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Abstract

Integrins regulate adhesion at the foeto-maternal interface by interacting with secreted phosphoprotein 1 (SPP1) and fibronectin 
(FN). It is hypothesised that impaired foetal growth of ‘runt’ piglets is linked to altered integrin signalling at the foeto-maternal 
interface. Placental and endometrial samples associated with the lightest and closest to mean litter weight (CTMLW) (gestational day 
(GD18, 30, 45, 60 and 90), of both sex (GD30, 45, 60 and 90) (n = 5–8 litters/GD), Large White × Landrace conceptuses or foetuses 
were obtained. The mRNA expression of the integrin subunits (ITG) ITGA2, ITGAV, ITGB1, ITGB3, ITGB5, ITGB6, ITGB8, SPP1 and 
FN was quantified by qPCR. Temporal changes in mRNA expression were observed, with different profiles in the two tissues. 
Endometrial ITGB1 (P ≤ 0.05, GD45) and SPP1 (P ≤ 0.05, all GD combined and GD60) expression was decreased in samples 
supplying the lightest compared to the CTMLW foetuses. Placentas supplying female foetuses had decreased expression of ITGB6 
(GD45, P ≤ 0.05) and FN (GD90, P ≤ 0.05) compared to those supplying male foetuses. Endometrial samples supplying females had 
increased ITGB3 (P ≤ 0.05, GD60) and FN (P ≤ 0.05, GD30) expression and decreased SPP1 (P ≤ 0.05, GD60) expression compared to 
male foetuses. Correlations between mean within-gilt mRNA expression and percentage prenatal survival, number of live foetuses or 
conceptuses and percentage male foetuses were observed. This study has highlighted novel and dynamic associations between foetal 
size, sex and integrin subunit mRNA expression at the porcine foeto-maternal interface. Further studies should be performed to 
improve the understanding of the mechanisms behind these novel findings.
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Introduction

Low birthweight infants have an increased risk of 
mortality and morbidity and can be classified as 
small for gestational age (SGA) or intra-uterine growth 
restricted (IUGR). The pig has a high incidence of 
naturally occurring low birthweight piglets, with many 
litters having a growth-restricted or ‘runt’ piglet that 
can weigh less than half of the weight of their largest 
littermates (Widdowson 1971, Ashworth et  al. 2001, 
Wu et  al. 2010). Considering the high prevalence of 
low birth weight piglets, it is essential to improve the 
understanding of the mechanisms governing foetal 
growth. It is hypothesised that inadequate conceptus 
attachment to the endometrium contributes to the large 
variation in piglet weight and high prevalence of low 
birthweight piglets.

Integrins (ITGs) are glycoprotein transmembrane 
receptors which exist as heterodimers composed of non-
covalently linked alpha (ITGA) and beta (ITGB) subunits 
(Giancotti & Ruoslahti 1999). Integrins play a central role 
in cell adhesion and have been shown to be critical in the 

formation of focal adhesions, cell migration, proliferation 
and the development of the actin cytoskeleton (Irving & 
Lala 1995, Schwartz & Assoian 2001, Gallant et al. 2005, 
Delon & Brown 2007). Specific integrin heterodimers 
can bind to peptides containing an Arg-Gly-Asp (RGD) 
region, such as secreted phosphoprotein 1 (SPP1, also 
known as osteopontin (OPN)) and fibronectin (FN). The 
process of implantation requires significant remodelling 
of the extracellular matrix at the interface between the 
conceptus and the mother (Carson et  al. 2000, White 
et al. 2006), which is believed to be partially regulated 
by integrin signalling. Both SPP1 (Feinberg et al. 1991, 
Denker 1993, Sutherland et al. 1993, Aplin et al. 1994, 
Lessey et  al. 1994, Ruck et  al. 1994, Campbell et  al. 
1995, Fassler & Meyer 1995, Schultz & Armant 1995, 
Stephens et  al. 1995, Yoshimura et  al. 1995, Bowen 
et al. 1996, Shiokawa et al. 1996, 1999, Fazleabas et al. 
1997, Schultz et al. 1997, Yelich et al. 1997, Guillomot 
1999, Hodivala-Dilke et al. 1999, Johnson et al. 1999, 
2001, Kimmins & MacLaren 1999, Illera et  al. 2000, 
2003, Bloor et al. 2002, Burghardt et al. 2002, 2009, Kao 
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et al. 2002, Qin et al. 2003, Rashev et al. 2005, White 
et al. 2005, Zheng et al. 2006, Lin et al. 2007, Erikson 
et al. 2009a, Germeyer et al. 2014, Vélez et al. 2015, 
2017, Frank et al. 2017) and FN (Feinberg et al. 1991, 
Schultz & Armant 1995, Bowen et al. 1996, Qin et al. 
2003, Rashev et al. 2005, Imakawa et al. 2006, Zheng 
et al. 2006, Vélez et al. 2015, 2017) have been reported 
to play a role in early gestation in multiple species by 
regulating integrin signalling. In the pig, trophoblast 
and uterine luminal epithelial cells have been shown to 
express ITGAV, ITGA2, ITGA5, ITGB1, ITGB3 and ITGB6 
(Bowen et  al. 1996, Erikson et  al. 2009a, Frank et  al. 
2017). It has been suggested that ITGα5β1, ITGαVβ3, 
ITGαVβ6 and ITGαVβ1 receptors may be able to bind 
to SPP1, and FN may bind to ITGα5β1, ITGαVβ3 or 
ITGαIIβ3 (Humphries et  al. 2006). Further, porcine 
trophoblast cells have been shown to utilise integrin 
heterodimers containing ITGAV receptors to bind to 
SPP1 during implantation (Frank et al. 2017).

