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Remote sensing image (RSI) scene classification has become a hot research topic due to its applicability in different domains such
as object recognition, land use classification, image retrieval, and surveillance. During RSI classification process, a class label will
be allocated to every scene class based on the semantic details, which is significant in real-time applications such as mineral
exploration, forestry, vegetation, weather, and oceanography. Deep learning (DL) approaches, particularly the convolutional
neural network (CNN), have shown enhanced outcomes on the RSI classification process owing to the significant aspect of feature
learning as well as reasoning. In this aspect, this study develops fuzzy cognitive maps with a bird swarm optimization-based RSI
classification (FCMBS-RSIC) model. *e proposed FCMBS-RSIC technique inherits the advantages of fuzzy logic (FL) and
swarms intelligence (SI) concepts. In order to transform the RSI into a compatible format, preprocessing is carried out. Besides,
the features are produced by the use of the RetinaNet model. Besides, a FCM-based classifier is involved to allocate proper class
labels to the RSIs and the classification performance can be improved by the design of bird swarm algorithm (BSA). *e
performance validation of the FCMBS-RSIC technique takes place using benchmark open access datasets, and the experimental
results reported the enhanced outcomes of the FCMBS-RSIC technique over its state-of-the-art approaches.

1. Introduction

With the advancement of Earth observation techniques,
several kinds (for example, multi/hyperspectral and syn-
thetic aperture radar) of higher-resolution images of Earth’s
surface are easily accessible [1]. Hence, it is highly significant
to efficiently understand the semantic content, and more
intelligent classification and identification techniques of land
use and land cover (LULC) are certainly required. Remote
sensing image (RSI) scene classification, which intends to
automatically assign a certain semantic label to all the RSI

scene patches based on its content, has become a hot topic in
the fields of RSI interpretation due to its crucial application
in land resource management, LULC, disaster monitoring,
traffic control, and urban planning [2]. In recent times,
various approaches were introduced for RSI scene classifi-
cation [3].

*e earlier method for scene classification have been
largely dependent on lower-level or handcrafted features
that aims at developing different human-engineering feature
globally or locally, namely, texture, color, spatial, and shape
data. A typical feature includes the color histogram (CH),
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scale invariant feature transform (SIFT), Gabor filters, local
binary pattern (LBP), the histogram of oriented gradient
(HOG), and gray level co-occurrence matrix (GLCM) are
widely employed for scene classification [4]. It is noteworthy
that methods based on this lower-level feature performed
effectively on image with spatial arrangements or uniform
texture, but still, they are constrained to distinguish images
with more complex and challenging scenes, that is because
the contribution of human in feature design considerably
influence the efficiency of the representative capability of
scene image [5]. In comparison with the lower-level feature-
based method, the midlevel feature approach attempts to
calculate a holistic image representation generated by local
visual features including color histogram, SIFT, or LBP of
the local image patch [6].

*e common pipeline of constructing midlevel features
is to extract local attributes of image patches initially and
later for encoding them to attain the midlevel representation
of RSI. *e bag-of-visual-words (BoVW) method is one of
the common midlevel methods and is broadly adapted for
RSI scene classification due to its effectiveness and simplicity
[7].*emethod based on BoVW has enhanced performance
of the classification; however, because of the limitations of
representative ability of BOVW method, no other break-
through has been accomplished for RSI scene classification.
Recently, the deep learning (DL) method is commonly
utilized in several image processes [8]. From the deep-re-
stricted Boltzmann machines (DBM) and deep confidence
networks (DBN) to deep convolution neural networks
(CNN), significant improvement has been attained in dis-
tinct image fields. Particularly, CNN is acknowledged as one
of the common techniques because of the capacity to learn
hierarchical level abstraction of input data by encoded input
data on distinct layers [2, 9]. In contrast to the conventional
model, CNN approach has accomplished effective classifi-
cation accuracy.

*is study develops fuzzy cognitive maps with bird
swarm optimization based RSI classification (FCMBS-RSIC)
model. *e proposed FCMBS-RSIC technique inherits the
advantages of fuzzy logic (FL) and swarms intelligence (SI)
concepts. In order to transform the RSI into a compatible
format, pre-processing is carried out. Besides, the features
are produced by the use of the RetinaNet model. Besides, a
FCM-based classifier is involved to allocate proper class
labels to the RSIs and the classification performance is
enhanced by the design of bird swarm algorithm (BSA). *e
performance validation of the FCMBS-RSIC technique takes
place using benchmark open access datasets.

