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Abstract
Objectives: The proteomic analysis of voriconazole resistant Candida glabrata
strain has not yet been investigated. In this study, differentially expressed pro-
teins of intracellular and membrane fraction from voriconazole-susceptible,
susceptible dose-dependent (S-DD), resistant C. glabrata strains were compared
with each other and several proteins were identified.
Methods: The proteins of intracellular and membrane were isolated by disrupting
cells with glass bead and centrifugation from voriconazole susceptible, S-DD, and
resistant C. glabrata strains. The abundance of expressed proteins was compared
using two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis
and proteins showing continuous twofold or more increase or reduction of
expression in resistant strains compared to susceptible and S-DD strain were
analyzed by liquid chromatography/mass spectrometry-mass spectrometry
method.
Results: Of 34 intracellular proteins, 15 proteins showed expression increase or
reduction (twofold or more). The identified proteins included regulation, energy
production, carbohydrate transport, amino acid transport, and various meta-
bolism related proteins. The increase of expression of heat shock protein 70 was
found. Among membrane proteins, 12, 31 proteins showed expression increase or
decrease in the order of susceptible, S-DD, and resistant strains. This expression
included carbohydrate metabolism, amino acid synthesis, and response to stress-
related proteins. In membrane fractions, the change of expression of 10 heat
shock proteins was observed, and 9 heat shock protein 70 (Hsp70) showed the
reduction of expression.
Conclusion: The expression of Hsp70 protein in membrane fraction is related to
voriconazole resistant C. glabrata strains.
ted under the terms of the Creative Commons Attribution Non-Commercial License (http://
0) which permits unrestricted non-commercial use, distribution, and reproduction in any
roperly cited.
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1. Introduction

Fungal infection in humans is increasing; Candida

species are the most frequently reported organisms.

Approximately 95% of all invasive Candida infections

are caused by five species: Candida albicans, Candida

glabrata, Candida parapsilosis, Candida tropicalis, and

Candida krusei [1]. Among the Candida species, C.

albicans is the most prevalent in both healthy patients

and those with infection [2,3]. Recently, the four non-C.

albicans species were found to be more frequently

isolated in humans than C. albicans [4]. C. glabrata was

the second most common non-C. albicans species in

fungemia in the United States and also most commonly

recovered from the oral cavities of patients with human

immunodeficiency virus [5]. The increase in the number

of C. glabrata systemic infections is cause for concern

because the high mortality rate associated with C.

glabrata fungemia [6]. Because fungal infections are

increasing, the use of antifungal agents has corre-

spondingly increased. In particular, fluconazole is a

highly effective antifungal agent used for the treatment

of candidiasis. Voriconazole is a triazole derivative of

fluconazole, and the activity for Candida may be better

than that of fluconazole. However, the widespread and

prolonged use of fluconazole in recent years has led to

the development of drug resistance in Candida species

[7,8]. In addition, the resistance of Candida to flucon-

azole is highly predictive of resistance to voriconazole

agent. The observation of cross-resistance in C. glab-

rata strains receiving fluconazole and voriconazole

therapy of C. glabrata in patients with candidemia was

reported [9]. The resistant mechanisms to azole anti-

fungal agents have been studied in C. albicans [10e12].

However, C. glabrata has an intrinsic resistant tendency

to fluconazole, and the molecular basis for the intrin-

sically low susceptibility of C. glabrata remains un-

clear. Several mechanisms of acquired resistance to the

azole antifungal agents have been described in C.

glabrata. These include upregulation of genes encoding

adenosine triphosphate (ATP) binding cassette (ABC)

transporters encoded by CDR1 and CDR2 [13]. Over-

expression of ERG11, the gene encoding the target of

the azole antifungal agents, has also been associated

with acquired azole resistance [14]. Recently, proteomic

analysis of azole-susceptible and -resistant Candida

isolates was accomplished to understand the mecha-

nisms underlying azole antifungal resistance [12,15].