In addition to a central role in the regulation of 
implantation and early pregnancy in the pig (Bowen 
et  al. 1996, Rashev et  al. 2005, White et  al. 2005, 
Erikson et al. 2009a, Vélez et al. 2015, 2017), integrins 
and their ligands are expressed at the porcine foeto-
maternal interface at multiple gestational days (GD) 
(Garlow et  al. 2002, White et  al. 2005, Hernández 
et al. 2013, Vélez et al. 2015, 2017, Frank et al. 2017, 
Steinhauser et  al. 2017). Considering the non-invasive 
nature of the porcine placenta (Montiel et  al. 2013), 
and the substantial remodelling that must occur to 
ensure adequate nutrient transfer to the foetus (Vallet & 
Freking 2007), it is unsurprising that adhesive processes 
must be present throughout gestation to maintain a 
successful pregnancy.

It is hypothesised that the mRNA expression of 
integrin subunits, FN and SPP1, will be decreased in 
placental and endometrial samples associated with 
the lightest conceptuses or foetuses compared to their 
normal-sized littermates throughout gestation. To test 
this hypothesis, samples were compared within litter at 
five GDs of interest.

It has previously been demonstrated that significant 
variation in foetal size can be observed at GD30 
(Pettigrew et  al. 1986, Wise et  al. 1997, Finch et  al. 
2002, Foxcroft & Town 2004, Foxcroft et  al. 2006), 
which is thought to be reflective of the postnatal within-
litter variation in the piglet size observed. Therefore, 
placental and endometrial samples from early gestation 
were utilised as part of this study. During pregnancy, 
temporal changes in the rate of foetal and placental 
growth can be observed (Marrable 1971). After the 
initially fast period of placental growth, the growth 
rate of the porcine placenta plateaus in mid-gestation, 
whereby instead of continuing to increase in weight, 
the structure of the placenta undergoes extensive 
remodelling to increase the surface area available for 
nutrient exchange with the developing foetus (Vallet 

& Freking 2007). Whilst the placental growth rate is 
decreased, the foetus is undergoing rapid growth, 
placing large demands upon the placenta. This study 
has utilised placental and endometrial samples from 
GD18, 30, 45, 60 and 90, which were selected to allow 
investigation of these tissues throughout gestation due to 
the dynamic relationship between foetal and placental 
growth at the foeto-maternal interface.

Recent literature has suggested that sexual dimorphism 
in placental development exists in humans (Rosenfeld 
2015, Kalisch-Smith et  al. 2017), which may translate 
to the observed sexual dimorphism in phenotype in 
response to adverse conditions during pregnancy. 
In the pig, it has been suggested that males are at a 
disadvantage compared to their female littermates post-
natally (Baxter et al. 2012). Further, recent investigations 
in our laboratory have reported sexual dimorphism in 
both placental and endometrial vascularity in the pig 
(Stenhouse 2018, Stenhouse et al. 2018a). Considering 
this, it is hypothesised that decreased expression of the 
integrin receptors and their ligands will be observed 
in placental and endometrial samples supplying male 
foetuses compared to their female littermates.

The number of live born piglets per year is an 
economically important factor for the pig industry 
(Koketsu et al. 2017). Further, the sex ratio of the litter 
is known to influence reproductive success (Lamberson 
et  al. 1988, Drickamer et  al. 1997, 1999, Huhn 
et  al. 2002, Górecki 2003). Considering this, and the 
proposed role of integrin signalling at the foeto-maternal 
interface, the relationship between integrin mRNA 
expression and percentage prenatal survival, number of 
live foetuses and the percentage of male foetuses in the 
litter was investigated.

