Get action a from agent

   end while

  end for

 end for

4. Experiments

In this section, we will verify the performance of Eir by showing that, with the same text 

mining module, the Eir system can help improve the performance of extracted associations. 

We will first discuss how we construct the experimental data sets then discuss the results.

4.1. Data

Within the scope of this paper, Eir focus on constructing the knowledge base for gene-trait 

association relationship of human. To enable Eir to learn the associations, we utilized the 

highquality data set of 167k association relationship that is manually crafted for over ten 

years.9

In addition to the gold-standard information of gene-trait association relationship, another 

contribution of this data set is the collection of high quality publications that report these 

associations. Every entry in the database is grounded by the authentic source of scientific 

paper that originally publishes the relationship. These detailed information grants us the 

possibility of directly training Eir to discriminate the reliable papers out of the less 

favourable papers that were not selected by GAD curators for some reasons.

Despite that Eir is designed for extracting latest information online, in order to test the 

effectiveness of Eir, we need to run the core functions on a local collections of articles with 
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manually labelled true associations. Therefore, we query the PubMed with 54,041 queries of 

gene-trait pairs through our API and download 913,939 results with 305,651 distinct medical 

articles. After removing some invalid records (e.g. articles with invalid PMID), there are 

roughly 133,548 records (44,592 distinct articles) appear in the GAD database, which will 

serve as the reliable articles. As the construction of GAD ceased in 2014, we regard the 

articles that are published before 2014 but not in the GAD database as less favorable articles. 

To balance the data set for performance evaluation, we sampled 140,361 less favorable 

records before 2014 for comparison. Note that, these less favorable articles are not collected 

randomly, but are returned from PubMed search engine when we query with a pair of gene 

and trait. Besides, we delete the articles whose titles and abstracts do not contain the queried 

gene and trait explicitly to remove obviously irrelevant articles. Then, we random split the 

whole data set to sample 80% records as training data, and the rest as testing data. The 

training set consists of 55k records, the testing set consists of 219k records.

4.2. Evaluation

In order to show the effectiveness of the Eir system, we compare the system’s precision, 

recall, and F1 score with a conventional biomedical text mining strategy that scans all the 

documents nondiscriminatorily. As Eir uses the Bidirectional LSTM for text mining module, 

we use the same model as baseline method for fair comparison.

4.3. Results

4.3.1. Improved Reliability—We first train our baseline Bidirectional LSTM and the 

results are shown in the Table 1 (first row). The Bidirectional LSTM yields a precision of 

91.25%, a recall of 96.55%, and an overall F1 of 93.80%. These numbers indicate that the 

Bidirectional LSTM is capable to capture the feature of authentic articles.

Further we add the Deep Reinforcement Learning component to train the overall Eir system. 

The results of Eir are shown as Table 1 (second row). We can see that the precision score is 

91.4%, the recall score is 97.0%, the F1score is 94.1%. Compared to the baseline model, our 

Eir framework is better at extracting the features of valuable articles and utilizing the 

information and can retrieve the authentic articles more efficiently by employing the Deep 

Reinforcement Learning module.

4.3.2. Robustness in Real-world Situations—To better simulate the real-world 

situation that the researchers are in, we remove different percentage of authentic articles 

both in the training data set and in the testing data set, for the researchers get ample amount 

of less favorable articles. We randomly remove a certain percentage of authentic articles to 

do the ablation experiments. As the percentage of authentic articles decreases, the difficulty 

of our task increases. The results are shown in Table 2. We can see the Eir system is more 

robust than the baseline model under these situations. Eir reports higher precision, recall, 

and F1 score in all of these settings. More interestingly, we calculate the increments Eir 

achieves over baseline model. We notice that, as the difficulty increases, the increment also 

increases. Therefore, we believe Eir will be more helpful in the real-world situation when a 

large amount of articles are less favorable articles.
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4.3.3. Number of Articles Read—Finally, we examine Eir’s performance in the 

numbers of articles it needs to read to make a decision. Since Eir stops once it believes it has 

sufficient amount of information, we anticipate Eir will inspect less amount of articles than 

baseline models. To conduct this experiment, we exclude the gene-trait query pair with only 

one authentic articles. In the remaining data set, there is on average 2.54 articles for every 

query, and Eir reads only on average 2.46 articles. We further repeat this experiment with a 

data set that excludes all the articles with less than 4 articles per query, resulting in a data set 

with on average 6.23 articles for every query. Eir reads on average 6.10 articles.

5. Conclusions and Future Work

In this work, we introduced a system, namely Everlasting Iatric Reader (Eir), for biomedical 

text mining. A distinct difference between our system and previous biomedical text mining 

works is that our system is aimed to directly simulate the behaviors of scientists, including 

searching for scientific literature, examining the reliability of the manuscript, studying the 

paper for details, and continuing to search with suspicion of the learned knowledge.

In contrast to traditional biomedical text mining tools, the distinguishable advantage Eir has 

is the ability to discriminate reliable articles out of questionable articles and to shield the 

problems introduced by humans. This ability is particularly important in biomedical areas 

because in clinics, a falsely constructed knowledge may lead to fatal errors, while a missing 

piece of true knowledge will at most delay the cure of certain disease. Also, it is necessary to 

select trustworthy papers to read for information because it is known that there is a non-

negligible number of publications with the troubles of reproducibility.

There are also limitations of the current Eir. For example, the action of Eir for evaluating the 

literature quality is trained supervisedly. The performance of our Eir can be greatly 

improved with a more cleaned data source, as now the false positives are introduced by some 

manuaaly crafted data that are labeled not correctly. Therefore, we will need a manually 

crafted data set first before we use Eir in some application. In this paper, we choose to 

construct the genetic association database because of the availability of GAD.9 However, 

there are still a large number of manually curated databases with information about which 

paper these information comes from, such as GWAS Catalog40 for SNP-phenotype 

association or UniProt41 for protein function annotation.

Looking into the future, a direct extension of our work is to broaden Eir vision to ask 

investigate into more biomedical topics in addition to gene-trait association relationships. 

Our immediate next-step plan is to train Eir for SNP-phenotype association with GWAS 

Catalog, then we can integrate these databases into GenAMap,42 a visual machine learning 

tool for GWASe, for validation purpose of GWAS results. On the method development side, 

we hope to upgrade the biomedical text mining module with state-of-the-art methods to 

improve the information extraction performance, so that Eir could serve the community 

better. As a longterm plan, we hope Eir could help the community to build the omini-

ehttp://www.genamap.org/
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biomedical knowledge base, therefore, we released the source code of Eir for others in the 

community to use.
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Fig. 1: 
Overview of Eir’s possible behaviors
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Table 1:

Results of Reliability Comparison

precision recall F1

Bidirectional LSTM 91.25% 96.55% 93.80%

Eir 91.4% 97.0% 94.1%
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Table 2:

Results of Eir in real-world situations

Full Data 20% Authentic Articles 10% Authentic Articles

Prec Recall F1 Prec Recall F1 Prec Recall F1

Bi-LSTM 91.25% 96.55% 93.80% 87.7% 95.7% 91.5% 86.9% 92.2% 89.4%

Eir 91.4% 97.0% 94.1% 87.9% 96.9% 92.2% 87.8% 96.9% 92.1%

Increment 0.16% 0.47% 0.32% 0.23% 1.25% 0.77% 1.04% 5.10% 3.02%
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