2. Related Works

Zhang and others [10] presented an efficient RSI scene
classification framework called CNN-CapsNet for using the
advantages of these 2 techniques: CapsNet and CNN. First, a
CNN without the FC layer is utilized as first feature map
extractor. Particularly, a pretrained D-CNNmethod that has
been completely trained on the ImageNet data set is carefully
chosen as a feature extractor. Next, the first feature map is
given to a recently developed CapsNet to attain the last

classification outcome. Shawky and others [11] presented an
effectual classification approach named CNN-MLP to use
the merits of these 2 approaches: CNN andMLP.*e feature
is created by utilizing the pretrained CNN without a FC
layer.

Li and others [12] introduced an RSSC-based error-
tolerant deep learning (RSSC-ETDL) method for miti-
gating the negative effects of incorrect labels of the RSI
scene datasets. In the presented approach, correcting error
labels and learning multiview CNNs are simultaneously
performed in an iterative method. It should be noticed that
to generate the alternate system perform efficiently, we
present an adoptive multifeature collaborative represen-
tation classification (AMF-CRC) which benefited from
adoptively integrating various features of CNN for cor-
recting the label of undefined sample. Xu and others [13]
presented a classification model including RNN and RF for
land classification with a satellite image that is open source
for different study objectives. *en, the study utilized
spatial data collected from the satellite image (that is time
series).

Min and others [14] developed an approach called deep
combinative feature learning (DCFL) for extracting lower-
level texture and higher-level semantic data from various
network layers. First, feature encoder VGGNet-16 is fine-
tuned for succeeding multiscale feature extraction. *en,
two shallow convolutions (Conv) layers are carefully chosen
for convolution feature summing maps (CFSM), where we
extract uniform LBP with rotation invariance for excavating
comprehensive texture. A deep semantic feature from the FC
layer concatenated with shallow feature constitutes deep
combination feature that is thrown into SVM classification
for last classification.

Huang and others [15] presented a task-adoptive
embedding network for facilitating few-shot scene clas-
sification of RSI, represented as TAE-Net. First, a feature
encoder was trained on the base set for learning embedded
features of input image in the pretraining stage. Next, in
the meta-training stage, a task-adoptive attention method
was developed for producing the task-specific attention
that could adoptively choose embedding features amongst
the entire task. Yin and others [16] examined the fusion-
based model for RSI scene classification from other
viewpoints. First, it is classified into front, middle, and
back side fusion modes. For every fusion mode, the cor-
related method is described and introduced. Next, clas-
sification performance of the single and hybrid side fusion
modes is estimated.

3. Proposed Model

In this study, a new FCMBS-RSIC approach was developed
for the detection and classification of RSIs. *e proposed
FCMBS-RSIC method encompasses distinct subprocesses
such as pre-processing, RetinaNet-based feature extraction,
FCM-based classification, and BSA-based parameter tuning.
*e design of BSA helps to properly tune the parameters
involved in the FCM model, and consequently, the classi-
fication efficiency can be improved.
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3.1. Preprocessing. Primarily, image pre-processing is car-
ried out to make it compatible with further processes. Since
the images are in the RGB format, they are transformed into
grayscale versions. Besides, the unwanted portions of the
images that are considered to be unwanted are removed.*e
images are filtered by the use of digital filters to get rid of the
noise and discrepancies.

3.2. Feature Extraction: RetinaNet Model. At the time of
feature extraction, the FCMBS-RSIC technique derives the
feature vectors using the RetinaNet model. *e CNNs are
developed in an order of layers. An input map is stimulated
with the individual’s layer still achieving the resultant map
[11]. Detailed individual layers are provided to demonstrate
of computation equation. Let X ∈ Rh×w×c h( ): height, w:

width, c: channel) are RGB images. All the layers get X and
the group of parameters W as input and output a novel
image y ∈ Rh′×w′×c′ , for instance, y � f(X, W).

Primary, a convolution layer is an essential layer of the
CNN.*e learnable filter signifies the parameter of this layer
sliding the filters on every input volume with existing width
as well as height. *is creates an activation map signifying
the reaction of that filter at all spatial regions. In order to
compute the convolutional of input X with bank of filters
W ∈ Rhxw×c×c′ and adding a bias ∈∈Rc′ , equation (1) was
utilized.

yi′j′k′ � f bk′ + 􏽘
h

i�1
􏽘

w

j�1
􏽘

c

d�1
Wij dk × Xi′+i, j′+j,d′

⎛⎝ ⎞⎠. (1)

Second, the max-pooling layer was utilized for de-
creasing the parameter and computation from the network
with decreasing the size of imputing shapes. It calculates the
maximal response of all image channels from 􏽥h × 􏽥w sub
window that performs as subsampling function. It is for-
mulated as follows:

yi′j′k′�max
1<i<􏽥h

, 1< j<􏽥wXi′+ij′+j, k.
(2)

Eventually, FC layers are a group of layers that combine
the data extracting by preceding layer (feature). *ese layers
get an input X, process it, and the final FC layer creates 1D
vector of size equivalent the amount of classes.