Materials and methods

All procedures were performed with approval from The Roslin 
Institute (University of Edinburgh) Animal Welfare and Ethical 
Review Board and in accordance with the U.K. Animals 
(Scientific Procedures) Act, 1986.

Experimental animals and sample collection

Large White × Landrace gilts (age 11–14  months; n = 31) 
were observed daily for signs of oestrus and were housed in 
groups of 6–8 animals per pen. Oestrous cyclicity and ovarian 
function were controlled in accordance with routine normal 
practice at The Roslin Institute Large Animal Unit. In a subset 
of gilts (distribution between the GD investigated indicated 
in Supplementary Table 1, see section on supplementary data 
given at the end of this article) oestrus was synchronised by 
daily feeding of 20 mg Altrenogest (Regumate, Hoechst Roussel 
Vet Ltd.) for 18 days followed by injection of pregnant mare 
serum gonadotrophin (PMSG; Intervet UK Ltd) and human 
chorionic gonadotrophin (hCG; Intervet UK Ltd) (Stenhouse 
et  al. 2018a). All gilts were inseminated twice daily for the 
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duration of oestrus with semen from one of four Large White 
boars. The boars used were equally distributed throughout the 
GD to minimise any effect of sire. The first day of insemination 
was assigned as GD0 and samples were obtained at GD18, 
30, 45, 60 and 90. Gilts were killed at the GD of interest 
with sodium pentobarbitone 20% w/v (Henry Schein Animal 
Health) at a dose of 0.4 mL/kg by intravenous injection via a 
cannula inserted in the ear vein. Following confirmation of 
death, mid-ventral incision revealed the reproductive tract. The 
tract was lifted from the body cavity and placed in a dissecting 
tray. Both uterine horns were dissected, from the ovary towards 
the cervix. The uterine lumen was occluded between each 
foeto-placental unit by tying with string to ensure that the 
tissue associated with particular conceptuses or foetuses could 
be identified later.

At GD18, the uterine tract was rinsed with saline and a 
string was used to tie the end of the right and left uterine horns 
at the bifurcation. The uterine horns were cut between the 
two pieces of string and each uterine horn was placed in a 
floatation device. The device contained a solution to preserve 
the integrity of the RNA (700 g ammonium sulphate (SLS) 
was dissolved in 935 mL of RNase-free water with heat and 
stirring). Once dissolved, 25 mL of 1 M sodium citrate (Fisher 
Scientific) and 40 mL of 0.5 M EDTA were added. The solution 
was adjusted to pH 5.2 using concentrated sulphuric acid and 
stored at room temperature until required. Using dissection 
scissors, the uterine horn was opened along the mesometrial 
side, and the conceptuses floated in the solution. Individual 
conceptuses were removed from the floatation device with 
forceps and weighed in a cryovial (Starlab). The uterine 
lumen was occluded between each conceptus to ensure that 
endometrial samples associated with particular conceptuses 
could be identified. The lightest and CTMLW conceptus was 
identified based on weight and snap-frozen in liquid nitrogen 
and stored at −80 °C for RNA extraction.

On the remaining GD investigated, foetuses were identified 
as ‘live’ or ‘dead’ based on their morphology at the time of 
dissection and were weighed. At GD45, 60 and 90, foetal 
sex was determined morphologically. DNA was isolated from 
the GD30 foetuses using the DNeasy Blood and Tissue DNA 
extraction kit (Qiagen), and PCR was performed for the sex-
determining region Y (Sry) – a region of the Y chromosome – as 
previously described (Stenhouse et al. 2018b) to determine the 
sex of the foetuses. The lightest and CTMLW foetuses (GD30), 
of both sex (GD45, 60 and 90), were identified based on 
foetal weight. From the anti-mesometrial side, placental and 
endometrial samples were taken from each foeto-placental 
unit of interest, snap-frozen in liquid nitrogen and stored at 
−80 °C for RNA extraction.

Analysis of mRNA expression by qPCR

Total RNA extraction and cDNA synthesis

RNA was extracted from 20 to 50 µg of snap-frozen placental 
and endometrial samples as previously described (Stenhouse 
et  al. 2018a). The RNA was quantified, and the quality was 
assessed spectrophotometrically using a Nanodrop ND-1000 

(Labtech International Ltd.) and electrophoretically using a 
Tapestation 2200 (Agilent Technologies). The mean A260/
A280 and RNA Integrity Number Equivalent (RINe) for 
samples within each GD are detailed in Supplementary 
Table 2. Extracted RNA was stored at −80 °C until required. 
If the RINe value obtained remained lower than the ranges 
detailed in Supplementary Table 2, the sample was excluded 
from the analyses.

cDNA was prepared from 0.3 µg of RNA with SuperScript 
III reverse transcriptase (Life Technologies) following the 
manufacturer’s instructions. Each reaction contained 250 ng 
random primers (Promega) and 40 units RNaseIn (Promega). 
Negative controls without reverse transcriptase were included 
to check for genomic contamination. Reverse transcription 
was performed in duplicate for each sample and pooled, and 
the cDNA was stored at −20 °C until required.