Proteomic analysis has also been used to study the

adaptive response of C. albicans to fluconazole and

itraconazole [16]. Currently, no proteomic analysis ex-

ists for voriconazole resistant C. glabrata strain. So, we

analyzed the expression of proteins of voriconazole-

susceptible, susceptible dose-dependent (S-DD), and

resistant strains to investigate proteins associated with

voriconazole resistance.
2. Materials and methods

2.1. C. glabrata strains and growth conditions
A total of 56 C. glabrata strains collected from ter-

tiary and nontertiary hospitals were used in this study.

We previously reported the results of an antifungal

susceptibility test [17]. We selected three C. glabrata

strains according to voriconazole susceptibility for a

comparative proteomic study. All strains were stored at

e80 �C, and prior to the experiment each strain was

subcultured twice on sabouraud dextrose agar to ensure

viability and purity. For the proteomic experiment, an

aliquot of glycerol stock from each strain was diluted in

yeast peptone dextrose (YPD; 1% yeast extract, 2%

peptone, 1% dextrose) and grown overnight at 30 �C in a

shaking incubator. The cultures were diluted to an op-

tical density 0.2 at OD600 in 0.5 L of YPD and grown to

the exponential phase of growth.

2.2. Cellular protein extraction
To isolate the cellular proteins, C. glabrata cells were

cultured in YPD broth at 30 �C to the exponential phase

of growth. Cells were harvested in centrifugation

4000 rpm for 15 minutes. The pellet cells were pooled

and washed twice using 50 mM Tris-HCl pH 7.6 buffer

solution. The cells were disrupted using 0.45-mm glass

beads (Sigma, St. Louis, MO, USA) on ice. After ho-

mogenization, the solution was centrifuged twice at

14,000 rpm for 20 minutes. The supernatant was

harvested carefully without contaminant similar to a

lipid component, and it was freeze dried for further

experiment.

2.3. Membrane protein extraction
After an exponential phase of growth, cells were

harvested, washed with distilled water, and resuspended

in homogenizing buffer (50 mM Tris-HCl, pH 7.5,

2 mM EDTA, 1 mM phenylmethylsulfonylfluoride).

After disruption of the cell using the glass bead, cell

debris and unbroken cells were removed by centrifuga-

tion at 5000 g for 10 minutes. A crude membrane

fraction was isolated from the cell-free supernatant by

second centrifugation at 30,000 g for 30 minutes. The

pellet was washed in GTE buffer (10 mM Tris-HCl, pH

7.0, 0.5 mM EDTA, 20% glucose), resuspended in GTE

buffer, and stored at e80 �C. The protein concentration

was determined by a micro-Bradford assay using a

protein assay kit II (Bio-Rad, Hercules, CA, USA).

2.4. Sample preparation and 2-Dimentional Gel

Electrophoresis
The harvested samples were suspended in 0.5 mL of

50 mM Tris buffer containing 7 M urea, 2 M thiourea,

4% [weight/volume (w/v)] CHAPS, and 16 mL protease

inhibitor cocktail (Roche Molecular Biochemicals,

Indianapolis, IN, USA). The lysates were homogenized
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and centrifuged at 12,000 � g for 15 minutes. Fifty units

of Benzonase (250 units/mL; Sigma) was added to the

mixture and suitably stored at �80 �C until use after

quantitation by the Bradford method. For 2-DE analysis,

pH 3e10 immobilized pH gradient (IPG) strips

(Amersham Biosciences, UK, Ltd) were rehydrated in

swelling buffer containing 7 M urea, 2 M thiourea, 0.4%

(w/v) Dithiothreitol, and 4% (w/v) CHAPS. The protein

lysates (500 mg) were cup-loaded into the rehydrated

IPG strips using a Multiphor II apparatus (Amersham

Biosciences, UK, Ltd) for a total of 57 kVh. The two-

dimensional separation was performed on 8e16% (v/

v) linear gradient sodium dodecyl sulfate (SDS)-poly-

acrylamide gels. Following fixation of the gels for 1

hour in a solution of 40% (v/v) methanol containing 5%

(v/v) phosphoric acid, the gels were stained with

Colloidal Coomassie Blue G-250 solution for 5 hours.

