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Abstract
Microbial communities are ubiquitous and play crucial roles in many natural processes. Despite their importance for the
environment, industry and human health, there are still many aspects of microbial community dynamics that we do not
understand quantitatively. Recent experiments have shown that the structure and composition of microbial communities are
intertwined with the metabolism of the species that inhabit them, suggesting that properties at the intracellular level such as
the allocation of cellular proteomic resources must be taken into account when describing microbial communities with a
population dynamics approach. In this work, we reconsider one of the theoretical frameworks most commonly used to model
population dynamics in competitive ecosystems, MacArthur’s consumer-resource model, in light of experimental evidence
showing how proteome allocation affects microbial growth. This new framework allows us to describe community dynamics
at an intermediate level of complexity between classical consumer-resource models and biochemical models of microbial
metabolism, accounting for temporally-varying proteome allocation subject to constraints on growth and protein synthesis in
the presence of multiple resources, while preserving analytical insight into the dynamics of the system. We first show with a
simple experiment that proteome allocation needs to be accounted for to properly understand the dynamics of even the
simplest microbial community, i.e. two bacterial strains competing for one common resource. Then, we study our consumer-
proteome-resource model analytically and numerically to determine the conditions that allow multiple species to coexist in
systems with arbitrary numbers of species and resources.

Introduction

Microbes are among the most abundant life forms on Earth
in terms of biomass [1]. They are found in almost every
habitat of our planet, and continue to surprise us with their
ability to survive in places that were thought to be
inhospitable and barren. For example, microbial commu-
nities have been found in the deep terrestrial subsurface
[2, 3], and it has been estimated that the first five kilo-
meters beneath the Earth’s surface could be habitable for
them [4]. Because of their ubiquity, microbial commu-
nities play fundamental roles in countless natural processes
of vital importance, from the digestion and overall health
of their host organism [5] to the regulation of bio-
geochemical cycles [6, 7]. Despite their importance,
however, we still know very little about the fundamental
mechanisms that regulate microbial communities, partly
because we are only able to grow in the lab a very small
fraction of all the microbes found in nature [8], and partly
because microbial communities are complex, non-linear
systems [9] whose dynamics is difficult to predict. For
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these reasons, scientists from many disciplines have long
been fascinated by the challenging theoretical questions
posed by the study of microbial communities’ structure
and dynamics, and serious efforts are being made to
understand how competition [10–12] and metabolic
interactions [13, 14] allow such systems to maintain the
very high levels of biodiversity found in nature.

Recent experimental studies have shown that the structure
and composition of microbial communities are tightly linked
to the metabolism of the species that inhabit them [15, 16]
(e.g., communities with different taxonomic compositions can
nevertheless exhibit the same metabolic functional structure
[17, 18]). We can therefore speculate that the ways with
which microbes uptake and use different resources for growth
and proliferation can affect the dynamics of an entire com-
munity. Resource uptake is constrained by the other functions
that cells must perform to grow and proliferate, and the bal-
ance between such functions is governed by the allocation of
the internal resources of the cell (e.g., the proteome, the set of
proteins expressed by a cell) to different tasks. It is therefore
important to understand how microbial community dynamics
is influenced by the proteome allocation of its members, and
new insights in this direction might help us make more
powerful predictions of how microbial communities assemble
and evolve [19, 20]. However, accounting for the dynamics of
metabolism and gene expression of each species in a micro-
bial community explicitly (e.g., via community flux balance
analysis [21]) can be very challenging, and the large dimen-
sionality of the mathematical models that attempt to do so
poses limits to our understanding of the dynamics of micro-
bial communities and of the fundamental properties that affect
species coexistence.

Scott et al. [22] showed that, despite the complexity of
bacterial metabolism, there are simple relationships that link
the fraction of the proteome allocated for nutrient uptake and
protein synthesis to the growth rate of bacteria grown in
isolation, and that reducing these fractions by forcing cells to
express a useless protein reduces their growth rate. Such
relationships are very powerful because they describe how
bacterial growth is influenced by proteome allocation and
gene expression without requiring an explicit representation
of the underlying molecular mechanisms. These relationships,
which were also based on earlier observations by Schaechter
et al. [23] on how the ribosomal component of the proteome
of a microbial species scales with the growth rate, have
recently been applied in many different contexts [24] and
were instrumental in improving our knowledge of microbial
metabolism, both experimentally [25] and computationally
[26]. However, as the experiments by Scott et al. [22] were
performed with single-species populations in exponential
phase, it is still an open question if their approach can also be
used to describe the population dynamics of different inter-
acting microbial species competing for multiple resources.

In this work, we fill this gap by linking the results by
Scott et al. [22] to one of the most widely adopted theo-
retical frameworks for modeling competitive ecosystems,
MacArthur’s consumer-resource model [27–29], and use it
to describe the dynamics of microbial species competing
for one or more resources. MacArthur’s model describes
how the population abundances of NS species competing
for a common pool of NR resources change over time, and
has been used in several recent studies [10–12, 30–32] to
understand under which conditions multiple species can
coexist while competing for few resources. These studies,
however, did not account for the fact that proteome allo-
cation constraints limit the rates at which microbes can
uptake different resources, which, as shown here, affects
the conditions that lead to the coexistence of multiple
microbial species in competitive communities. We show
that generalizing Scott et al.’s proteome-growth relation-
ships and including them into a consumer-resource fra-
mework allows us to build a community dynamics model
where all parameters can in principle be measured
experimentally and have a precise biological interpreta-
tion. This “Consumer-Proteome-Resource” (CPR) model
describes community dynamics at an intermediate level of
complexity between classical consumer-resource models
and biochemical models of microbial metabolism [21]. By
adopting such an intermediate level of complexity and
realism, we can take into account the dynamics of gene
expression and microbial metabolism, while preserving
analytical insights on the microbial community dynamics
and identifying the key intracellular properties affecting
species coexistence.

There have been attempts in the past at deriving models
to describe the dynamics and/or structure of microbial
communities by incorporating some insight into the meta-
bolism of their species and the molecular aspects of their
growth. One of the earliest and most notable efforts in this
direction was performed by Droop [33], who developed a
model that describes microalgal growth by taking into
account intracellular quotas of the (single) supplied
resource. In more recent times, the problem has been
addressed by applying Flux Balance Analysis to genome-
scale models in order to reveal how metabolic fluxes can
influence community dynamics [34, 35]. This approach,
however, leads to models that are extremely complicated
and strongly dependent on the identity of the species in the
community, since they require detailed knowledge of
metabolic networks with hundreds of different reactions for
every species, as well as the metabolic interactions among
the members of the community. More recently, it has been
shown that introducing some information on the metabo-
lism of microbial species in models of community dynamics
(without all the details that a Flux Balance Analysis model
requires) can provide us with useful insights on the
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properties of the community [36, 37]. Our work sits con-
ceptually in this latter context, but unlike what has already
been done in this direction does not make assumptions on
the metabolism of the species and relies on quantities (like
the proteome fractions) that can be measured directly.

In the next section, we describe the CPR model for a
general number of species/strains and resources. First, we
review the proteome allocation framework of Scott et al.
[22] and discuss how we generalize it to multiple resources.
Second, we review the fundamental structure of consumer-
resource models. Third, we construct our consumer-
resource model which incorporates proteome allocation.
Then, we consider the simplest implementation of an
experimental microbial community, i.e. two Escherichia
coli strains competing for glucose as the only carbon source,
to illustrate that it is necessary to account for proteome
allocation in consumer-resource models to describe the
dynamics (and the conditions for coexistence) of even the
simplest microbial community. The experiment described
here constitutes a proof of the concept that one needs to
account for proteome allocation dynamics when adopting
consumer-resource theory to describe competitive microbial
communities. Finally, we study (both analytically and
numerically) the CPR model for communities composed of
arbitrary numbers of species and resources to identify the
conditions allowing the coexistence of multiple species in
the community. A discussion section and some future per-
spectives conclude this work.

Results

Microbial proteome allocation

The phenomenological framework proposed by Scott et al.
[22] prescribes that the proteome of a single microbial
species growing on a single resource can be minimally
divided into three sectors: one dedicated to nutrient uptake
and metabolism (the “P-sector”), one dedicated to ribosomal
proteins responsible for biomass production and growth (the
“R-sector”), and a third one dedicated to housekeeping
functions (the “Q-sector”), which was shown to be incom-
pressible [22]. Naming φP, φR and φQ the proteome frac-
tions corresponding to these sectors, we must have φP+ φR

+ φQ= 1 (since all proteome fractions must sum to one),
and Scott et al. have shown that φP and φR are linear
functions of the species’ growth rate g, i.e:

φP ¼ ρ

κn cð Þ g; ð1aÞ

φR ¼ ρ

κt
gþ φ0: ð1bÞ

Here ρ is a conversion factor (equal to the ratio between
the total mass of the ribosomal proteins and the total
RNA mass of the cells) and κn cð Þ ¼ κn � r cð Þ, where r(c)=
c/(K+ c) is the Monod function which encapsulates the
dependence on the resource concentration c. Most of our
results do not actually depend on the exact functional form
of r(c), as long as r(c) is a monotonically increasing
function that saturates for large values of c (see Materials
and Methods). K is the half-saturation constant of the
resource and κn is the “nutritional capacity” [22] of the
(only) limiting resource. This parameter measures how
much protein biomass is produced per unit ribosomal mass
per unit time, and therefore depends on how much energy
the resource contains and how efficiently the microbial
species can metabolize it (see Supplementary Information
and [22] for a molecular interpretation of κn). The
parameter κt is the “translational capacity” [22] of the
microbial species, measuring how much protein biomass is
produced per unit ribosomal mass per unit time; it is,
therefore, a measure of how fast the microbial species
expresses its genome to synthesize proteins. Finally, φ0 is
the incompressible core of φR, representing the fact that
ribosomal proteins are present in the cells also when
microbes are not growing. All these parameters involve the
ribosomal mass of the microbial species because the
measurements by Scott et al. [22] were done by assaying
the RNA/protein ratio in exponentially growing Escher-
ichia coli.