Relative expression of candidate genes

Quantitative PCR was performed on a Stratagene MX3000 
instrument using Platinum SYBR Green SuperMixUTG 
(Life Technologies) using cDNA from placental (GD30, 
45, 60 and 90; n = 6, 6, 6 and 8 litters respectively) and 
endometrial (GD18, 30, 45, 60 and 90; n = 5, 5, 6, 6 and 
6 litters respectively) samples. The samples were associated 
with the lightest and CTMLW conceptuses or foetuses at 
GD18 and 30, and the lightest and CTMLW foetuses of 
both sex at GD45, 60 and 90. The final concentrations of 
magnesium, ROX reference dye and each primer were 3 mM, 
50 nM and 400 nM respectively in a 25 µL reaction volume. 
All qPCRs were carried out at an annealing temperature of 
60  °C and dissociation curves consisting of single peaks 
were generated. The mRNA expression of ITGA2, ITGAV, 
ITGB1, ITGB3, ITGB5, ITGB6, ITGB8, SPP1 and FN was 
quantified in both tissues (King et  al. 2011, Hernández 
et al. 2013, Frank et al. 2017). Appropriate reference genes 
were identified by analysis of 11 candidate reference genes 
(Erkens et al. 2006, Nygard et al. 2007) using geNORM V3.5 
(Ghent University Hospital, Centre for Medical Genetics). The 
reference genes TBP1 (TATA box-binding protein) and HPRT1 
(hypoxanthine phosphoribosyltransferase 1) were utilised 
to normalise placental mRNA expression, and endometrial 
mRNA expression was normalised using the reference genes 
TBP1, YWHAZ (Tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation protein and zeta polypeptide) 
and TOP2B (Topoisomerase II beta). The primer sequences for 
all genes are detailed in Supplementary Table 3.

Serial dilutions of pooled cDNA ranging from 1:5 to 1:640 
in nuclease-free water were used as standards. Sample cDNA 
was diluted 1:25 and 5 µL of diluted sample, standard or 
control were added per well. Each plate contained duplicate 
wells of a no template control, standards, sample cDNA and 
reverse transcriptase blanks. Data were analysed using qbase+ 
software V3.0 (Biogazelle). A target- and run-specific strategy 
was employed and the results, normalised to the two reference 
genes, were scaled to the minimum sample. The mean 
slope, intercept, PCR efficiency and R2 values are detailed in 
Supplementary Table 4.
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Statistical analysis

All statistical analyses were performed using Minitab 17 
or GenStat 13.1 (VSN International Ltd.). The normalised 
mean value for each placental and endometrial sample was 
taken and the normality of the distribution of the data was 
assessed by an Anderson-Darling test. If a P value of ≤0.05 
was obtained, then the data were not considered to have a 
normal distribution. Outliers were tested for using a Grubbs 
outlier test and were excluded systematically, with normality 
within each group being reassessed following each exclusion. 
Log10 transformations were carried out where appropriate 
to improve the normality of the distribution of the data. The 
effect of foetal size was assessed by comparing values for 
the true lightest and true CTMLW at GD18, 30, 45, 60 and 
90. Effects of foetal sex were assessed by comparing values 
from placental and endometrial samples supplying foetuses of 
both sex at GD30, 45, 60 and 90. Where data had a normal 
distribution, ANOVA for GD, foetal size or sex was performed, 
with a block for gilt to account for the common maternal 
environment. A post hoc Tukey test was performed where 
appropriate. Where data did not have a normal distribution, 
Kruskal–Wallis and Mann Whitney tests were performed. 
Within gilt, the mean expression for each gene of interest was 
calculated within tissue. Pearson’s correlations were performed 
within GD to determine the association between the mean 
gene expression within gilt and the percentage of males in the 
litter (sex ratio), percentage prenatal survival (calculated by 
dividing the number of live foetuses by the number of corpora 
lutea, multiplied by 100) and the number of live foetuses. 
In all experiments, results were considered significant when 
P ≤ 0.05, tending towards significant when P was >0.05 and 
<0.1 and not significant when P ≥ 0.1.