The gels were destained in 1% (v/v) acetic acid for 4

hours and then imaged using a GS-710 imaging cali-

brated densitometer (Bio-Rad).

Protein spot detection and two-dimensional pattern

matching were carried out using ImageMasterTM 2D

Platinum software (AmershamBiosciences, UK, Ltd). For

comparison of protein spot densities between control and

treated samples, more than 20 spots throughout all gels

were correspondingly landmarked and normalized. The

quantified spots of candidate proteins were compared with

the aid of histograms. For ensuring the reproducibility of

2DE experiments, each sample was analyzed in duplicate.
Figure 1. Cellular and membrane protein spot of C. glabrata s

differentially expressed proteins that were identified by LC-Ms/M

iconazole susceptible strain, (b) cellular protein spot of voriconazole

strain, (d) membrane protein spot of voriconazole susceptible stra

membrane protein spot of voriconazole resistant strain.
2.5. In-gel protein digestion
Protein bands of interest were excised and digested in-

gel with sequencing grade, modified trypsin (Promega,

Madison, WI, USA). In brief, each protein spot was

excised from the gel, placed in a polypropylene tube, and

washed four to five times with 150 mL of 1:1 acetonitrile/

25 mM ammonium bicarbonate, pH 7.8. The gel was

dried in a Speedvac concentrator, and then rehydrated in

30 mL of 25 mM ammonium bicarbonate, pH 7.8, con-

taining 20 ng of trypsin. After incubation at 37 �C for

20 hours, the liquid was transferred to a new tube.

Tryptic peptides remaining in the gel matrix were

extracted for 40 min at 30 �C with 20 mL of 50% (v/v)

aqueous acetonitrile containing 0.1% (v/v) formic acid.

The combined supernatants were evaporated in a

Speedvac concentrator and dissolved in 8 mL of 5% (v/v)

aqueous acetonitrile solution containing 0.1% (v/v) for-

mic acid for mass spectrometric analysis.

2.6. Identification of proteins by liquid

chromatograph/tandem mass spectrometry
The resulting tryptic peptides were separated and

analyzed using reversed phase capillary high-performance

liquid chromatography (HPLC) directly coupled to a

Finnigan LCQ ion trap mass spectrometer [liquid

chromatography-tandem mass spectrometry (LC-MS/

MS)]. A 0.1 � 20 mm trapping and a 0.075 � 130 mm

resolving column were packed with Vydac 218 MS low

trifluoroacetic acid C18 beads (5 mm in size, 300 Å in pore
trains resolved by 2D gel electrophoresis. Spots representing

s peptide mass fingerprinting. (a) cellular protein spot of vor-

SDD strain, (c) cellular protein spot of fluconazole susceptible

in, (e) membrane protein spot of voriconazole SDD strain, (f)



Table 1. Differentially expressed intracellular proteins (by twofold or more), as identified by liquid chromatography-tandem

mass spectrometry between voriconazole susceptible, susceptible dose-dependent, and voriconazole resistant strains