RetinaNet mostly comprises 3 subnetworks [17] as ResNet,
feature pyramid network (FPN), and 2 FCNs. *e essential
support of ResNet is the knowledge of residual learning that
permits the novel input data that is directly transferred to the
subsequent layer. *e ResNet utilizes various network layers.
*e generally utilized kinds of network layers are 50_layer,
101_layer, and 152_layer. *e 101_layer framework with op-
timum trained efficiency can be selected. It can remove the
structures of echocardiography utilizing ResNet and afterward
put those away to next sub-network. An FPN is a technique to
effectively remove the feature of all dimensions from picture
utilizing a convention CNN technique.

Primarily, a single dimension image can be utilized as the
input to ResNet. Next, based on the secondary layer of
convolution network, the feature of every layer is chosen by

FPN and then integrate for creating the last feature output
combinations.*e class subnet from the FCN carried out the
classification task. *is subnet is recognized that view the
echocardiography image appears to. *e box subnet from
the FCN carried out the border regression tasks. Its role is for
detecting the place of left ventricle from the echocardiog-
raphy image and recording the co-ordinate. Figure 1
demonstrates the framework of RetinaNet.

Focal loss: the focal loss is an enhanced form of cross
entropy (CE) loss, and the binary CE expression is as follows:

CE(p, y) �
− log (p), if y � 1,

− log (1 − p), otherwise,
􏼨 (3)

where y ∈ [ ± , 1] signifies the ground truth type and
p ∈ [0, 1] indicates the forecast probabilities of model to
type y � 1.

pt �
p, if y � 1,

1 − p, otherwise.
􏼨 (4)

*e previous equation is abbreviated as follows:

CE(p, y) � CE pt( 􏼁

� − log pt( 􏼁.
(5)

For solving the issue of data imbalance amongst the
positive as well as negative instances, the novel procedure
was altered as to the subsequent method:

CE pt( 􏼁 � −αt log pt( 􏼁. (6)

Amongst them,

αt �
α, if y � 1,

l − α, otherwise,
􏼨 (7)

where α ∈ [0, 1] refers the weight factors. For solving the
issue of complex instance, the concentrating parameter C

was established for obtaining the last procedure of focal loss:

FL pt( 􏼁 � −αt 1 − pt( 􏼁
c log pt( 􏼁. (8)

3.3. Image Classification: FCM Model. During classification
process, the feature vectors are passed into the FCM model
to allot class labels. FCM could be viewed as RNN using
interpretability features that were commonly utilized in
modeling tasks [18]. *ey comprise a collection of neural
processing entities named concept (neuron) and the causal
relation.*e activation values of this neuron commonly take
values within [0, 1], hence the strong the activation values,
the great its effect on the system. Obviously, connected
weight is also applicable in this system. *e power of casual
relations among two neurons Ci and Cj is quantified by
arithmetical weight wij ∈ [−1, 1] and represented as a causal
edge from Ci toC _j. Figure 2 illustrates the process flow of FL.
*ere are three potential kinds of causal relations among
neural processing units in the FCM-based network that
express the kind of impact from one neuron to another that
is given in the following list:
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(i) When wij > 0, a rise (decrement) in the cause Ci

produces an increment (decrement) of the impact
Cj with intensity |wij|.

(ii) When wij < 0, a rise (decrement) in the cause Ci

produces a decrement (increment) of the neuron Cj

with intensity |wij|.

(iii) When wij � 0, there are no causal relations among
Ci and Cj. *is rule is iterated till an ending cri-
terion is satisfied. A new activation vector is esti-
mated at every step t and afterward a fixed amount
of iterations. *e FCM is stated to have converged
when it reaches fixed-point attractors or else the
update procedure stops afterward a maximal
amount of iterations T is attained.