Results

Temporal changes in integrin mRNA expression

No significant day effect was observed in the placental 
expression of ITGB5 or SPP1 (Fig. 1E and I). An overall 
day effect was observed in the placental expression 
of ITGA2 (P ≤ 0.05; Fig.  1A), with GD30 placentas 
having decreased expression compared to the other GD 
investigated. Placental ITGAV expression was influenced 
by GD (P ≤ 0.05; Fig.  1B), with decreased expression 
observed at GD60 compared to GD30 and GD45. 
An overall GD effect was observed in the placental 
expression of ITGB1 (P ≤ 0.001; Fig. 1C), with increased 
expression observed at GD45 and GD90 compared 
to GD30 and GD60. Placental ITGB3 expression was 
decreased at GD60 and GD90 compared to GD45 
(P ≤ 0.05; Fig.  1D). Temporal changes in the placental 
expression of ITGB6 were observed (P ≤ 0.01; Fig. 1F), 
with low placental expression at GD30, which 
significantly increased at GD45. Placental ITGB6 
expression then significantly increased to its peak 
expression level at GD90. Placental ITGB8 expression 
increased with advancing gestation (P ≤ 0.01; Fig. 1G), 
with a significant increase observed between GD30 
and GD45. Placental FN expression varied throughout 
gestation (P ≤ 0.01; Fig. 1H).

An overall GD effect was observed in ITGA2 
endometrial expression (P ≤ 0.05; Fig.  2A). The 
endometrial expression of ITGAV (P ≤ 0.001; Fig.  2B) 
and ITGB3 (P ≤ 0.01; Fig.  2D) were decreased at 
GD30 compared to the other GD investigated. During 

Figure 1 Integrin mRNA expression in placental 
tissues on days 30, 45, 60 and 90 of pregnancy. 
mRNA expression of ITGA2 (A), ITGAV (B), 
ITGB1 (C), ITGB3 (D), ITGB5 (E), ITGB6 (F), 
ITGB8 (G), FN (H) and SPP1 (I) in placental 
samples at GD30, 45, 60 and 90. Error bars 
represent s.e.m. n = 9–23 foetuses/GD.
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gestation, ITGB1 (P ≤ 0.01; Fig. 2C) and ITGB8 (P ≤ 0.001; 
Fig. 2G) endometrial expression fluctuated. Endometrial 
ITGB5 expression also fluctuated throughout gestation 
(P ≤ 0.001; Fig. 2E), with decreased expression observed 
at GD30, GD60 and GD90 compared to GD18 and 
GD45. ITGB6 endometrial expression was increased 
in mid and late gestation compared to early gestation, 
with a notable increase in expression observed between 
GD30 and GD45 (P ≤ 0.001; Fig.  2F). Endometrial 

SPP1 expression increased with advancing gestation 
(P ≤ 0.001; Fig. 2I).

Associations between foetal size and integrin 
mRNA expression

No statistically significant associations between foetal 
size and placental expression of ITGAV (Fig.  3B), 
ITGB1 (Fig.  3C), ITGB3 (Fig.  3D), ITGB5 (Fig.  3E), 

Figure 2 Integrin mRNA expression in 
endometrial tissues on days 18, 30, 45, 60 and 
90 of pregnancy. mRNA expression of ITGA2 
(A), ITGAV (B), ITGB1 (C), ITGB3 (D), ITGB5 
(E), ITGB6 (F), ITGB8 (G), FN (H) and SPP1 (I) 
in endometrial samples at GD18, 30, 45, 60 
and 90. Error bars represent s.e.m. n = 9–30 
foetuses/GD.
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Figure 3 Integrin mRNA expression in 
placental tissues associated with the lightest 
and CTMLW conceptuses and foetuses on 
days 30, 45, 60 and 90 of pregnancy. mRNA 
expression of ITGA2 (A), ITGAV (B), ITGB1 (C), 
ITGB3 (D), ITGB5 (E), ITGB6 (F), ITGB8 (G), 
FN (H) and SPP1 (I) in placental samples 
associated with the lightest and CTMLW 
foetuses at GD30, 45, 60 and 90. Error bars 
represent s.e.m. n = 4–7 foetuses/GD.
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ITGB6 (Fig. 3F), ITGB8 (Fig. 3G), FN (Fig. 3H) or SPP1 
(Fig. 3I) were observed. At GD45 (P = 0.07; Fig. 3A), 
placental samples supplying the lightest foetuses 
tended to have increased ITGA2 expression compared 
to those supplying the CTMLW foetuses. The direction 
of this difference switched at GD90 (P = 0.09; 
Fig.  3A), with placental samples supplying the  
lightest foetuses having decreased ITGA2  
expression compared to those supplying the 
CTMLW foetuses.