Spot Protein Molecular mass (Dalton) pI Fold change (R/S)a

25 C1-tetrahydrofolate synthase 102,203 5.98 3.09

27 Formyltetrahydrofolate synthetase (FTHFS) 102,203 5.98 2.06

79 ACO1 aconitate hydratase aconitase 85,429 6.78 2.53

90 Potassium efflux protein KefA 73,694 5.41 2.05

115 Sphingolipid long-chain base sensory protein 40,387 5.54 2.27

116 TKL1 transketolase 73,704 6.01 2.50

127 Heat shock protein 70 112,540 7.87 3.5

189 2.15

540 2.13

154 Acetolactate synthase 73,300 8.55 2.41

202 LEU4 2-isopropylmalalate synthase 67,290 5.52 2.51

218 Acetyl-CoA hydrolase/transferase N-terminal domain 58,541 6.16 2.38

228 Phosphoribosylaminoimidazole carboxylase 62,672 6.95 4.42

238 Pyruvate kinase 55,563 6.25 2.66

263 Pyruvate decarboxylase and related thiamine

pyrophosphate-requiring enzymes

61,726 5.59 3.94

295 Aldehyde dehydrogenase family 55,937 5.09 2.03

304 SES1 seryl-transcription RNA synthetase 52,775 5.8 2.19

319 Iinosine monophosphate dehydrogenase 56,969 6.69 2.86

396 Serine hydroxymethyltransferase 52,271 6.74 3.1

397 3.6

411 GDP dissociation inhibitor 50,582 5.66 3.02

476 Protein with specific affinity for G4 quadruplex nucleic acids 42,134 8.61 2.33

504 Isocitrate dehydrogenase 46,728 5.23 2.52

505 spP36046 Saccharomyces cerevisiae YKL195w 44,592 4.45 2.78

507 Chromosome segregation adenosine triphosphatases (ATPases) 55,271 8.81 14.1

535 Malate dehydrogenases (MDH) glycosomal and mitochondrial 39,024 6.15 2.42

550 Cyclophilin_ABH_like 41,620 5.61 2.2

560 Aspartate/tyrosine/aromatic aminotransferase 45,608 7.2 2.73

576 Quinone reductase and related Zn-dependent oxidoreductases 40,823 6.01 2.24

603 Branched-chain aminotransferase 41,550 5.82 2.58

619 Highly similar to S. cerevisiae YBR249c ARO4 38,617 6.51 2.24

636 RPC40 DNA-directed RNA polymerase I 37,577 5.22 2.05

645 S. cerevisiae YGR080w 36,175 5.02 3.49

777 Peptidase_S8 (serine proteinase) 50,008 5.75 2.25

107 Glycerol-3-phosphate dehydrogenase 43,961 5.85 �2.82

142 TKL1 transketolase 73,704 6.01 �3.57

321 F0F1 ATP synthase 58,485 8.99 �2.46

454 Effector domain of the CAP family of transcription factors 44,936 5.92 �2.14

570 Acetyl-CoA hydrolase �2.53

609 Oxidoreductases 46,710 5.76 �2.4

613 �3.75

615 Malate dehydrogenases glycosomal and mitochondrial 40,487 9.18 �2.14

625 Phosphoglycerate kinase 44,590 6.37 �8.90

628 Arginase 35,061 5.27 �3.13

633 Highly similar to spP53252 S. cerevisiae YGR086c 35,129 4.68 �3.03

723 Uncharacterized enzymes related to aldose 1-epimerase 33,397 5.06 �3.15

774 �2.07

909 Hypothetical protein CAGL0I00616g 2,183 5.37 �9.09

912 ATP synthase D chain, mitochondrial (ATP5H) 19,918 6.64 �2.73
aExpression ration of voriconazole-resistant (R) over voriconazole-susceptible (S) strains. The minus sign (�) indicates decreased protein expression of

voriconazole-resistant strains in comparison with voriconazole-susceptible strains.
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size; Vydac, Hesperia, CA, USA) and placed in-line. Next,

the peptides were bound to the trapping column for 10

minutes with 5% (v/v) aqueous acetonitrile containing

0.1% (v/v) formic acid, then the bound peptides were

eluted with a 50-minute gradient of 5-80% (v/v) acetoni-

trile containing 0.1% (v/v) formic acid at a flow rate of

0.2 mL/min. For tandem mass spectrometry, a full mass

scan range mode was m/z Z 450e2000 Da. After deter-

mination of the charge states of an ion on zoom scans,

product ion spectra were acquired in MS/MS mode with

relative collision energy of 55%. The individual spectra

from MS/MS were processed using the TurboSEQUEST

software (Thermo Quest, San Jose, CA). The generated

peak list files were used to query either the MSDB data-

base or National Center for Biotechnology Information

(NCBI) using the MASCOT program (http://www.

matrixscience.com). Modifications of methionine and

cysteine, peptide mass tolerance at 2 Da,MS/MS ion mass

tolerance at 0.8 Da, allowance ofmissed cleavage at 2, and

charge states (þ1, þ2, and þ3) were taken into account.