Scott et al.’s results apply to microbes growing on a
single resource. We generalize their framework to a system
with multiple species and resources as shown in Fig. 1a:
indicating with φP

σi the proteome fraction allocated by spe-
cies σ to the uptake and metabolization of resource i, the
total proteome fraction allocated by species σ to nutrient
uptake and metabolism is given by φP

σ ¼PNR
i¼1 φ

P
σi. To

ensure that the sum of all the proteome fractions is equal to
one we must have:

φQ
σ þ φR

σ þ
XNR

i¼1

φP
σi ¼ 1: ð2Þ

This constraint represents the finiteness of a species’
proteome, i.e. the fact that each species in a community has
a limited proteomic budget that can be spent for all the
necessary biological functions: for example, if more pro-
teins need to be produced for metabolizing complex sub-
strates (i.e., if the nutrient fraction φP

σ increases), then a
smaller part of the proteome will be available for biomass
production (i.e., the ribosomal fraction φR

σ decreases). In
order to achieve optimal growth, microbial species must
balance this trade-off [22].
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Consumer-resource models

In Fig. 1b we show a schematic representation of the
“classic” consumer-resource model. Within this framework,
a community is a set of NS species that can only uptake
some (or all) of the NR available resources. Species’ growth
rates are determined by the types and the amount of
resources they uptake, and are also regulated by a “main-
tenance cost”, representing the fact that species need to
uptake a minimum amount of resources in order to survive.
The resources, on the other hand, can be thought of as
substrates that are supplied to the system with given (con-
stant) rates si, and they are uptaken by species in the

community. Overall, the model describes explicitly the
dynamics of both species and resources through equations
with the following structure:

_mσ ¼ mσ gσ � qσð Þ σ ¼ 1; ¼ ;NS; ð3aÞ

_ci ¼ si �
XNS

σ¼1

Jσimσ i ¼ 1; ¼ ;NR; ð3bÞ

where mσ is the biomass density of species σ and gσ is its
growth rate. The parameter qσ is a maintenance cost, due to
the fact that each species requires a minimum amount of
energy per unit time to survive without growing. Finally, ci

Fig. 1 Assumptions of the CPR model. a Generalization of Scott
et al.’s [22] proteome subdivision to the case of NR resources: the
proteomic sector allocated by species σ for nutrient uptake and
metabolization is subdivided into smaller fractions φσi ¼ φP

σi, each
dedicated to a specific resource. b Schematic representation of a
consumer-resource model with NR resources and NS species. In this
framework, the concentrations ci of the resources and the biomass
densities mσ of the species are described by systems of coupled dif-
ferential equations. Resources are supplied with (constant) rates si, and
are uptaken by the species (arrows represent resource flows). The ways

in which each species uptakes resources are encoded in the “metabolic
strategies”. In our framework we are not considering the exchange
of metabolic byproducts between species (i.e., cross-feeding).
c Assumptions used to write the equations of the CPR model. Each
species σ uptakes resource i with a rate Jσi proportional to the proteome
fraction φσi. Then, each resource contributes a growth term g ið Þ

σ (pro-
portional to the resource uptake rate) to the total growth rate. The net
growth rate of species σ is the difference between the sum of these
contributions and the maintenance cost qσ.
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is the density of resource i, si is the (constant) resource
supply rate, and Jσi is the rate at which species σ uptakes
resource i per unit biomass. The ways in which species
uptake the available substrates are encoded in Jσi with
parameters that in the literature are called “metabolic
strategies” or “resource preferences”. In particular,
consumer-resource models are generally setup so that
Jσi ∝ ασi, with ~ασ ¼ ασ1; ¼ ; ασNRð Þ the metabolic strategy
(or resource preference) of species σ. Therefore, in the
consumer-resource framework the interactions between
species are indirect and mediated by the abundance of
resources and the species’ resource preferences. Other types
of direct inter-specific interactions (like cross-feeding
through the exchange of metabolic byproducts), though
undoubtedly important in natural microbial ecosystems, are
not addressed in this work.

The consumer-proteome-resource model

Here, we incorporate proteome allocation constraints into
consumer-resource models and show that proteome frac-
tions allocated to the uptake of different resources must
vary with time as resource concentrations vary. Figure 1c
depicts schematically the assumptions underlying the CPR
model. Each species σ uptakes resource i with a rate Jσi
that is proportional to the proteome fraction φP

σi. Then,
resource i accounts for a growth term g ið Þ

σ proportionally to
the uptake rate Jσi. For our purposes, we assume that all
resources in the system are substitutable, so that they can
be used interchangeably and we can write the total growth
rate gσ of a given species as the sum of all the terms g ið Þ

σ .
This assumption is consistent with previous works [38, 39]
that considered the proteome allocation introduced by
Scott et al. [22] in systems with two substitutable resour-
ces. Eventually, we obtain the following mathematical
model (see Materials and Methods for the detailed deri-
vation):

_mσ ¼ mσ

XNR

i¼1

κni
ρσ
ri cið Þφσi � qσ

" #
; ð4aÞ

_ci ¼ si � ξiri cið Þ
XNS

σ¼1

mσφσi; ð4bÞ

XNR

i¼1

φσi 1þ κni
κtσ

ri cið Þ
� �

¼ Φσ; ð4cÞ

where we have written φσi ¼ φP
σi for simplicity. The

parameter ξi can be interpreted as the maximum catalytic
rate of the enzyme used to metabolize resource i, and Φσ is
the total proteome fraction allocated by species σ for
metabolism and biomass synthesis, which is fixed as shown
by Scott et al. [22]. These equations have the traditional

structure of a consumer-resource model given by Eqs. (3a)
and (3b), but with the added merit of describing population
dynamics using parameters and variables that have a precise
biological meaning at the intracellular scale of the system
and that can in principle be measured experimentally [22].
For a species growing on a single resource, the parameters
that are most easily measured experimentally are the per-
biomass resource uptake rate ξr(c)φσ and the yield
(expressed as biomass per grams of resource), which in
our framework is given by Y= κn/ρξ (see Supplementary
Information).

Notice that the metabolic strategies in our framework
correspond to the proteome fractions φσi. If we interpreted
the φσi as fixed parameters, the CPR model would be placed
within the field of classic substitutable consumer-resource
theory. However, we show below that the proteome frac-
tions φσi are actually dynamical variables that vary
according to the concentration of resources, and thus the
CPR model constitutes a generalization of classic
consumer-resource theory with substitutable resources,
based on experimental evidence of microbial proteome
allocation and growth. In the CPR model the proteome
fractions are subject to the constraint encoded by Eq. (4c),
which derives from the proteome finiteness given by
Eq. (2). The expression of this constraint is significantly
different from other ones that have been studied in the
consumer-resource framework [40]. Posfai et al. [31], for
example, considered a classic consumer-resource model
with fixed metabolic strategies, and a metabolic constraint
that in our notation would read

PNR
i¼1 φσi ¼ Φ, where the

sum does not depend on the resource concentrations
through ri(ci), and it is assumed that Φσ=Φ for all σ (i.e.,
the value of Φσ is exactly the same for all species). Such a
model, however, cannot reproduce the fact that microbial
species vary their metabolic strategies with time according
to the concentration of resources, and the constraintPNR

i¼1 φσi ¼ Φ does not account for the fact that, as a species
invests more resources in nutrient uptake and metaboliza-
tion (the φσi) to achieve a higher growth rate, such an
investment must be balanced by an increased investment in
ribosomal proteins (the φR

σ ), both of which are constrained
by the finiteness of the proteome.

The proteome finiteness constraint, as encoded by Eq.
(4c), yields one important consequence that has important
repercussions on the properties the CPR model. In parti-
cular, it implies that the proteome fractions φσi cannot be
fixed parameters, but must change as the resources’ con-
centrations ci change, and therefore they must be dynamical
variables. This can be easily seen by considering a system
with only one resource, for which Eq. (4c) reads

φσ 1þ κn

κtσ
r cð Þ

� �
¼ Φσ; ð5Þ
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and thus the φσ must change as functions of the resource
concentration:

φσ ¼
Φσ

1þ κn
κtσ
r cð Þ : ð6Þ

In particular, φσ must decrease as the resource con-
centration c increases (recall that r(c) is a monotonically
increasing function). This occurs because if, for example,
the available resource becomes scarce, cells will need to
produce more catabolic proteins to meet their energy
requirements. In the presence of multiple resources, the
proteome finiteness constraint of Eq. (4c) implies that if the
concentration of one resource cj decreases, then either φσj or
some of the φσi with i ≠ j must increase to satisfy the con-
straint, since Φσ is constant. Thus, it is necessary to intro-
duce some form of dynamics on the proteome fractions that
each species allocates for nutrient uptake and metaboliza-
tion. This observation should not come as a surprise, given
that microbes are known to adapt their proteome allocation
and metabolic strategies according to which resources are
available. Our approach is to require that all φσi evolve
dynamically with a characteristic timescale to maximize the
instantaneous growth rate of species σ in an adaptive pro-
cess, while ensuring that the proteome finiteness constraint
is satisfied at all times. The model equations and the
mathematical details are discussed in the Materials and
Methods.

Experimental example of the influence of proteome
allocation on population dynamics

Traditional consumer-resource models do not account
explicitly for proteome allocation to different tasks and
assume that metabolic strategies are fixed with time. Here,
we show experimentally that it is necessary to take into
account proteome allocation within consumer-resource
models to reproduce the dynamics of even the simplest
competitive community, i.e. two species competing for one
common resource. We competed experimentally two strains
of E. coli grown in a liquid minimal medium with glucose
as the sole carbon source, transferring a fraction of the
community to fresh medium daily and measuring the rela-
tive abundance of the two strains at each transfer (see
Materials and Methods). The two strains had the same
genetic background and expressed constitutively from their
genome two different fluorescent proteins, which allowed
us to measure their relative abundance via flow cytometry.
We introduced in strain σ= 1 a plasmid containing a Red
Fluorescent Protein (RFP) whose expression could be
controlled by adding to the medium Isopropyl β-D-1-thio-
galactopyranoside (IPTG, a molecular mimic of allolactose
that cannot be metabolized by E. coli). Thus, by varying the

concentration of IPTG in the medium we could vary the
proteome allocation of strain 1 by forcing it to produce a
useless protein. We performed competition experiments at
different concentrations of IPTG, measured the fluorescent
protein production rates at these concentrations, and com-
puted the selective advantage of strain 1 over strain 2, a
measure for the difference in reproductive fitness between
the two strains defined as:

S :¼ d

dt
ln

f

1� f
; ð7Þ

where f is the relative abundance (or frequency) of strain 1,
i.e. f=m1/(m1+m2). The experiment is sketched in Fig. 2.

Figure 3a (magenta data points) shows that the selective
advantage S decreased linearly with the production rate of
the IPTG-inducible RFP of strain 1 over a broad range or
RFP production rates (the mean cell’s fluorescence mea-
sured after 8 h at 105 μM IPTG is 22 times higher than at 0
μM IPTG, Fig. 3d), which are proportional to φiRFP. In the
absence of IPTG and at low concentrations of it, strain 1
outcompeted strain 2 (S > 0). At an IPTG concentration of
~30 μM, the two strains coexisted by maintaining a stable
relative fraction for the duration of the experiment. At IPTG
concentrations larger than 30 μM, strain 1 was outcompeted
by strain 2 (i.e., S < 0). This experiment illustrates that, in
the presence of the same concentration of a single resource,
manipulating the proteome allocation of one of the two
strains results in different outcomes for their competition
dynamics. Consumer-resource theory, which neglects pro-
teome allocation dynamics, would not be able to predict
competition dynamics in these settings.