No statistically significant associations between 
conceptus or foetal size and endometrial expression 
of ITGA2 (Fig. 4A), ITGAV (Fig. 4B), ITGB3 (Fig. 4D), 
ITGB5 (Fig.  4E), ITGB6 (Fig.  4F) or FN (Fig.  4H) 
were observed. Endometrial ITGB1 expression was 
decreased in samples supplying the lightest foetuses 
compared to those supplying the CTMLW foetuses at 
GD45 (P ≤ 0.05; Fig. 4C). At GD30, a trend towards 
endometrial samples supplying the lightest foetuses 
having increased ITGB5 expression compared to 
samples supplying the CTMLW foetuses was observed 
(P = 0.07; Fig.  4E). Further, endometrial samples 
associated with the lightest conceptuses tended 
(P = 0.09; Fig. 4G) to have increased ITGB8 expression 
compared to the CTMLW conceptuses at GD18. An 
overall size effect in SPP1 expression was observed 
(P ≤ 0.05; Fig.  4I), with a statistically significant 
decrease in expression observed in endometrial 
samples supplying the lightest foetuses compared to 
the CTMLW foetuses at GD60 (P ≤ 0.05).

Associations between foetal sex and integrin 
mRNA expression

No statistically significant associations between foetal 
sex and placental expression of ITGA2 (Fig. 5A), ITGAV 
(Fig.  5B), ITGB1 (Fig.  5C), ITGB3 (Fig.  5D), ITGB5 
(Fig. 5E), ITGB8 (Fig. 5G) or SPP1 (Fig. 5I) were observed. 
Significant associations between foetal sex and ITGB6 
(GD45 P ≤ 0.05; Fig. 5F) and FN (GD90 P ≤ 0.05; Fig. 5H) 
expression were observed, with placentas associated 
with female foetuses having decreased expression 
compared to those associated with male foetuses.

No statistically significant associations between foetal 
sex and endometrial expression of ITGA2 (Fig.  6A), 
ITGAV (Fig. 6B), ITGB1 (Fig. 6C), ITGB5 (Fig. 6E), ITGB6 
(Fig. 6F) or ITGB8 (Fig. 6G) were observed. Endometrial 
samples supplying females at GD60 had increased 
ITGB3 expression compared to those supplying male 
foetuses (P ≤ 0.05; Fig.  6D). At GD30, FN expression 
was increased in endometrial samples supplying females 
compared to those supplying male foetuses (P ≤ 0.05; 
Fig.  6H). SPP1 endometrial expression was decreased 
in samples supplying female foetuses compared to their 
male littermates at GD60 (P ≤ 0.05; Fig. 6I).

Associations between mean gilt placental 
and endometrial integrin expression and 
litter characteristics

At GD30, an inverse correlation between mean placental 
ITGB1 expression and percentage of males in the litter 

Figure 4 Integrin mRNA expression in 
endometrial tissues associated with the lightest 
and CTMLW conceptuses and foetuses on 
days 18, 30, 45, 60 and 90 of pregnancy. 
mRNA expression of ITGA2 (A), ITGAV (B), 
ITGB1 (C), ITGB3 (D), ITGB5 (E), ITGB6 (F), 
ITGB8 (G), FN (H) and SPP1 (I) in endometrial 
samples associated with the lightest and 
CTMLW conceptuses and foetuses at GD18, 
30, 45, 60 and 90. Error bars represent s.e.m. 
*P ≤ 0.05. n = 3–8 foetuses/GD.
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was observed (P ≤ 0.01; Table  1). Placental ITGAV 
(GD60 and GD90 P ≤ 0.05), ITGB5 (GD90 P ≤ 0.001), 
ITGB6 (GD90 P ≤ 0.01), ITGB8 (GD90 P ≤ 0.01) and FN 
(GD90 P ≤ 0.001) expression were positively correlated 
with the number of live foetuses (Table 1).

A positive correlation between both mean endometrial 
ITGB6 (GD45 P ≤ 0.05) and FN (GD90 P ≤ 0.05) 
expression and the percentage of males was observed 
(Table 1). Both endometrial SPP1 (GD18 P ≤ 0.05) and 
ITGAV (GD45 P ≤ 0.01) expression were positively 

correlated with percentage prenatal survival (Table  1). 
Endometrial ITGB5 (GD18 P ≤ 0.01) and ITGB8 (GD30 
P ≤ 0.05) were inversely correlated with the number of 
live conceptuses or foetuses (Table 1).

Discussion

Integrin signalling has been heavily implicated in 
the establishment and maintenance of pregnancy by 
regulating adhesion at the foeto-maternal interface. 