Only significant hits as defined by MASCOT probability

analysis were initially considered.
3. Results

3.1. Strains
Among the C. glabrata strains, voriconazole sus-

ceptible strain [C. glabrata I-49, minimum inhibitory

concentration (MIC) 0.5 mg/mL], S-DD strain (C.
Table 2. Functional classification of identified intracellular

dependent, and resistant strains

Protein

Cell regulation

Similar with bacterial potassium

efflux protein KefA

Regula

Sphingolipid long chain base sensory protein Cell w

Heat shock protein 70, 90, 60 Stress,

SES1 seryl-transcription RNA (tRNA) synthetase Cataly

GDP dissociation inhibitor GTP b

similar to Saccharomyces cerevisiae YKL195w Promo

Chromosome segregation adenosine

triphosphatases (ATPases)

Cell di

Highly similar to S. cerevisiae YGR086c Unkno

CAP family of transcription factors Contro

Carbohydrate transport and metabolism

Pyruvate decarboxylase Related

Hexokinase Phosph

Amino acid transport and metabolism

SAM1 S-adenosyl

methionine synthetase

Cataly

ATP

Energy production and conversion

F1 ATP synthase Cataly

Phosphoglycerate kinase Cataly

grou
glabrata D-54, MIC 2 mg/mL) and resistant strain (C.

glabrata D-91, MIC 4 mg/mL) were selected. All strains

were isolated from blood specimen of patients.
3.2. Expression of intracellular proteins and

identification
The two-dimensional sodium dodecyl sulfate poly-

acrylamide gel electrophoresis (2D-SDS PAGE) gels are

shown in Figure 1. The profiling of 459 intracellular

proteins was detected in three strains. Of the total pro-

teins, 38 proteins having abundance ratios of twofold or

more showed continuous increase of expression from

susceptible and S-DD to resistant strain. In addition, 34

proteins were identified by LC-MS/MS (Table 1). The

15 proteins showing decrease of expression from

susceptible and S-DD to resistant strain were also

identified. Among the identified proteins, aldehyde de-

hydrogenase family, serine hydroxymethyltransferase,

acetolactate synthase, heat shock protein, pyruvate ki-

nase, potassium efflux protein, isocitrate dehydrogenase,

and other proteins showed increased expression.

Expression was decreased in proteins such as glycerol-

3-phosphate dehydrogenase, ATP synthase, acetyl-coA

hydrolase, oxidoreductase, and malate dehydrogenases

(Table 1). Among the proteins for which expression was

decreased, phosphoglycerate kinase protein showed the

largest decreased expression, at 9.09 times reduction of

expression. The identified proteins, classified according

to their function, are summarized in Table 2. The
proteins from voriconazole susceptible, susceptible dose-

Function

te iron balance

all, antifungal protection

protein folding

ze the formation of aminoacyl-tRNA

inding protein regulator

tes retention of newly imported proteins

vision

wn function that are induced on cell stress

l transcription of genes

thiamine pyrophosphate-requiring enzymes

orylates a six-carbon sugar, a hexose to a hexose phosphate

zes transfer of the adenosyl group of

to the sulfur atom of methionine

ze the ATP synthesis

zes the transfer of the high-energy phosphate

p of 1,3-biphosphoglycerate to adenosine diphosphate

http://www.matrixscience.com
http://www.matrixscience.com


Table 3. Differentially expressed membrane proteins (by twofold or more), as identified by liquid chromatography-tandem

mass spectrometry between voriconazole susceptible, susceptible dose-dependent, and voriconazole resistant strains

Spot Protein Molecular mass (Dalton) pI

Fold

change (R/S)a

12, 314 Enolase 46,710 5.76 2.69, 2.56

132, 169 Hsp70 protein 6,635 5.32 2.18, 2.72

195, 379 Pyruvate kinase (PK) 54,572 8.26 2.13, 2.21

244 Cysteine synthase 55,388 5.51 2.34

255, 291 Pyruvate decarboxylase 61,726 5.59 2.12, 2.31

276 Pyrophosphate-requiring enzymes 46,993 4.46 3.66

284 WD40 domain adaptor/regulatory

modules in signal transduction

46,504 4.44 2.34

457 Phosphoglycerate

kinase (PGK)