A
(t+1)
i � f 􏽘

M

j�1
wjiA

(t)
j

⎛⎝ ⎞⎠, i≠ j. (9)

*e function f(·) signifies a monotonically nonre-
ducing nonlinear function utilized for clamping the ac-
tivation values of all the neurons to the interval. An
instance of this function is the sigmoid variants, bivalent
function, and trivalent function. *en, attention is drawn
toward the sigmoid function because it has displayed
greater predictive abilities A nonlinear transfer function is
utilized in the study, whereas λ represents the sigmoid
slope and h indicates the offset. Various researches have
revealed that this parameter is tightly linked to network
convergence.

f Ai( 􏼁 �
1

1 + e
− λ Ai− h( )

. (10)

*is rule is chosen while upgrading the activation value
of neuron which is not impacted by neural processing entity.

A
(t+1)
i � f 􏽘

M

j�1
wjiA

(t)
j + A

(t)
i

⎛⎝ ⎞⎠, i≠ j. (11)

*e alternative adapted upgrading rule has been presented
for avoiding the conflict that emerges in the event of nonactive
neuron. More apparently, the rescaled inference permits
handling the scenario while there are no data regarding a first
neuron state and assist to prevent the saturation issue.

A
(t+1)
i � f 􏽘

M

j�1
wji 2A

(t)
j − 1􏼐 􏼑 + 2A

(t)
i − 1􏼐 􏼑⎛⎝ ⎞⎠, i≠ j. (12)

When the cognitive network is capable of converging,
the scheme would generate the similar output, and then the
activation degree of neuron remains unchanged. At the same
time, a cyclic FCM generates different responses with the
exception of some state that is regularly generated. *e final
potential scenarios are associated with chaotic configuration
where the network produces distinct state vectors.

3.4. Parameter Optimization: Bird Swarm Algorithm. In
order to optimally adjust the parameters involved in the
FCM technique, the BSA is applied to it. BSA, presented by
Meng and others [19], is a novel intelligent bionic technique
dependent upon multigroup and multisearch techniques; it
simulates the birds foraging performance, vigilance per-
formance, and flight performance, and utilizes this SI for
solving the optimized issue. *e bird’s swarm technique was
based on 5 rules:

Rule 1. All the birds are switching amongst vigilant as well
as foraging performance, and combined bird forage and
keep vigilance are simulated as arbitrary decisions.

Rule 2. if the foraging, all birds recorded and updated their
preceding optimum knowledge and swarm prior optimum
skill with food patch.*e skill is also be utilized for searching
for food. Instant sharing of social data was through the
group.

Rule 3. Once they keep vigilance, all birds attempts for
moving near the center of swarms. It is performance may be
controlled by disturbance due to swarm competition. *e
bird with further stocks was highly possible toward swarm
centers than bird with lease stock.

Rule 4. *e bird flies to another location frequently. If flying
to another place, birds frequently switch amongst produc-
tion as well as shrub. *e bird with maximum stocks are
producers, and bird with minimum is scrounger. Another
bird withmaximal andminimal reserves is arbitrarily chosen
to producer and scrounger.

(a) ResNet (b) Feature Pyramid Net (c) Class Subnet (top)

Class+Box
Subnets

Class
Subnet

Box
Subnet

×4

×4
W×H
×256

W×H
×256

W×H
×256

W×H
×256

W×H
×256

W×H
×256

Class+Box
Subnets

Class+Box
Subnets

(d) Box Subnet (bottom)

Figure 1: Structure of RetinaNet [17].
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Rule 5. Producer actively seeks food. *e scroungers arbi-
trarily follow producers searching for food.

Based on Rule 1, it can be determined that the time
interval of all birds flight performance FQ, the probabilities
of foraging performance P(P ∈ (0, 1 and uniform arbitrary
number δ ∈ (0, 1))).

When the amount of iteration was lesser than FQ and
δ ≤P, the bird was foraging performance. Rule 2 is for-
mulated mathematically as follows:

x
t+1
i,j � x

t
i,j + p

t
i,j − x

t
i,j􏼐 􏼑 × C × rand (0, 1) + g

t
j − x

t
i,j􏼐 􏼑

× S × rand (0, 1),
(13)

where C and S are 2 positive numbers; the previous is named
as the cognitive accelerated co-efficient, and the final is
named as the social accelerated co-efficient. At this point, pi,j

represents the ith bird optimum preceding place and gj

signifies the optimum previous swarm place [20].
When the amount of iteration is lesser than FQ and

δ >P, the bird is vigilance performance. *e Rule 3 is for-
mulated mathematically as follows:

x
t+1
i,j � x

t
i,j + A1 meant

j − x
t
i,j􏼐 􏼑 × rand(0, 1)