Figure 3 also shows the results of a second experiment
performed with two different strains (cyan data points).
These strains had different fluorescent protein combinations
with respect to strains 1 and 2 (see Materials and Methods
and Fig. S.1): strain 3 expressed constitutively a red fluor-
escent protein (mKate2Hyb) and carried a plasmid with an
IPTG-inducible yellow fluorescent protein (Venus YFP),
while strain 4 expressed constitutively the yellow fluor-
escent protein mVenus (see Materials and Methods). Also
in these independent sets of experiments, the selective
advantage decreased linearly as the protein production rate
was increased over a broad range (the mean cell’s fluores-
cence measured after 8 h at 105 μM IPTG was 16 times
higher than at 0 μM IPTG, Fig. 3e). In this case, strain 3
always outcompeted strain 4, even at high concentrations of
IPTG. This may be explained by the fact that the two
proteins expressed by strains 1 and 3 have a different fitness
cost (see Supplementary Information for more details).

It is natural to ask whether the CPR model can reproduce
the results of our experiment. Applying the CPR framework
to such a simple community, using assumptions consistent
with our experimental settings (e.g., the fact that the strains
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are grown in medium-rich conditions, and that they share
the same genetic background), leads to the prediction that
the selective advantage S of strain 1 over strain 2 is given by
(see Materials and Methods):

S ¼ d

dt
ln

f

1� f
/ Φ1 �Φ2: ð8Þ

The same result could be obtained by assuming that
the findings of Scott et al. [22] on how the exponential
growth rate in isolation depends on proteome allocation can
be applied to our experiment, in which cells were grown
in co-culture dilution experiments and were not always
in exponential phase. According to Eq. (8), the ratio between
the relative abundances of the two strains decreases or grows
exponentially with time, depending on the sign of Φ1−Φ2,
which then sets the outcome of competition: for example, if
Φ2 >Φ1 (i.e., strain 2 allocates a larger fraction of its pro-
teome to metabolism and biomass production than strain 1)
then S < 0 and strain 2 outcompetes strain 1. Coexistence
between the two strains is possible uniquely when Φ1=Φ2

and thus S= 0. The system, therefore, exhibits two regimes
where only one of the two strains survives (competitive
exclusion), separated by the coexistence point Φ1=Φ2.
Equation (8) thus connects a well known concept of popu-
lation genetics, the selective advantage in exponentially

growing populations, with the differential proteome alloca-
tion Φ1−Φ2 between microbial strains.

In our experiment, we forced strain 1 to produce a use-
less RFP at different rates depending on the IPTG con-
centration. Indicating with φiRFP the fraction of proteome
allocated by strain 1 to the synthesis of the IPTG-inducible
RFP (proportional to the fluorescent protein production
rate), the proteome fraction allocated for nutrient uptake and
growth is given by Φ1 ¼ Φ 0ð Þ

1 � φiRFP (with Φ1 ¼ Φ 0ð Þ
1 in

the absence of IPTG). Thus, the selective advantage S is
predicted to decay linearly with φiRFP as S= α− β · φiRFP

with α and β positive constants (see the Materials and
Methods section for all details and the explicit expression of
S in this case). This prediction is thus consistent with the
experimental observation of a linear decrease of S with the
fluorescent protein production rate.

Coexistence of multiple species in the consumer-
proteome-resource model

We now analyze the CPR model in the general case of
multiple species and multiple resources both analytically
and numerically, to provide some insights into the condi-
tions required for the coexistence of all species in the
community. Specifically, we look for stationary solutions

Fig. 2 Schematic representation of the experiment. a Two E. coli
strains were used: strain 1 constitutively expresses a yellow fluorescent
protein (mVenus) and carries a plasmid with the ampicillin resistance
cassette (cyan AmpR in the plasmid magnification) and a red fluor-
escent protein (RFP), mCherry (magenta), under the control of the trc
promoter, an hybrid of the trp and lac promoters. Strain 2 con-
stitutively expresses a red fluorescent protein (mKate2Hyb) and carries
a plasmid with the ampicillin resistance cassette. b Proteome allocation
of the two strains at different concentration of IPTG in the medium.

When strain 1 grows in the presence of IPTG, a fraction φiRFP of the
strain’s proteome is allocated for the expression of the RFP mCherry,
thus reducing the fraction Φ1 allocated for metabolism and growth.
The proteome allocation of strain 2, instead, is not affected by the
presence of IPTG. c The two strains were co-cultured in minimal
medium at different IPTG concentrations, they were diluted daily into
fresh medium and their relative abundance was measured at every
transfer via flow cytometry.
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where all species have non-null biomass densities. Doing so
yields two necessary conditions for the coexistence of all
species (see the Materials and Methods for all detailed
expressions and computations). The first condition,
which holds when there are more species than resources in
the system (NS > NR), is that the maintenance cost qσ of
species σ must be proportional to the total proteome fraction
allocated for metabolism and growth, i.e. qσ∝Φσ, with a
species-dependent proportionality constant. This require-
ment is biologically reasonable, since allocating a larger
fraction of the proteome to such functions requires addi-
tional energy to synthesize the necessary proteins. The
condition is also required for all species to coexist if
there are fewer species than resources (NS ≤NR) and
all proteome fractions at stationarity φ�

σi are larger than
zero. If, instead, there are fewer species than resources
(NS ≤NR) and some proteome fractions at stationarity are
equal to zero, it is possible to find particular solutions
for which all species coexist, without requiring qσ∝Φσ.
This happens, for example, when NS ≤NR and the vectors
~φ�
σ ¼ φ�

σ1; ¼ ;φ�
σNR

� �
are non-overlapping (i.e., ~φ�

σ �~φ�
ρ ¼

0 for σ ≠ ρ), which means that each species uses resources

that are not used by other species. Further details can be
found in the Materials and Methods.

The second condition, which holds in all the scenarios
discussed in the previous paragraph, can be interpreted as
follows using a graphical representation introduced by
Posfai et al. [31] (see Materials and Methods for all the
mathematical details). A system with NR resources can be
represented on an (NR− 1)–dimensional simplex, where
each vertex corresponds to one of the available resources;
considering for example the case NR= 3, the system can be
represented on a triangle (i.e., a bi-dimensional simplex) as
shown in Fig. 4. On this simplex one can draw the vectors ~̂s
and ~̂φ�

σ , whose components are appropriately rescaled ver-
sions of (respectively) the resource supply rates si and the
stationary proteome fractions φ�

σi (see Materials and Meth-
ods). The second condition for species coexistence pre-
scribes, therefore, that ~̂s must belong to the convex hull of
the vectors ~̂φ�

σ , as shown in Fig. 4.
Notice that, differently from similar results of earlier

investigations of consumer-resource models [31], this con-
dition involves the stationary proteome fractions φ�

σi, and
thus the community has the opportunity to coexist even if

Fig. 3 Experimental results. Magenta points represent data from
experiments with strains 1 and 2. Cyan points represent data from
experiments with strains 3 and 4, where strain 3 expresses con-
stitutively mKate2Hyb and the IPTG-inducible Venus yellow fluor-
escent protein (YFP) and strain 4 expresses mVenus constitutively (see
Materials and Methods and Fig. S.1). Error bars represent two standard
deviations. Note that the normalized protein production rates are not
directly comparable across magenta and cyan points (see Materials and
Methods). a The experimental selection coefficient S (y axis) decreases
linearly with the normalized production rate of the inducible protein,
measured as the temporal variation of the mean cell fluorescence signal
at different concentrations of the inducer IPTG, accounting for dilution
of such protein via cell division (see Materials and Methods). The gray

band represents the 68% confidence interval of the linear fit. The time
series of ln[f/(1− f)] for the two experiments are reported in Figs. S.19
and S.20. b Induced protein production rates as functions of IPTG
concentration (see Materials and Methods). c Inferred values of the
ratios Φ1/Φ2 and Φ3/Φ4 (minus one) as functions of the induced
protein production rate (normalized). Also shown are the linear fits of
the data with their 68% confidence interval. d Mean (induced) red
fluorescence of strain 1 at 4 h and 8 h after inoculation in the condi-
tions used for our experiment (see Materials and Methods). e Mean
(induced) yellow fluorescence of strain 3 at 4 h and 8 h after inocu-
lation in the conditions used for our experiment (see Materials and
Methods).
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the rescaled resource supply rate vector is not within the
convex hull of the proteome fractions at the start of the
temporal evolution.

Because the CPR model is highly non-linear, it is
impossible to predict a priori the values of the stationary
fractions φ�

σi once all the other parameters are set. However,
it is possible to understand how the various parameters
affect the dynamics of the system by exploring different
regions of the parameter space. The dynamics of the system,
in fact, will depend on how the proteome fractions φσi

evolve, and therefore the dynamics of the system will
inevitably be influenced by some of the model parameters.
In this sense the relevant parameters are the ratios γσi ¼
κni =κ

t
σ between the nutritional and translational capacities,

and the characteristic timescales τσ of the adaptive process
that maximizes the growth rate gσ in the dynamics of φσi

(see the Materials and Methods for details). The timescales
τσ measure how fast the dynamics of the proteome fractions
φσi vary: the smaller τσ is, the faster species σ can switch
between different resources. Biologically speaking, this
parameter can be thought of as a measure of how fast the
regulatory mechanisms of a microbial species can respond
to changes in the availability of resources.

The first regime that we explored is τσ � 1 and γσi ~ 0. In
this regime, the adaptive process that regulates the
dynamics of the proteome fractions φσi is very slow (i.e.,
species respond very slowly to changes in resource

abundance) and the nutritional capacity is much smaller
than the translational capacity, which happens for example
when species are grown in very low-quality nutrients. In
this case, the model predicts that the stationary values φ̂�

σi of
the rescaled proteome fractions allocated by the species to
nutrient uptake and metabolization change negligibly, and
therefore all species survive only if the rescaled nutrient
supply rate vector ~̂s lies in the convex hull of the rescaled
initial proteome fractions ~̂φσ , as shown in Fig. 5.