44,590 6.37 2.77

50 Heat shock protein 80,983 4.82 �2.43

119, 149 Hsp70 protein 69,469 4.96 �2.43, �4.09

153, 226 �2.18, �2.74

357, 552 �2.54, �3.88

138, 174 �28.0, �2.37

172 �3.35

175 Saccharomyces cerevisiae

YLR259c Heat shock protein

60,351 5.14 �4.77

229 Hexokinase 53,772 5.23 �2.39

260 Aldehyde dehydrogenase family 56,131 6.07 �2.11

292 F1 adenosine triphosphate (ATP) synthase

beta subunit, nucleotide-binding domain

54,176 5.14 �2.68

298 Nicotinamide adenine dinucleotide

phosphate -glutamate dehydrogenase

49,711 5.58 �3.17

360 SAM1 S-adenosylmethionine synthetase 41,700 5.10 �2.19

398 ATPase alpha2,Na/K 116,305 5.41 �2.56

462 N terminal of the Stm1 protein 29,791 9.65 �6.48

465 Adenosine kinase (AK) 36,250 5.23 �2.05

548 Exo-beta-1,3-glucanase 33,667 4.41 �2.50

557 Elongation factor 1 beta (EF1B)

guanine nucleotide exchange domain

22,903 4.33 �3.57

560 Predicted epimerase, PhzC/PhzF homolog 32,286 4.98 �2.35

578 Phosphoglycerate mutase 1 27,468 5.48 �11.1

597 Phosphoglycerate kinase 18,458 7.85 �2.51

602 Mitochondrial ribosomal protein MRP8 24,160 4.73 �2.12

616 Ribosome antiassociation factor IF6 26,367 4.52 �2.62

629 TrpR binding protein WrbA 29,728 6.54 �2.08

632 Alcohol dehydrogenase GroES-like domain 36,721 6.21 �2.25

645 Type 1 glutamine amidotransferase (GATase1) 25,479 5.16 �4.45

658 Phosphoglycerate kinase (PGK) 44,590 6.37 �2,15

715 Chain A, yeast Cu, Zn enzyme superoxide dismutase 15,714 5.63 �7.19
aExpression ration of voriconazole-resistant (R) over voriconazole-susceptible (S) strains. The minus sign (�) indicates decreased protein expression of

voriconazole-resistant strains in comparison with voriconazole-susceptible strains.
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functional category showed that the identified proteins

were cell regulation, energy production, carbohydrate

transport, amino acid transport, and various metabolism-

related proteins.
3.3. Expression of membrane proteins and

identification
A total of 329 membrane proteins were resolved by

2D gel electrophoresis. Of the 17 spots (differential
ratio twofold or more) for which expression was

increased, 12 proteins were identified. The identified

proteins showed enolase, heat shock protein 70, pyru-

vate kinase, cysteine synthase, pyruvate decarboxylase,

pyrophosphate requiring enzyme, regulatory modules in

signal transduction, and phosphoglycerate kinase

(Table 3). Among the identified proteins, phosphate

requiring enzymes showed the most increased expres-

sion (3.66 times). Enolase and phosphoglycerate kinase

proteins also showed 2.69 and 2.77 times increased



Table 4. Functional classification of identified membrane proteins from voriconazole susceptible, susceptible dose-dependent,

and resistant strains

Protein Function

Cell regulation

Similar with bacterial potassium efflux protein KefA Regulate iron balance

Sphingolipid long-chain base sensory protein Cell wall, antifungal protection

Heat shock protein 70, 90, 60 Stress, protein folding

SES1 seryl-transcription RNA (tRNA) synthetase Catalyze the formation of aminoacyl-tRNA

GDP dissociation inhibitor GTP binding protein regulator

similar to Saccharomyces cerevisiae YKL195w promotes retention of newly imported proteins

Chromosome segregation adenosine

triphosphatases (ATPases)

Cell division

highly similar to Saccharomyces cerevisiaeYGR086c Unknown function that are induced on cell stress

Cu, Zn enzyme superoxide dismutase Catalyse the conversion of superoxide radicals to oxygen