+ A2 p
t
k,j − x

t
i,j􏼐 􏼑 × rand (−1, 1),

A1 � a1 × exp −
pFiti

sumFit + ε
× N􏼒 􏼓,

A2 � a2 × exp
pFiti − pFitk

pFitk − pFiti
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ε
􏼠 􏼡 ×

N × pFitk
sumFit + ε

􏼠 􏼡,

(14)

where a1 and a2 denotes the 2 positive constants from zero and
two, pFiti indicates the optimum fitness value of ith bird and
sumFit refers to the sum of swarms’ optimum fitness value. At
this point, ε that are utilized for avoiding zero-division error is
the minimum constant from the computer. meanj stands for
the jth element of entire swarm’s average place.

When the amount of iteration is equivalent FQ, the bird
is flight performance that is separated as to performance of
producer and scrounger by fitness. Rule 3 and Rule 4 are
formulated mathematically as

Figure 3: Sample images UCM21 dataset.

Crisp
Input

Crisp
OutputFuzzifier

Fuzzy

Input Set

Fuzzy

Output Set

Rules

Intelligence Defuzzifier

Figure 2: Process of fuzzy logic.
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x
t+1
i,j � x

t
i,j + randn (0, 1) × x

t
i,j,

x
t+1
i,j � x

t
i,j + x

t
k,j − x

t
i,j􏼐 􏼑 × FL × rand (0, 1),

(15)

where FL (FL ∈ [0, 2]) demonstrates that the scrounger is
follow the producers for searching for food.

*e BSA approach derives a FF for reaching increased
classification efficiency. It resolves a positive integer for rep-
resenting the optimum efficiency of the candidate solution.
During this case, theminimized classifier error ratewas assumed
that FF is provided in equation (16).*e optimal result is a lower
error rate and worst solution gains an enhanced error rate.

Figure 5: Preprocessed images.

Figure 4: Sample images AID dataset.
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fitness xi( 􏼁 � ClassifierErrorRate xi( 􏼁

�
number of misclassified instances

total number of instances
∗ 100.

(16)

4. Experimental Validation

*e simulation of the FCMBS-RSIC technique is performed
using a Python 3.6.5 tool. *e experimental result analysis of

the FCMBS-RSIC technique is validated using two bench-
mark datasets, namely, UCM21 [21] and AID [22] datasets.
*e UCM dataset contains images under 21 classes with a set
of 100 images under every class. *e size of the images in the
dataset is 256 ∗ 256 pixels. Besides, the AID dataset includes
30 classes with 10K images under each class. Figure 3 and
Figure 4 illustrates the sample images of two datasets. *e
parameter setting of the proposed model is given as follows.
Batch size: 500, max. Epochs:15, learning rate: 0.05, dropout
rate: 0.2, and momentum: 0.9. *e proposed model is

(a) (b)

(c) (d)

Figure 6: Feature Maps. (a) Airport. (b) Bare land. (c) Beach. (d) Bridge.

Table 1: Comparative analysis of the FCMBS-RSIC technique with existing approaches under the UCM21 dataset.

Methods
Training/testing (80 : 20) Training/testing (50 : 50)

Precision Recall Accuracy Precision Recall Accuracy
D-CNN 97.50 99.44 98.92 90.58 93.44 91.78
SC-CNN 95.76 97.55 97.28 89.54 91.88 90.65
VGG-VD16-SAFF 94.90 97.22 96.86 88.71 91.96 90.37
Gated BD-GF 97.11 98.53 98.26 89.37 92.56 91.34
VGG16-MSCP 96.82 98.33 98.03 89.39 92.62 91.15
LWCNN model 97.76 99.55 99.42 90.35 93.83 92.10
FCMBS-RSIC 98.12 99.67 99.63 94.12 95.32 95.27

Computational Intelligence and Neuroscience 7



simulated using Processor - i5-8600k, Graphics Card -
GeForce 1050Ti 4GB, 16GB RAM, and OS Storage - 250GB
SSD.

Figure 5 illustrates the preprocessed version of the test
RSI by the FCMBS-RSIC technique. *e figures reported
that the image quality gets improved and it helps to increase
the classification outcomes of the FCMBS-RSIC technique.
Figure 6 illustrates the feature maps obtained by the FCMBS-
RSIC technique on four test images namely airport, bare
land, beach, and bridge.