The second regime we explored is τσ � 1 and γσi ≳ 1.
In this case, the dynamics of φ̂σi allows the proteome
fractions to move inside the simplex. Therefore, the system
can reach stationary states where all species coexist even if~̂s
is not necessarily close to the convex hull of the initial ~̂φσ .
On the other hand, we observed that if ~̂s is too far away
from the convex hull of the initial ~̂φσ there might still
be extinctions. However, if ~̂s lies at an intermediate
distance between these two cases, the system can reach
diverse stationary states only if the resource supply rates si
are sufficiently large. For example, multiplying each
resource supply rate by a factor x > 1, i.e. si→ xsi (this
rescaling leaves ŝi unchanged, see Materials and Methods),
we observe a transition between two different states of the
system for increasing values of x: when x ~ 1, only a few
species survive, whereas for larger values of x the stationary
biomass densities m�

σ of the other species increase until all
of them coexist. Figure 6 shows an example of such tran-
sition. This phenomenon occurs only when ~̂s lies in specific
areas of the simplex, whose shape and position can be
determined numerically, but depend on the particular values
of the model parameters used. In this same regime, if γσi
assume increasingly large values (which happens for
example, if the species are grown in nutrients with
increasingly higher quality) coexistence will be possible
even if~̂s lies at increasingly large distances from the convex
hull of the initial ~̂φσ .

Finally, the last regime we explored is τσ≲1, i.e. the
adaptive process maximizing species’ growth rates is fast.
In this case, the smaller the timescales τσ are, the faster the
proteome fractions φσi will reach their stationary values, and
coexistence will always be possible independently of the
initial values of the proteome fractions φσi and of the
resource supply rates si. However, as the τσ grow, fewer and
fewer species will be able to coexist. This can be seen by
multiplying τσ by a factor y > 1: Fig. 7 shows how the
species’ stationary biomasses change as y increases, and we
can see that as species adaptation becomes slower (i.e., for
larger y), fewer and fewer species survive in the community.

The results of this section can be summed up as follows.
If metabolic adaptation is slow, i.e. if the characteristic
relaxation times τσ of the proteome fractions~φσ are large (or
in other words, if the species shift slowly between different
resources), coexistence will be favored if the system

Fig. 4 Graphical representation of the second condition necessary
for coexistence. Here we consider a system with NS= 10 species and
NR= 3 resources (for ease of representation). In this case, the system can
be represented on a bi-dimensional simplex (i.e., a triangle) where each
vertex corresponds to one of the available resources. On this simplex, we

can draw the rescaled nutrient supply rate vector ~̂s (black star) and the

rescaled initial proteome fractions ~̂φσ t ¼ 0ð Þ allocated by the species to
the uptake and metabolism of the resources (colored triangles); their
convex hull is drawn in orange. We have also drawn the stationary

values ~̂φ�
σ of the proteome fractions (colored circles), and their convex

hull is drawn in purple. In this representation, if~̂s lies on one on the sides
of the simplex, it means that only two of the available resources are being

externally supplied to the system, and analogously if one of the ~̂φ�
σ lies

on one of the sides of the simplex, it means that its corresponding species
is uptaking and metabolizing only two of the available resources. In

general, the positions of ~̂s and ~̂φ�
σ depend on the relative ratios with

which the resources are supplied or uptaken by the species.
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contains high-quality nutrients (i.e., the γσi have larger
values). If the system contains low-quality nutrients, coex-
istence will be possible only if the resources are supplied in
particular ratios that depend on the species’ proteome
allocation. In particular, coexistence will be possible if the
rescaled nutrient supply rate vector ~̂s lies inside the convex
hull of the rescaled proteome fractions ~̂φσ . On the other
hand, fast metabolic adaptation (i.e., small values of τσ)
always favor coexistence.

Discussion

Motivated by our experiment that shows how varying
proteome allocation can have strong effects on the dynamics
of even a very simple microbial community, we have for-
mulated a consumer-resource model that generalizes and
incorporates the phenomenological laws discovered by
Scott et al. [22]. In this way, we have bridged microbial
growth with proteome allocation constraints in competitive
communities, and we have investigated the conditions that
lead to species coexistence in the presence of multiple
resources.

This CPR model describes the population dynamics of a
purely competitive microbial community, i.e. an ensemble
of species that compete directly for the same pool of
resources. The main contribution of this work is introducing
a physiological, experimentally-validated constraint on the
amount of resources that cells can devote to growth and
metabolism in consumer-resource models (i.e., Eq. (15c)).
The introduction of this constraint makes it necessary to
introduce some dynamics on the proteome fractions allo-
cated for nutrient uptake and metabolization, and we have
done so using an adaptive approach that assumes that
microbial species are evolutionary well adapted to their
environment. This work differs (both in scope and
approach) from previous ones that involve adaptation on
some species’ internal variables [41], and in particular dif-
fers from previous works involving the consumer-resource
framework [31, 40] that considered phenomenological
constraints that were not based on direct experimental
measurements, nor on an interpretation of such constraints
as arising from the finiteness of the proteome. Introducing
the right constraint in such models is particularly important,
because the exact conditions that allow species coexistence
depend on the specific form of the constraint (see Materials

Fig. 5 Temporal evolution of the CPR model when τσ � 1 and γσi
~ 0.1. a Initial conditions for the ~φσ of a system with 10 species and 3
resources, depicted using the same graphical representation [31] of
Fig. 4: the black triangle is the simplex to which the φ̂σi (colored dots)
and the ŝi (black star) belong. The initial φ̂σi are represented as colored
triangles, and their convex hull is colored in orange, while φ̂�

σi are
represented as circles of the same colors, and their convex hull is in
purple. With good approximation, φ̂�

σi � φ̂σi t ¼ 0ð Þ. b Time evolution

of the species’ biomasses mσ relative to the case shown in a. Since ~̂s
lies outside of the convex hull of the ~̂φσ , most species go extinct.
c Same as in a, but with ~̂s belonging to the convex hull of ~̂φσ .
d Biomass dynamics of the system corresponding to the case shown in
c. In this case all species coexist. The parameters and the initial con-
ditions were drawn from random distributions (see Supplementary
Information). All parameters other than ~̂s are identical in the four
panels).
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and Methods). A further discussion on the differences
between the CPR model and previous ones can be found in
the Supplementary Information.

We have then shown that the CPR model predicts that
high levels of biodiversity can be achieved only if two
conditions apply. The first condition is that the maintenance
cost must be proportional to the total proteome fraction
allocated by the species to metabolism and growth, i.e. qσ∝
Φσ. The second condition can be interpreted graphically as
described in the Results section, and summarized as fol-
lows: (i) if the timescales τσ over which the species shift
between different resources are large (i.e., τσ � 1) and if
the quality of the resources is low, coexistence will be
possible only if the resource supply rates have particular
values (i.e., the rescaled nutrient supply rate vector ~̂s
belongs to the convex hull of ~̂φσ); (ii) if again τσ � 1, but
the resources are of higher quality, coexistence is possible
(in some cases the magnitude of the resource supply rates
must be large enough), and if the resources’ quality is
higher, coexistence is favored; and (iii) coexistence is
favored for smaller values of the timescales τσ. From the

biological point of view, these points can be interpreted as
follows: (i) if the species switch slowly between different
resources and the quality of the resources is low,
coexistence will be possible only if the resources are sup-
plied with particular ratios (which depend on the proteome
allocation of all the species); (ii) if again the species
switch slowly between different resources, coexistence
will be favored if the resources have higher quality; (iii)
fast metabolic adaptation (i.e., the species can switch
quickly between different resources) favors coexistence.
Our approach, therefore, makes it possible to quantify
precisely in what ways the internal cellular dynamics make
coexistence possible in a broad range of environmental
contexts.

The dynamics of microbial communities has traditionally
been studied at the ecological level by using models of
population dynamics describing how the population abun-
dances of different species in the community change over
time as the result of competition for resources. While this
approach is undoubtedly useful and effective, it often can-
not describe the system at a level of detail necessary to

Fig. 6 Species coexistence as a function of the rescaled resource
supply rate x~s (with x > 1). As for Fig. 5, the ~φσ evolve according to
the CPR model with τσ � 1, γσi ≳ 1, NS= 10 and NR= 3. Here,~̂s was
drawn randomly outside the convex hull of the initial ~̂φσ (same~̂s for all
panels) and we varied x > 1. a Stationary values of the species’ bio-
masses for different values of x. When x≃ 1 the system is in an oli-
godominant phase in which only one or a few species survive, but as x
grows larger the system shifts to a diverse phase in which all species
coexist. Notice that the relative ratios of the stationary abundances m�

σ

are not constant as x grows. b–d Initial (orange) and stationary (purple)
convex hull of the rescaled proteome fractions φ̂σi for different values
of x. For small x, the resource supply (black star) is not large enough to
allow the φ̂σi to move so that the coexistence condition is satisfied.
Increasing x (d), this becomes possible and thus all species are able to
coexist. The parameters and the initial conditions were drawn from
pre-assigned random distributions (see Supplementary Information).
All parameters other than ~̂s and the initial conditions mσ(0) and ci(0)
are identical in the four panels.
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make predictions from measurable quantities. In fact, it is
becoming increasingly clear that the structure and dynamics
of microbial communities are affected by the metabolic
activity of the species that comprise them [15–18]. As
shown here, mathematical models of community dynamics
that take explicitly into account how different species
allocate their proteome to regulate nutrient uptake can
provide new insights into the link between the ecological
properties of microbial communities, i.e. population
dynamics and species coexistence, and their intracellular
ones, i.e. metabolism and gene expression [20].

Direct competition for resources is only one of the many
known interactions that can take place between microbial
species: exchange of metabolic byproducts [14], production
of toxins [13] and environmental conditioning [42] are only
a few of the ways in which we know microbes interact
within a community. Each of these processes provide both
growth benefits and proteomic costs to microbial species,
and can in principle be included in our framework by
appropriately taking into account how they affect proteome
allocation and species fitness. With our framework it would
therefore be possible to make quantitative predictions
involving such phenomena, and testing them against
experimental data.