CAP family of transcription factors Control transcription of genes

Molecular chaperone DnaK Posttranslational modification, protein turnover, chaperones

Carbohydrate transport and metabolism

Pyruvate decarboxylase Related thiamine pyrophosphate-requiring enzymes

Hexokinase Phosphorylates a six-carbon sugar, a

hexose to a hexose phosphate

Amino acid transport and metabolism

SAM1 S-adenosylmethionine synthetase Catalyzes transfer of the adenosyl group of ATP to

the sulfur atom of methionine

Elongation factor 1 beta (EF1B) catalyzes the exchange of GDP bound to the

G-protein, EF1A, for GTP

Energy production and conversion

F1 ATP synthase Catalyze the ATP synthesis

Phosphoglycerate kinase catalyzes the transfer of the high-energy phosphate

group of 1,3-biphosphoglycerate to adenosine diphosphate
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expression, respectively. Thirty-seven spots showed

decreased expression in the order of susceptible, S-DD,

and resistant strains. Among the 37 spots, 31 proteins

were identified. The identified membrane proteins

included heat shock protein 70, aldehyde dehydroge-

nase, nicotinamide adenine dinucleotide phosphate-

glutamate dehydrogenase, phosphoglycerate mutase I,

glutamine aminotransferase, superoxide dismutase,

Stm1 protein, phosphoglycerate kinase, and others. A

total of 12 heat shock proteins were observed and heat

shock protein 70 was 11. In addition, 9 heat shock

protein 70 showed the deceased expression in resistant

strain compared to susceptible and S-DD strain. The

identified membrane proteins were classified into car-

bohydrate metabolism, amino acid synthesis, and

response to stress-related proteins (Table 4).
4. Discussion

C. glabrata is a major opportunistic fungal pathogen

of humans and also part of the gastrointestinal micro-

flora in many healthy human beings [1]. The most

effective classes of antifungal agents used to treat C.

glabrata infections are the azoles agents, specifically
fluconazole and voriconazole [9]. However, the occur-

rence of azole-resistant strains resulted in a difficulty of

treatment. Currently, the available information of vor-

iconazole resistance in protein levels is sparse. In this

study, we compared the expression changes of proteins

using the voriconazole susceptible, S-DD, and resistant

strains. The results of proteomic analysis showed the

tendency of expression increase (38 proteins) was

observed in intracellular fractions of resistant strain

compared to membrane fraction of susceptible and S-

DD strain (17 proteins). The membrane fraction of

resistant strain had the tendency of expression decrease

(37 proteins) compared to intracellular fraction of sus-

ceptible and S-DD strains (18 proteins). The results

indicated that the metabolism process is continuously

increased from voriconazole susceptible to S-DD,

resistant strain but the biochemical reaction may be

decreased in membrane fraction to endure the antifungal

stress environment. Among the identified proteins, heat

shock protein was observed in various spots of intra-

cellular and membrane fractions. Usually, heat shock

protein is known as a stress and response related protein.

In this study, the expression increase of heat shock

protein in intracellular proteins of voriconazole resistant

strain was observed in three spots, but 9 heat shock 70
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protein showed decreased expression in membrane

proteins. This finding indicated that heat shock protein

70 is related to voriconazole resistance. Among the C.

albicans triazole resistance mechanisms, the molecular

chaperone Hsp90 is known to share a correlation. The

Hsp90 protein stabilizes calcineurin, thereby enabling

calcineurin-dependent stress responses that are required

for triazole tolerance of Candida strains [18]. In this

study, the heat shock protein identified most often was

Hsp70 protein, and 9 Hsp70 proteins showed a decrease

of expression in membrane fraction, but the exact

mechanism with voriconazole resistance needs more

investigation. Among the identified membrane proteins,

expression of DnaK and Stml protein was reduced in

voriconazole resistant strains compared with S-DD and

susceptible strains. These proteins are related to protein

posttranslation modification and apoptosis, respectively.

There has been little information of voriconazole resis-

tance in C. glabrata strain, so the proteomic investiga-

tion can be useful information for further study.
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