Figure 5 Integrin mRNA expression in 
placental tissues associated with male and 
female foetuses on days 30, 45, 60 and 90 of 
pregnancy. mRNA expression of ITGA2 (A), 
ITGAV (B), ITGB1 (C), ITGB3 (D), ITGB5 (E), 
ITGB6 (F), ITGB8 (G), FN (H) and SPP1 (I) in 
placental samples associated with male and 
female foetuses at GD30, 45, 60 and 90. Error 
bars represent s.e.m. *P ≤ 0.05. n = 4–12 
foetuses/GD.
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Figure 6 Integrin mRNA expression in 
endometrial tissues associated with male and 
female foetuses on days 30, 45, 60 and 90 of 
pregnancy. mRNA expression of ITGA2 (A), 
ITGAV (B), ITGB1 (C), ITGB3 (D), ITGB5 (E), 
ITGB6 (F), ITGB8 (G), FN (H) and SPP1 (I) in 
endometrial samples associated with male and 
female foetuses at GD30, 45, 60 and 90. Error 
bars represent s.e.m. *P ≤ 0.05. n = 3–16 
foetuses/GD.
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This study demonstrated an association between mRNA 
expression of integrins and their ligands, and foetal 
size at the porcine foeto-maternal interface. There 
were also novel relationships between foetal sex and 
both endometrial and placental mRNA expression. 
Intriguingly, differences in gene expression observed 
in placental and endometrial tissue appear to occur 
independently of one another.

This study identified novel associations between 
foetal size and the endometrial expression of ITGB1 and 
SPP1. In humans, it has been shown that extravillous 
trophoblast cells in term placentas which supplied 
IUGR infants had decreased expression of ITGα2β1, 
ITGα3β1 and ITGα5β1 integrin receptors compared to 
those which supplied normally grown infants (Zygmunt 
et al. 1997). In the current study, endometrial samples 
supplying the lightest foetuses had decreased ITGB1 
expression at GD45 compared to those supplying their 
normal-sized littermates, reinforcing the suggestion 
ITGB1 and its ligands may have a role in the regulation 
of foetal growth in the pig. Further, the ITGα5β1 receptor 
has been suggested to bind both FN and SPP1 at the 
foeto-maternal interface in the pig (Frank et al. 2017). 
Whilst no decrease in the expression of SPP1 or FN 
were observed in the endometrial samples supplying 
the lightest foetuses compared to their normal-sized 
littermates at GD45, decreased endometrial SPP1 
expression was observed at GD60.

Emerging evidence in humans suggests that sexual 
dimorphism in placental development is responsible 
for sexual differences to disease susceptibility post-
natally (Rosenfeld 2015, Kalisch-Smith et  al. 2017). It 
has been proposed that male new-born piglets have 
a survival disadvantage compared to their female 
littermates (Baxter et al. 2012). However, whether this 
difference arises prenatally due to sexual dimorphism 
in placental development has not been determined in 
the pig. Currently, the suggestion of sexual dimorphism 
in placental or endometrial integrin expression in 
any species has not been explored. However, in a 
recent RNA sequencing experiment using human 

placentas from 10.5 to 13.5  weeks, it was identified 
that placentas supplying female foetuses had increased 
ITGB8 expression compared to those supplying males 
(Gonzalez et al. 2018).

Endometrial FN and ITGB3 expression were increased 
in samples associated with female foetuses compared 
with their male littermates at GD30 and 60 respectively. 
The differential expression of FN in the endometrium 
but not the placenta at this early stage of gestation 
may indicate the presence of differential signalling 
between the conceptus and the endometrium in early 
gestation, although the mechanisms behind this require 
further investigation.

An inverse relationship between the percentage 
of males in the litter and placental ITGB1 (GD30) 
expression and positive correlations between both 
endometrial ITGB6 (GD45) and FN (GD90) expression 
and the percentage of males in the litter were observed. 
Intriguingly, whilst these results do not mirror the sex 
differences observed within tissue within GD, placental 
ITGB6 and FN were demonstrated to be associated with 
foetal sex at GD45 and GD90 respectively. Interestingly, 
endometrial ITGB5 and ITGB8 expression were 
inversely correlated with the number of live conceptuses 
or foetuses in early gestation, whereas in late gestation 
placental ITGAV, ITGB5, ITGB6, ITGB8 and FN 
expression were positively correlated with the number of 
live foetuses. The width of the folded bilayer at the foeto-
maternal interface is known to increase significantly 
from GD65 to GD105 to increase the available surface 
area for exchange, allowing adequate nutrient transfer to 
meet the demands of the exponentially growing foetus 
(Vallet & Freking 2007). Further, there is some evidence 
to suggest that as litter size increases, uterine capacity 
becomes a limiting factor (Ford et al. 2002, Vallet et al. 
2014), resulting in smaller placentas. It is proposed that 
increased remodelling of the interface must occur to 
attempt to improve placental efficiency and maintain 
adequate nutrient transfer to the developing foetus. The 
observed increase in gene expression in late gestation 
would suggest increased cell adhesion during this 

Table 1 Significant correlations between integrin mRNA expression and litter characteristics.