Materials and methods

The consumer-proteome-resource equations

The derivation of the CPR models equations starts from
Eqs. (3a) and (3b). To write these equations explicitly, we
introduce the following assumptions: (i) the uptake rate Jσi
is proportional to the proteome fraction φσi ¼ φP

σi allocated
by species σ for the uptake and metabolization of resource i
and (ii) each resource contributes to the growth of species σ
through a term g ið Þ

σ proportional to the uptake rate Jσi, so that
the total growth rate gσ of species σ can be written as the
sum of all the terms g ið Þ

σ . Specifically, we rewrite Eq. (1a) as:

φP
σi ¼

ρσ
κni cið Þ g

ið Þ
σ ; ð9Þ

where ρ is considered to be species-dependent, κni cið Þ ¼
κni � ri cið Þ (with ri cið Þ ¼ ci= Ki þ cið Þ), and g ið Þ

σ is the
contribution to the growth rate of species σ due to the
uptake of resource i, i.e.:

gσ ¼
XNR

i¼1

g ið Þ
σ ; ð10Þ

Fig. 7 Coexistence in the CPR model is affected by the values of
the adaptation timescales τσ. a Initial (orange) and stationary (purple)
convex hull of the rescaled proteome fractions φ̂σi, for a system with
NS= 10 and NR= 3 when τσ ≲ 1. b Temporal biomass dynamics of the
system represented in a. c Increasing the values of τσ leads to
extinctions. Shown are the stationary values of species’ biomasses
calculated by multiplying the values τσ of panels a, b by a factor y > 1,

while keeping the other parameters unchanged. As y increases, the
system shifts from a diverse stationary state for y= 1 to states in which
only few species survive. The parameters and the initial conditions
were drawn from pre-assigned random distributions (see Supplemen-
tary Information for more information). All parameters other than y are
identical in the three panels.
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and we generalize Eqs. (1a) and (1b) to:

gσ ¼
XNR

i¼1

κni cið Þ
ρσ

φP
σi; ð11aÞ

φR
σ ¼ ρσ

κtσ
gσ þ φ0

σ: ð11bÞ

Equation (10) implies that the NR resources are sub-
stitutable (e.g., different carbon sources), otherwise, their
contribution to the growth rate may satisfy a different
equation (e.g., their contributions may be multiplicative
rather than additive). We can use Eq. (11a) to write Eq.
(11b) in terms of the fractions φσi. By doing so we get that
the normalization condition given by Eq. (2) reads:

XNR

i¼1

φσi 1þ κni cið Þ
κtσ

� �
¼ 1� φQ

σ � φ0
σ :¼ Φσ; ð12Þ

where we have written φσi instead of φP
σi for simplicity and

Φσ is the total proteome fraction that species σ allocates to
metabolism and biomass synthesis.

We generalize the results of Scott et al. to the case of
multiple resources by assuming that the uptake rate Jσi of
resource i per unit biomass is proportional to φσi, i.e.:

Jσi ¼ ξiri cið Þφσi; ð13Þ

where the proportionality constant ξi can be interpreted
biologically as the maximum catalytic rate of the enzyme
used to metabolize resource i (see Supplementary Informa-
tion). By comparing Eqs. (13) and (9) we can see that the
contribution to the growth rate of species σ due to the
uptake of resource i is proportional to its uptake rate, i.e.
g ið Þ
σ ¼ χσiJσi with

χσiξi ¼
κni
ρσ

: ð14Þ

With the considerations above, we obtain the final equations
of the CPR model:

_mσ ¼ mσ

XNR

i¼1

ησiri cið Þφσi � qσ

" #
; ð15aÞ

_ci ¼ si � ξiri cið Þ
XNS

σ¼1

mσφσi; ð15bÞ

XNR

i¼1

φσi 1þ γσiri cið Þ½ � ¼ Φσ; ð15cÞ

where we have written explicitly κni cið Þ ¼ κni ri cið Þ with
ri cið Þ ¼ ci= Ki þ cið Þ, and we have defined ησi :¼ κni =ρσ
and γσi :¼ κni =κ

t
σ to simplify the notation. Regardless of the

particular form of r(c) chosen, for our purposes we only need
to assume that r(c) is a monotonically increasing function of
c, and that limc!0r cð Þ=c ¼ 1=K and limc!1r cð Þ ¼ 1.

The constraint in Eq. (15c) is the explicit expression of
Eq. (2) in our framework, and can be interpreted geome-
trically: considering species σ, the NR-dimensional vector
~φσ ¼ φσ1; ¼ ;φσNR

� �
belongs to a hyperplane whose nor-

mal vector n̂σ has components 1þ γσiri cið Þ. This means that
as the system evolves, the components of n̂σ vary with time
and therefore the hyperplane to which ~φσ belongs moves in
the NR-dimensional space. This is also the reason why the
proteome fractions φσi must be dynamical variables: the
coefficients 1+ γσiri(ci) in Eq. (15c) are not fixed, but
change with time depending on the system’s dynamics
through ri(ci). This implies that for the constraint to be
satisfied at all times, the proteome fractions φσi cannot be
fixed but must be, in turn, dynamical variables: an increase
(decrease) of 1+ γσiri(ci) must be balanced by a decrease
(increase) of some of the φσi. This constraint reflects the
well known fact that microbes can vary their enzyme
synthesis with time and switch between nutrients according
to environmental conditions [40, 43–45].

Dynamics of the proteome fractions φσi

We call ~c ¼ c1; ¼ ; cNRð Þ the vector of resource con-
centrations and define

Fσ ~φσ;~cð Þ :¼
XNR

i¼1

φσi 1þ γσiri cið Þ½ � �Φσ ð16Þ

so that the constraint given by Eq. (15c) can be written more
simply as Fσ ~φσ;~cð Þ ¼ 0. Since this constraint must hold at
every instant, any equation for ~φσ must satisfy

_Fσ ~φσ;~cð Þ � _~φσ � ~∇φFσ þ _~c � ~∇cFσ ¼ 0; ð17Þ

where ~∇φ and ~∇c are, respectively, the gradients taken with
respect to the components of ~φσ and ~c. The “minimal”
equation for φσi, i.e. the simplest one (in the sense that it
does not introduce extra terms orthogonal to ~∇φFσ , which
would lead to a proliferation of new parameters) that
satisfies Eq. (17) is therefore:

_~φσ ¼ �
~∇φFσ

~∇φFσ

� �2~c � ~∇cFσ; ð18Þ

where, however, we are not taking into account the fact that
with such an equation some of the φσi might become negative
with time (see Supplementary Information for detailed
computations on how this can be taken into account).
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Microbes are able to switch between nutrients when
cultured in mediums containing more than one resource
[43]. For this reason, we can implement an adaptive
approach [40] and ask that ~φσ evolves in time so that the
growth rate gσ of species σ is maximized respecting the
constraint Fσ ~φσ;~cð Þ ¼ 0, i.e. Equation (15c) is satisfied. In
this case the evolution equation for ~φσ becomes:

_~φσ ¼
1
τσ

~∇φgσ �
~∇φFσ

~∇φFσ

� �2 1
τσ

~∇φgσ � ~∇φFσ þ _~c � ~∇cFσ

� 	
;

ð19Þ
where we have introduced τσ, the characteristic timescale
over which ~φσ changes [40] (detailed computations are
shown). We can recover Eq. (18) from Eq. (19) by sending
τσ to infinity. Geometrically, Eq. (18) represents the case in
which ~φσ is dragged along by the hyperplane to which it
belongs, as the hyperplane moves because of Eq. (15c). On
the other hand, according to Eq. (19) (with small enough
values of τσ) the ~φσ are free to move on the hyperplane to
find the maximum instantaneous growth rate compatible
with the constraint given by Eq. (15c).

In this work we have used a generalization of Eq. (19)
that ensures φσi tð Þ 	 08t, and varied the values of τσ when
needed (see Supplementary Information for details).

The introduction of this dynamics on the proteome
fractions φσi in consumer-resource models allows our
model to reproduce phenomena that classic consumer-
resource theory cannot describe, like diauxic shifts (see
Fig. S.2).

Conditions for coexistence

Evaluating Eqs. (15a)–(15c) at stationarity we obtain:

XNR

i¼1

ησir
�
i φ

�
σi ¼ qσ; ð20aÞ

si ¼ ξir
�
i

XNS

σ¼1

m�
σφ

�
σi; ð20bÞ

XNR

i¼1

φ�
σi 1þ γσir

�
i

� � ¼ Φσ ; ð20cÞ

where we are denoting with the symbol “*” the quantities
computed at stationarity, and we have assumed mσ ≠ 0. If we
now assume φ�

σi ≠ 0 for all i and all species, it is easily seen
by substitution that a possible solution for r�i in Eqs. (20a)
and (20c) is

r�i ¼ κni
Φσ

ρσqσ
� 1
κtσ

� 	� ��1

: ð21Þ

Under our assumption (i.e., φ�
σi ≠ 0 for all i, for all spe-

cies), and if NS > NR (i.e., the number of species is larger
than the number of resources) this solution is acceptable
only if its right-hand side is independent of σ, i.e. if

Φσ

ρσqσ
� 1
κtσ

¼ Θ; ð22Þ

with Θ some given constant independent of σ. Using Eqs.
(21) and (22) in Eqs. (20c) or (20a) we get

XNR

i¼1

φ�
σi ¼

Φσ

1þ 1
Θκtσ

: ð23Þ

From Eq. (21) we have:

r�i ¼
1

κniΘ
) c�i ¼

Ki

κniΘ� 1
; ð24Þ

and since we need r�i < 1 (or equivalently c�i > 0), we need
Θ>maxi1=κni . Therefore, Eq. (22) can be rewritten as

qσ ¼ Φσ

ρσ Θþ 1=κtσ
� � ; ð25Þ

which is the explicit expression of the relationship between
qσ and Φσ. Equation (23) is a consequence of the system’s
constraint in Eq. (20c), which is Eq. (15c) computed at
stationarity. Therefore, the expression of the maintenance
cost given in Eq. (25) is a consequence of the constraint
introduced in the CPR model.

Notice, again, that this holds under the assumption that
φ�
σi ≠ 0 for all i and σ, and NS > NR. If we remove these

assumptions, then it is possible to find solutions with NS ≤
NR where Eq. (22) does not hold. For example, if the spe-
cies’ stationary proteome fractions ~φ�

σ are non-overlapping
(i.e., ~φ�

σ �~φ�
ρ ¼ 0 when σ ≠ ρ), then r�i as given in Eq. (21)

can be a valid solution without requiring Eq. (22). Consider
as an example the particular case NS=NR= 3 and φ�

σi / δσi
(where δ is Kronecker’s delta), i.e. a system with three
species where each one uptakes only one resource, and no
two species uptake the same resource. It is easy to imagine
that the three species should be able to coexist, since their
niches (defined in this context as the set of resources used
for sustenance) do not overlap. This is indeed the case,
given that a solution for r�i in Eqs. (20a) and (20c) is given
by:

r�i ¼ κni
Φi

ρiqi
� 1
κti

� 	� ��1

; ð26Þ

where we have identified each species index σ with the only
resource i it consumes, and we don’t need to require
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Eq. (22) to hold for this solution to be feasible. This will be
of course true even for systems where the species and/or
resource labels are permutated (e.g., species 1 uptakes
resource 2, species 2 uptakes resource 3 and species 3
uptakes resource 1, instead of species 1 uptaking resource 1,
species 2 uptaking resource 2, and species 3 uptaking
resource 3). This will be true even when NR >NS, as long as
the vectors ~φ�

σ are still non-overlapping and the inverse of ri
is written as the product of κni and Φσ= ρσqσð Þ � 1=κtσ where
σ is the (only) species uptaking that resource. If one of the
resources, e.g. resource j, is not uptaken by any species one
has _cj ¼ sj, i.e. cj will grow linearly indefinitely. On the
other hand, if NS > NR then Eq. (22) is necessary in order to
have feasible solutions, even if we remove the assumption
that φ�

σi ¼ 0 for all species and resources.
Going back to Eqs. (20a)–(20c), if we now define:

ŝi ¼ siκni =ξiPNR
j¼1 sjκ

n
j =ξj

ð27aÞ

φ̂�
σi ¼

φ�
σiPNR

j¼1 φ
�
σj

; ð27bÞ

zσ ¼ m�
σρσqσP

λ m
�
λρλqλ

; ð27cÞ

(so that zσ are positive coefficients that sum to one), and
Eq. (20b) can be rewritten as

ŝi ¼
XNS

σ¼1

zσφ̂σi ð28Þ

(see Supplementary Information for the detailed computa-
tions). Since

P
i ŝi ¼

P
i φ̂

�
σi ¼ 1, the vectors ~̂s and ~̂φ�

σ

belong to an (NR− 1)–dimensional simplex. Furthermore,
since zσ are positive coefficients that sum to one, Eq. (28)
means that ~̂s belongs to the convex hull of the vectors ~̂φ�

σ .
Since Eq. (28) derives from requiring that all species have
non-null stationary biomasses, we can see how this is the
other condition necessary for coexistence.

At first glance, the result in Eq. (28) looks similar to what
has been observed in consumer-resource model with
metabolic trade-offs by Posfai et al. [31]. However, our
result has an important difference with respect to that
model: Eq. (28) depends in fact on the (rescaled) value of
φσi at stationarity. In the CPR model, therefore, the pro-
teome fractions φσi vary over time to satisfy Eq. (28), i.e. to
include ~̂s in the convex hull of the vectors ~̂φ�

σ , unlike in
Posfai et al. [31] where metabolic strategies (which in our
framework correspond to the φσi) are fixed and thus coex-
istence is only possible if ~̂s is within the convex hull of the
φσi from the very start.

If we now suppose that τσ � 1, so that we can use
Eq. (18) for the dynamics of φσi, observing that the i-th
component of the gradients ~∇φFσ and ~∇cFσ are

~∇φFσ

� �
i
� ∂Fσ

∂φσi
¼ 1þ γσiri cið Þ ð29aÞ

and

~∇cFσ

� �
i�

∂Fσ

∂ci
/ γσi; ð29bÞ

we find that if γσi ~ 0 then _~φσ � 0 and therefore
φ�
σi � φσi t ¼ 0ð Þ. In other words, if the γσi are small, the

proteome fractions φσi at stationarity will be close to their
initial values. Therefore in this case, with good approxima-
tion, Eq. (28) gives the condition for all species to coexist, i.e.
~̂s must be inside the convex hull of φ̂σi ¼ φσi 0ð Þ=Pj φσj 0ð Þ.
If γσi ≳ 1 as discussed in the Results section, on the other
hand, coexistence will be possible if the components of _~φσ are
not too small for a sufficiently long period of time so as to
allow them to reach values satisfying Eq. (28) and thus for the
species to coexist. This can be obtained by using large supply
rates si so that ri(ci) ~ 1 for a sufficiently long time, as
discussed in the Results. Finally, if the ratios γσi have larger
values the proteome fractions φσi will be able to move more
quickly.

Strains used in the experiment

The Escherichia coli strains used in our experiment have
the same genetic background MG1655. The strains used in
the experiments were constructed starting from the ancestor
strain 0Y (expressing constitutively the yellow fluorescent
protein mVenus from the genome, with genotype attTN7::
pRNA1_mVenus) or the ancestor strain 0R (expressing
constitutively the red fluorescent protein mKate2Hyb from
the genome, with genotype attTN7::pRpsL_mKate2Hyb).

Strain 1 was obtained by transforming strain 0Y with the
plasmid pR (see Table S.1), which contains the ampicillin
resistance cassette, the red fluorescent protein mCherry
under the control of the trc promoter, a hybrid of the trp and
lac promoters, and the lac repressor, lacI. The expression of
mCherry could thus be induced by adding IPTG, which
binds to the repressor encoded by lacI allowing the
expression of genes promoted by the trc promoter (here,
mCherry). Because IPTG cannot be metabolized by E. coli,
its concentration remains constant during our experiment
and is unaltered by bacterial growth.

Strain 2 was obtained by transforming strain 0R with the
plasmid pAMP (see Table S.1), which was obtained by
removing the inducible red fluorescent protein mCherry
from plasmid pR using traditional cloning.
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Strain 3 was obtained by transforming strain 0R with
plasmid pY (see Table S.1), which is identical to plasmid
pR, except for the fluorescent protein induced by the trc
promoter, which is Venus YFP instead of mCherry.

Strain 4 was obtained transforming strain 0Y with
plasmid pAMP.

Because all strains had the ampicillin resistance cassette
in the plasmids used to transform them, we performed the
experiments by adding ampicillin to the medium to prevent
contamination and plasmid loss.

Figures S.3–S.14 show the results of fitness assays per-
formed with all the strains used in our experiments and the
ancestor strains.

Experimental protocol

The competition assays were performed as follows:

1. The strains were cultured overnight from a stock culture
in M63 medium with 1% w/v glucose, and ampicillin.
Then, the strains were mixed to perform competition
assays aiming for 50:50 relative frequencies.

2. The mixtures were inoculated in a 96-well plate
containing M63 medium with 1% w/v glucose and
ampicillin at eight different IPTG concentrations: 0, 15,
30, 45, 60, 75, 90, 105 μM (six technical replicates per
concentration).

3. The well plate was covered with a porous rayon film
that allowed gas exchange and was cultured for 24 h at
30 °C on a microplate shaker set at 1050 rpm.

4. After 24 h, the plate was reinoculated in a new 96-well
plate with fresh medium (with the appropriate concen-
trations of IPTG in each well) with a dilution factor of
100. The new plate was cultured for another cycle at
30 °C for 24 h with constant shaking at 1050 rpm, while
the old one was diluted with a dilution factor of 2000 to
be analyzed at the flow cytometer.

IPTG calibration and computation of the normalized
protein production rate

We measured how the fluorescence intensity of individual
cells, a proxy for the total amount of fluorescent protein
produced, varied as a function of the IPTG concentration.
To do so, we inoculated strains 1 and 3 in a 96-well plate
containing M63 minimal medium with ampicillin, 1% w/v
glucose and the same IPTG concentrations used in our
experimental protocol (six technical replicates per con-
centration, per strain). The plate was incubated at 30 °C for
8 h with constant shaking at 1050 rpm. At times t= 4 h and
t= 8 h after inoculation we measured at the flow cytometer
the mean fluorescence intensity of cells due to the induced

fluorescent proteins at the various concentrations of IPTG
(Fig. 3d, e). From these data, we estimated the normalized
fluorescent protein production rate as follows.

We call k(CI) the rate at which the fluorescence of the
inducible protein increases when cells are exposed to a
concentration CI of IPTG, and we call dFP the fluorescent
protein degradation rate. The fluorescent intensity I of a cell
(due to the production of the IPTG-inducible fluorescent
protein) in between two successive cell divisions thus
satisfies dI=dt ¼ k CIð Þ � dFPI. At a cell division event, the
fluorescent intensity of a cell is reduced by a factor 2.
Indicating with I0 the cell’s fluorescent intensity at the first
measurement time (t= 4 h), it can be shown (see Supple-
mentary Information) that according to this model the cell’s
fluorescent intensity changes with time as:

I tð Þ ¼2I0e
�gt 1þdFP

gð Þ þ k CIð Þ
dFP

1� e�gt 1þdFP
gð Þh i

1� 1

21þ
dFP
g � 1

 !
;

ð30Þ

where g is the cell’s growth rate. Fluorescent proteins have
small degradation rates compared to the cellular growth
rate, so assuming dFP 
 g we can approximate Eq. (30) as:

I tð Þ ¼ 2I0e
�gt þ 2ln 2ð Þ k CIð Þ

g
1� e�gtð Þ: ð31Þ

We used Eq. (31) and the data in Fig. 3d, e to compute
the quantity k(CI). Because the absolute value of k(CI)
depends on the arbitrary units returned by the flow cyt-
ometer (the intensity I is measured as a cell’s pulse area at
the flow cytometer), we normalized the values of k(CI)
dividing them by the mean fluorescent intensity 〈I〉 of cells
measured in the absence of IPTG at the first measurement in
the calibration experiment (see Fig. 3d, e). Such a normal-
ization affects only the absolute value of such rates, and not
their relative magnitude. This also means that the normal-
ized production rates shown for the two experiments in
Fig. 3 cannot be compared directly.

The normalized k(CI)/〈I〉 are the protein production rates
of strains 1 and 3 (with dimensions 1/time) reported in
Fig. 3.

The growth curves and the growth rates of strains 1 and 3
for the different IPTG concentrations used in our experi-
ments are shown in Figs. S.15–S.18.

Estimation of the selection coefficient S

To first approximation, we can use the results of Scott et al.
[22] on the dependence of the exponential growth rate of E.
coli strains grown in isolation in rich medium (which in our
notation corresponds to r(c)= 1) to estimate the outcome of
our competition experiment, and in particular to estimate the
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dependence of the selection coefficient on the Φσ. From Eq.
(11b) the growth rate of species σ is given by:

gσ ¼ κtσ
ρσ

φR
σ � φ0

σ

� �
: ð32Þ

Using also Eq. (11a) with NR= 1 and the definition of Φσ

from Eq. (12), we can rewrite this as:

gσ ¼ κtσ
ρσ

Φσ � ρσ
κn

gσ
� �

; ð33Þ

which is easily rearranged into:

gσ ¼ κtσκ
n

ρσ κtσ þ κn
� �Φσ ð34Þ

(see also Eq. (S23) in [22, Online Supporting Material]).
Therefore, if we assume κt1 ¼ κt2 and ρ1= ρ2 (which can
happen, for example, if the two populations are different
strains of the same microbial species with similar genetic
backgrounds) and mσ tð Þ ¼ mσ 0ð Þexp gσtð Þ (which is a good
approximation for populations growing in batch cultures
with nutrient-rich medium), the selection coefficient is
given by:

S ¼ d

dt
ln

f

1� f
¼ _m1

m1
� _m2

m2
¼ κtκn

ρ κt þ κnð Þ Φ1 �Φ2ð Þ;

ð35Þ

where f=m1/(m1+m2) and 1− f=m2/(m1+m2) are the
relative abundances (or “frequencies”) of strain 1 and strain
2, respectively. The time series of the values of ln(f/1− f)
for the two experiments are shown in Figs. S.19 and S.20.