Gestational day Tissue Gene Variable RSq (%) P value Number XY pairs Positive/Negative

30 Placenta ITGB1 Percentage male foetuses 85.9 ≤0.01 6 Negative
60 Placenta ITGAV Number of live foetuses 64.6 ≤0.05 6 Positive
90 Placenta ITGAV Number of live foetuses 70.3 ≤0.05 7 Positive
90 Placenta ITGB5 Number of live foetuses 90.0 ≤0.001 7 Positive
90 Placenta ITGB6 Number of live foetuses 74.0 ≤0.01 7 Positive
90 Placenta ITGB8 Number of live foetuses 76.2 ≤0.01 7 Positive
90 Placenta FN Number of live foetuses 89.3 ≤0.001 7 Positive
18 Endometrium SPP1 Percentage prenatal survival 79.7 ≤0.05 5 Positive
18 Endometrium ITGB5 Number of live conceptuses 94.7 ≤0.01 5 Negative
30 Endometrium ITGB8 Number of live foetuses 91.1 ≤0.05 4 Negative
45 Endometrium ITGB6 Percentage male foetuses 77.9 ≤0.05 6 Positive
45 Endometrium ITGAV Percentage prenatal survival 84.3 ≤0.01 6 Positive
90 Endometrium FN Percentage male foetuses 73.1 ≤0.05 6 Positive
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period of remodelling. These novel correlations between 
integrin mRNA expression and number of live foetuses, 
percentage prenatal survival and percentage of male 
foetuses in the litter which, considering the importance 
of these characteristics post-natally, may be of interest to 
investigate further.

Importantly, this study has demonstrated that 
endometrial SPP1 expression was associated with both 
foetal size and sex, suggesting the actions of SPP1 at 
the foeto-maternal interface are associated with foetal 
development. Binding of SPP1 to the ITGAVB3 receptor 
has been demonstrated to activate the Akt (Protein 
Kinase B)/eNOS (endothelial nitric oxide synthase) 
signalling pathway, leading to increased proliferation, 
migration and tube formation of endothelial cells in vitro 
(Dai et al. 2009, Wang et al. 2011). Dunlap et al. (2008) 
demonstrated in the sheep a relationship between 
uterine von Willebrand Factor (vWF) staining and SPP1, 
and that uterine arterial endothelial cells produce SPP1 
during angiogenesis in vitro. Analysis of GD9, 12 and 15 
porcine endometrial samples identified the presence of 
a 32kDA fragment of SPP1, which is known to bind to 
the cell surface of endothelial cells (Erikson et al. 2009b, 
Bayless et al. 2010). In these studies, in vitro experiments 
using blood samples from new-born piglets demonstrated 
that SPP1 has a positive effect on the migration and 
adhesion of endothelial cells, suggesting a potential role 
in regulating placental and endometrial angiogenesis. 
At the pig foeto-maternal interface, there are two keys 
stages of gestation when angiogenesis occurs. The first 
is at ~GD13-18 (Keys et al. 1986), which corresponds 
to the period of conceptus attachment, and the second 
wave of angiogenesis occurs at approximately GD50 
(Vonnahme et  al. 2001), which corresponds to the 
period when placental growth is beginning to plateau 
and the foetus is about to undergo exponential growth. 
An additional study utilising the same samples used in 
the present study revealed striking associations between 
foetal size and sex and angiogenesis at the foeto-
maternal interface, which were dependent on the GD 
investigated (Stenhouse 2018a,b). Therefore, considering 
the role of SPP1 and ITGAVB3 during implantation 
(Erikson et al. 2009a, Frank et al. 2017) and the results 
of the current study, it could be hypothesised that SPP1 
has an additional role in inducing altered angiogenesis 
in foetuses of different size and sex which should be 
investigated further.

Conclusion

A comprehensive temporal analysis of the mRNA 
expression of key integrin subunits, FN and SPP1 
throughout gestation in both placental and endometrial 
samples was performed, identifying previously 
undescribed temporal changes in integrin expression. 
Endometrial expression of ITGB1 and SPP1 was 
decreased in samples associated with the lightest 

foetuses compared to samples supplying their normally 
grown littermates at GD45 and 60 respectively. Overall, 
this demonstrated that foetal size is related to integrin 
signalling at the foeto-maternal interface but surprisingly 
this appears to occur in a temporal manner. Novel 
associations between foetal sex and the expression 
of ITGB3, ITGB6, SPP1 and FN at the foeto-maternal 
interface were also observed. The results presented 
in this study are intriguing and the mechanisms 
behind these differences warrant further investigation, 
especially during preimplantation development and 
early pregnancy.
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