If we now apply the CPR model, i.e. Eqs. (15a)–(15c), to
the case of two populations and one resource, we obtain:

_mσ ¼ mσ ησr cð Þφσ � qσð Þ σ ¼ 1; 2; ð36aÞ

_c ¼ s� ξr cð Þ m1φ1 þ m2φ2ð Þ; ð36bÞ

φσ 1þ γσr cð Þð Þ ¼ Φσ σ ¼ 1; 2; ð36cÞ

where ησ ¼ κn=ρσ , γσ ¼ κn=κtσ , and now Eq. (36c) gives the
explicit expression of the (only) proteome fraction φσ as a
function of the resource concentration. Because the
ancestors of our two strains (i.e., strains 0Y and 0R) have
the same genetic background (see, for example, Figs. S.3
and S.4), we set η1= η2= η, q1= q2= q and γ1= γ2= γ in
Eqs. (36a)–(36c). Notice that, instead, Φ1 ≠Φ2 because the
proteome allocation of strain 1 could be varied experimen-
tally and because the plasmids introduced in the ancestor

strains have different maintenance costs. Furthermore, note
that assuming η1= η2 is equivalent to assuming ρ1= ρ2, and
on the other hand γ1= γ2 is equivalent to κt1 ¼ κt2. Given
that cells in the experiment are grown in nutrient-rich
conditions, we assume that the maintenance cost is
negligible, i.e. q≃ 0. Furthermore, because most of the
dynamics (i.e., the relative change in abundance of the two
strains) occurs in the early phases of growth when glucose
is abundant, we assume that r(c) ≈ 1 at all times so that we
can neglect Eq. (36b) and we are left with:

_mσ ¼ mσ
η

1þ γ
Φσσ ¼ 1; 2: ð37Þ

Notice again that this expression, and in particular the
fact that the growth rate of species σ is proportional to Φσ, is
a consequence of the constraint in Eq. (36c). We, therefore,
have that the expression of the selective advantage S in this
case is:

S ¼ d

dt
ln

f

1� f
¼ _m1

m1
� _m2

m2
¼ η

1þ γ
Φ1 �Φ2ð Þ: ð38Þ

From the definitions of η= κn/ρ and γ= κn/κt it is immediate
to see that the coefficient in Eq. (38) is the same as the one
in Eq. (35).

With our framework, however, we can show that this result
continues to be true even when we remove the assumption
that r(c)= 1 at all times. In our experiment, for example, it
was not true that glucose was always abundant throughout the
experiment, since the density of the cells saturated well before
the following re-inoculation in fresh medium was made (i.e.,
24 h). In fact, the typical growth rate of the strains, estimated
from growth curves measured in the same experimental
conditions used for the competition assays, is 0.3 1/h. The
competition assays started from a cellular density of ~8 · 106

cells/mL, thus if growth was exponential the density after 24 h
would have been be ~1.4 · 1010, which is much higher than
the typical density (~109 cells/mL) that E. coli cells reach at
saturation. With a growth rate of 0.3 1/h, the time needed
to reach a cellular density that is hundredfold the initial one
(and therefore the time needed to reach saturation after a re-
inoculation) is ~15.4 h.

A model better suited to describe the population
dynamics of the two strains in our experiment would be as
follows. The temporal dynamics of biomass and glucose
concentration between two consecutive dilutions satisfies:

_mσ ¼ mσησr cð Þφσ σ ¼ 1; 2 ð39aÞ

_c ¼ �r cð Þ m1η1φ1 þ m2η2φ2ð Þ; ð39bÞ

where c(t) is the concentration of glucose at time t and
r(c)= c/(c+ K) is Monod’s function. This model is some-
what similar to a classic consumer-resource model, with the
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difference that there is no mortality term in Eq. (39a):
between two consecutive dilutions, the biomass mσ of strain
σ will grow as long as there is glucose available, and
because r(0)= 0 the strains will stop growing (i.e. they will
enter the stationary phase) once glucose runs out.

We now make the following approximation: we assume
that, after every reinoculation, glucose is initially abundant
(i.e. r ~ 1) and that the transition of r(c) from 1 to 0 as c
decreases is abrupt, which happens if K is sufficiently small.
In other words, we assume that K is sufficiently small so that r
(c) ≈ 1 until a given time T (the instant at which glucose is
completely depleted), when r(c) abruptly goes to zero (i.e.,
r(c(t)) ~H(T− t) with H the Heaviside’s step function). This
means that after a reinoculation mσ will grow exponentially
for a time interval of length T, after which it will stop until the
next dilution. If we still set η1= η2= η and γ1= γ2= γ and
call D the dilution factor between reinoculations, we have that
the biomass m Nð Þ

σ of strain σ at the N-th dilution is (m 0ð Þ
σ being

the biomass at the initial inoculation):

m 1ð Þ
σ ¼ m 0ð Þ

σ exp
η

1þ γ
ΦσT

� 	
; ð40aÞ

m 2ð Þ
σ ¼ m 1ð Þ

σ

D
exp

η

1þ γ
ΦσT

� 	
¼ m 0ð Þ

σ

D
exp 2

η

1þ γ
ΦσT

� 	
;

ð40bÞ

m 3ð Þ
σ ¼m 2ð Þ

σ

D
exp

η

1þ γ
ΦσT

� 	
¼ m 0ð Þ

σ

D
exp 3

η

1þ γ
ΦσT

� 	
;

ð40cÞ

..

.

m Nð Þ
σ ¼ m 0ð Þ

σ

DN�1
exp N

η

1þ γ
ΦσT

� 	
: ð40dÞ

Therefore, if we call f(N) the relative abundance of strain 1 at
the N-th dilution, we have:

ln
f Nð Þ

1� fð Þ Nð Þ ¼ ln
m 0ð Þ

1

m 0ð Þ
2

þ NT
η

1þ γ
Φ1 �Φ2ð Þ; ð41Þ

which gives the same expression for the selection
coefficients after deriving with respect to the time NT.

Comments on the experimental selection
coefficient S

Figure 3a shows that strain 1 has a fitness advantage over
strain 2 in the absence of IPTG, since S > 0 at low protein
production rates, even though the only significant difference
between the two strains is that strain 1 carries an extra copy of
lacI and the inducible fluorescent protein mCherry (see

“Strains used in the experiment”); in our theoretical frame-
work, such an advantage implies that Φ 0ð Þ

1 �Φ2 > 0. This
may be explained by the observation that expressing lacI is
beneficial for E. coli strains growing on glucose because it
represses expression of the lac operon. Stoebel et al. [46] have
in fact found that cells with the genomic copy of lacI show
some residual lacA activity when grown in glucose, and
estimated the cost of expressing lacA as 1.85% per generation
[46], which may be alleviated in the presence of an extra copy
of lacI. See also Supplementary Information for a more
detailed discussion. Using our data, it is possible to estimate
the ratio Φ1/Φ2 at different protein production rates (Fig. 3c).
This ratio is approximately Φ 0ð Þ

1 =Φ2 � 1:02 for low protein
production rates and then decays linearly up to Φ1/Φ1 ≈ 0.98.

In the first set of experiments (magenta points in Fig. 3),
and to a lesser degree in the second set of experiments (cyan
points), the data points at the lowest production rate (i.e., at
0 μM IPTG) appear to deviate from the linear trend, and so
the fits in Fig. 3a–c were calculated by excluding those data
points (including them in the fit doesn’t affect the results, see
Fig. S.21). The flow cytometry data suggest that the average
fluorescent intensity of strain 1 from the induced RFP
decreased over the course of the experiment at 0 μM IPTG,
which may partly explain the deviation of the first magenta
point in Fig. 3a from the linear trend via a reduction in protein
production rate throughout the experiment at 0 μM IPTG.
Another factor that may cause deviations from a linear trend is
an increased gene-expression heterogeneity between cells in
the absence of IPTG, a well-known property of the lac operon
whose constituent parts we have used in our genetic con-
structs [47], which might confer heterogeneous growth rates
to different cells in the population. Note that the normalized
protein production rates of the two sets of experiments
(magenta and cyan data points) are not directly comparable.

Evaluation of the ratios Φ1/Φ2 and Φ3/Φ4

Consider the competition assay with strains 1 and 2 (the
results are the same also for the competition assay between
strains 3 and 4, after all subscripts are appropriately chan-
ged). For a given IPTG concentration CI, from Eq. (37) the
growth rate of strain 1 is g1 k CIð Þ½ � ¼ Φ1 k CIð Þ½ � �
ηr cð Þ= 1þ γr cð Þð Þ (where we have inserted explicitly the
dependence on r(c), and k(CI) is the protein production rate
induced by CI). On the other hand, the expression of the
selective advantage for general values of r(c) is:

S ¼ η � r cð Þ
1þ γ � r cð Þ Φ1 �Φ2ð Þ ð42Þ

(in fact, if we only remove the assumption that r(c) ≈ 1,
from Eq. (36a) we have _mσ=mσ ¼ ησr cð Þφσ with σ= 1, 2
and the definition of S leads to this equation). Dividing S in
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Eq. (42) by g1, for any value of r(c) we obtain:

S k CIð Þ½ �
g1 k CIð Þ½ � ¼

Φ1 k CIð Þ½ � �Φ2 k CIð Þ½ �
Φ1 k CIð Þ½ � ; ð43Þ

which is easily rearranged into:

Φ1

Φ2
k CIð Þ½ � ¼ 1

1� S k CIð Þ½ �=g1 k CIð Þ½ � ð44Þ

(which are the values plotted in Fig. 3c). Notice again that
this result does not depend on the assumption that r(c)= 1
at all times, i.e. Eq. (44) is valid for any value of r(c).

Proteome fraction allocated to the inducible RFP

Because we did not measure RNA/protein ratios in our
experiments, we can only estimate the values of κt and κn

by taking them from the literature for E. coli strains grown at
30 °C in conditions similar to our experiments. Rosset et al.
[48, 49] measured the RNA/protein ratio of several E. coli
strains grown at 30 °C in M63 medium. Using their data and
the relationship [22] r= r0+ g/κt, where r is the RNA/protein
ratio and r0 a constant, we can estimate the translational
capacity as κt= 3.0 ± 0.5 μg protein/μg RNA · 1/h (mean ±
SD). An estimate for the nutritional capacity κn, instead, can
be obtained via the equation [22] g ¼ gmaxκn= κn þ κtð Þ,
where gmax is the maximum growth rate obtainable by our
strain at a given temperature (for us, 30 °C), when nutrients
are abundant. Van Derlinden and Van Impe [50] report a
maximum growth rate gmax ≈ 1.2 1/h for E. coli MG1655
grown at 30 °C in rich medium with glucose (no error esti-
mate was reported). Solving for κn and using the growth rate
value g measured for strain 1 in the absence of IPTG, we find
κn= 1.2 ± 0.2 μg protein/μg RNA · 1/h. These values allow
us to estimate γ ¼ κn=κt ¼ 0:4 ± 0:1 and η ¼ κn=ρ ¼
1:57± 0:07 1/h using the value for ρ= 0.76 μg protein/μg
RNA · 1/h reported in Scott et al. [22]. With these estima-
tions, from the expression of the selective advantage in Eq.
(42) we have that a 1% difference in proteome allocation for
metabolism and growth between the two strains (i.e., Φ1−
Φ2= 1%) leads to S ≈ 1.1 · 10−2. Finally, with these calcu-
lations we can estimate the maximum percentage of pro-
teome maxφiRFP and maxφiYFP allocated at full expression to
the production of, respectively, the inducible red and yellow
proteins in our two experiments. In particular, for the first
experiment we have maxφiRFP ¼ Φ 0ð Þ

1 �Φ2 � 1þ γð Þ=η �
S105 ¼ 1þ γð Þ=η � S0 � S105ð Þ � 1:1% (where S0 and S105
are, respectively, the mean selection coefficients in the 0 μM
and 105 μM IPTG treatments). For the experiment involving
strains 3 and 4, using the same procedure we find maxφiYFP ≈
0.4%. Of course, given that we had to rely on measurements
taken from the literature, these should be regarded as only
rough estimates.

Data availability

The raw flow cytometry data studied in this work and the
software used to analyze it are all available at the following
GitHub repository: https://github.com/LeonardoPaccia
niMori/CPR-model-experiment-data-analysis.
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Villadangos M, Moreno-Paz M, Blanco Y, et al. Viable cyano-
bacteria in the deep continental subsurface. Proc Natl Acad Sci
USA. 2018;115::10702–7.

4. Gold T. The deep, hot biosphere. Proc Natl Acad Sci USA.
1992;89:6045–9.

5. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota
in health and disease. Physiol Rev. 2010;90:859–904.

6. Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and
climate change: terrestrial feedbacks and mitigation options. Nat
Rev Microbiol. 2010;8:779–90.

7. Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR,
Baylis M, et al. Scientists’ warning to humanity: microorganisms
and climate change. Nat Rev Microbiol. 2019;17:569–86.

8. Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:
4151–60.

1476 L. Pacciani-Mori et al.

https://github.com/LeonardoPaccianiMori/CPR-model-experiment-data-analysis
https://github.com/LeonardoPaccianiMori/CPR-model-experiment-data-analysis
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


9. Gonze D, Coyte KZ, Lahti L, Faust K. Microbial communities as
dynamical systems. Current Opin Microbiol. 2018;44:41–9.

10. Tikhonov M, Monasson R. Collective phase in resource compe-
tition in a highly diverse ecosystem. Phys Rev Lett. 2017;118:1–5.

11. Butler S, O’Dwyer JP. Stability criteria for complex microbial
communities. Nat Commun. 2018;9:2970.

12. Landmann S, Engel A. Systems of random linear equations and
the phase transition in MacArthur’s resource-competition model.
EPL 2018;124;18004.

13. Niehaus L, Boland I, Liu M, Chen K, Fu D, Henckel C, et al.
Microbial coexistence through chemical-mediated interactions.
Nat Commun. 2019;10:2052.

14. Marsland R III, Cui W, Goldford J, Sanchez A, Korolev K,
Mehta P. Available energy fluxes drive a transition in the diver-
sity, stability, and functional structure of microbial communities.
PLOS Comput Biol. 2019;15:1–18.

15. Rivett DW, Bell T. Abundance determines the functional role of
bacterial phylotypes in complex communities. Nat Microbiol.
2018;3:767–72.

16. Enke TN, Datta MS, Schwartzman J, Cermak N, Schmitz D,
Barrere J, et al. Modular assembly of polysaccharide-degrading
marine microbial communities. Curr Biol. 2019;29:1–8.

17. Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P,
Patil KR. Metabolic dependencies drive species co-occurrence in
diverse microbial communities. Proc Natl Acad Sci USA. 2015;
112:201522642.

18. Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Par-
frey LW, et al. High taxonomic variability despite stable func-
tional structure across microbial communities. Nat Ecol Evol.
2016;1:0015.

19. Basan M. Resource allocation and metabolism: the search for
governing principles. Curr Opin Microbiol. 2018;45:77–83.

20. Bajic D, Sanchez A. The ecology and evolution of microbial
metabolic strategies. Curr Opin Biotechnol. 2020;62:123–8.

21. Budinich M, Bourdon J, Larhlimi A, Eveillard D. A multi-
objective constraint-based approach for modeling genome-scale
microbial ecosystems. PLOS One. 2017;12:1–22.

22. Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T.
Interdependence of cell growth and gene expression. Science.
2010;330:1099–1102.

23. Schaechter M, Maaløe O, Kjeldgaard NO. Dependency on med-
ium and temperature of cell size and chemical composition during
balanced growth of salmonella typhimurium. Microbiology. 1958;
19:592–606.

24. Scott M, Hwa T. Bacterial growth laws and their applications.
Curr Opin Biotechnol. 2011;22:559–65.

25. Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR,
et al. Overflow metabolism in Escherichia coli results from effi-
cient proteome allocation. Nature. 2015;528:99–104.

26. Mori M, Hwa T, Martin OC, De Martino A, Marinari E. Con-
strained allocation flux balance analysis. PLOS Comput Biol.
2016;12:1–24.

27. MacArthur R. Species packing, and what competition minimizes.
Proc Natl Acad Sci USA. 1969;64:1369–71.

28. MacArthur R. Species packing and competitive equilibrium for
many species. Theor Popul Biol. 1970;1:1–11.

29. Chesson P. MacArthur’s consumer-resource model. Theor Popul
Biol. 1990;37:26–38.

30. Tikhonov M. Community-level cohesion without cooperation.
eLife. 2016;5:e15747.

31. Posfai A, Taillefumier T, Wingreen NS. Metabolic trade-offs
promote diversity in a model ecosystem. Phys Rev Lett. 2017;
118:28103.

32. Advani M, Bunin G, Mehta P. Statistical physics of community
ecology: a cavity solution to MacArthur’s consumer resource
model. J Stat Mech. 2018;2018:033406.

33. Droop MR. The nutrient status of algal cells in continuous culture.
J Marine Biol Assoc UK. 1974;54:825–55.

34. Khandelwal RA, Olivier BG, Röling WFM, Teusink B, Brugge-
man FJ. Community flux balance analysis for microbial consortia
at balanced growth. PLOS One. 2013;8:1–10.

35. Embree M, Liu JK, Al-Bassam MM, Zengler K. Networks of
energetic and metabolic interactions define dynamics in microbial
communities. Proc Natl Acad Sci USA. 2015;112:15450–5.

36. Liao C, Wang T, Maslov S, Xavier JB. Modeling microbial cross-
feeding at intermediate scale portrays community dynamics and
species coexistence. PLOS Comput Biol. 2020;16:1–23.

37. Muscarella ME, O’Dwyer JP. Species dynamics and interactions
via metabolically informed consumer-resource models. Theor
Ecol 2020;13:503–18.

38. Hermsen R, Okano H, You C, Werner N, Hwa T. A growth-rate
composition formula for the growth of E. coli on co-utilized
carbon substrates. Mol Syst Biol. 2015;11:801.

39. Erickson DW, Schink SJ, Patsalo V, Williamson JR, Gerland U,
Hwa T. A global resource allocation strategy governs growth
transition kinetics of Escherichia coli. Nature. 2017;551:119–23.

40. Pacciani-Mori L, Giometto A, Suweis S, Maritan A. Dynamic
metabolic adaptation can promote species coexistence in compe-
titive communities. PLOS Comput Biol. 2020;16:1–18.

41. Taillefumier T, Posfai A, Meir Y, Wingreen NS. Microbial con-
sortia at steady supply. eLife. 2017;6:e22644.

42. Ratzke C, Gore J. Modifying and reacting to the environmental
pH can drive bacterial interactions. PLoS Biol. 2018;16:
e2004248.

43. Monod J. The growth of bacterial cultures. Ann Rev Microbiol.
1949;3:371–94.

44. Stülke J, Hillen W. Carbon catabolite repression in bacteria. Curr
Opin Microbiol. 1999;2:195–201.

45. Görke B, Stülke J. Carbon catabolite repression in bacteria: many
ways to make the most out of nutrients. Nat Rev Microbiol.
2008;6:613–24.

46. Stoebel DM, Dean AM, Dykhuizen DE. The cost of expression of
escherichia coli lac operon proteins is in the process, not in the
products. Genetics. 2008;178:1653–60.

47. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene
expression in a single cell. Science. 2002;297:1183–6.

48. Rosset R, Monier R, Julien J. RNA composition of escherichia
coli as a function of growth rate. Biochem Biophys Res Commun.
1964;15:329–33.

49. Rosset R, Julien J, Monier R. Ribonucleic acid composition
of bacteria as a function of growth rate. J Mol Biol. 1966;18:
308–20.

50. Van Derlinden E, Van, Impe JF. Modeling growth rates as a
function of temperature: Model performance evaluation with focus
on the suboptimal temperature range. Int J Food Microbiol. 2012;
158:73–8.

Constrained proteome allocation affects coexistence in models of competitive microbial communities 1477


	Constrained proteome allocation affects coexistence in models of�competitive microbial communities
	Abstract
	Introduction
	Results
	Microbial proteome allocation
	Consumer-resource models
	The consumer-proteome-resource model
	Experimental example of the influence of proteome allocation on population dynamics
	Coexistence of multiple species in the consumer-proteome-resource model

	Discussion
	Materials and methods
	The consumer-proteome-resource equations
	Dynamics of the proteome fractions φσi
	Conditions for coexistence
	Strains used in the experiment
	Experimental protocol
	IPTG calibration and computation of the normalized protein production rate
	Estimation of the selection coefficient S
	Comments on the experimental selection coefficient�S
	Evaluation of the ratios Φ1/Φ2 and Φ3/Φ4
	Proteome fraction allocated to the inducible RFP
	Supplementary information
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