A comprehensive classification result analysis of the
FCMBS-RSIC technique under varying sizes of training/
testing data of UCM21 dataset is offered in Table 1.

Figure 7 examines the comparison study of the FCMBS-
RSIC technique with recent methods [23] under training/
testing (80 : 20) data of UCM21 dataset. *e experimental
results revealed that the D-CNN, SC-CNN, and VGG-
VD16-SAFF techniques have gained ineffective outcomes
with the least values of precn, recal, and accuy. Also, the
gated BD-GF and VGG16-MSCP techniques have attained
slightly raised values of precn, recal, and accuy. In addition,
the LWCNN technique has gained somewhat reasonable
outcome with the precn, recal, and accuy of 97.76%, 99.55%,
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VGG16-MSCP
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FCMBS-RSIC

D-CNN
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VGG-VD16-SAFF

Gated BD-GF

Figure 7: Comparative analysis of the FCMBS-RSIC technique
under training/testing (80 : 20) data of the UCM21 dataset.
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Figure 8: Comparative analysis of the FCMBS-RSIC technique
under training/testing (50 : 50) data of the UCM21 dataset.
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and 99.42%, respectively. However, the FCMBS-RSIC
technique has shown better results with the precn, recal, and
accuy of 98.12%, 99.67%, and 99.63%, respectively.

Figure 8 illustrates the performance analysis of the
FCMBS-RSIC technique with existing techniques under
training/testing (50 : 50) data of the UCM21 dataset. *e
results indicated that the D-CNN, SC-CNN, and VGG-
VD16-SAFF techniques have attained lower values of
precn, recal, and accuy. Concurrently, the gated BD-GF
and VGG16-MSCP techniques have resulted in somewhat
improved values of precn, recal, and accuy. Simultaneously,
the LWCNN technique has demonstrated considerable
performance with the precn, recal, and accuy of 90.35%,
93.83%, and 92.10%. However, the FCMBS-RSIC tech-
nique has gained maximum performance with the precn,
recal, and accuy of 94.12%, 95.32%, and 95.27%,
respectively.

*e accuracy outcome analysis of the FCMBS-RSIC
technique on UCM21 dataset is portrayed in Figure 9. *e
results demonstrated that the FCMBS-RSIC approach has
accomplished higher validation accuracy compared to
training accuracy. It is also observable that the accuracy
values get saturated with the count of epoch.

*e loss outcome analysis of the FCMBS-RSIC technique
on UCM21 dataset is illustrated in Figure 10. *e figure
exposed that the FCMBS-RSIC system has denoted the
reduced validation loss over the training loss. It is addi-
tionally noticed that the loss values get saturated with the
count of epoch.

Table 2 provides the RSI classification result analysis of
the FCMBS-RSIC technique under different sizes of train-
ing/testing data of the AID dataset.

Figure 11 inspects the classifier result analysis of the
FCMBS-RSIC technique with recent methods under train-
ing/testing (80 : 20) data of AID dataset. *e results indi-
cated that the D-CNN, SC-CNN, and VGG-VD16-SAFF
techniques have accomplished worse outcomes with the
lower values of precn, recal, and accuy. Besides, the gated
BD-GF and VGG16-MSCP techniques have provided cer-
tainly increased values of precn, recal, and accuy. *e
LWCNN technique has exhibited competitive outcome with
the precn, recal, and accuy of 92.51%, 94.18%, and 93.85%.
However, the FCMBS-RSIC technique has shown better
results with the precn, recal, and accuy of 98.36%, 99.42%,
and 99.31%, respectively.

Figure 12 reports the comparative result analysis of the
FCMBS-RSIC technique with existing techniques under

training/testing (50 : 50) data of the AID dataset. *e table
values revealed that the D-CNN, SC-CNN, and VGG-VD16-
SAFF techniques have exhibited poor performance with the
minimum values of precn, recal, and accuy.

Eventually, the gated BD-GF and VGG16-MSCP tech-
niques have resulted in somewhat improved values of precn,
recal, and accuy. Meanwhile, the LWCNN technique has
demonstrated considerable performance with the precn,
recal, and accuy of 96.22%, 98.75%, and 97.64%. However,
the FCMBS-RSIC technique has presented effective out-
comes with the precn, recal, and accuy of 97.86%, 99.12%,
and 99.06%, respectively.

*e accuracy outcome analysis of the FCMBS-RSIC
method on AID dataset is showcased in Figure 13. *e
outcomes outperformed that the FCMBS-RSIC system has
accomplished maximum validation accuracy compared to
training accuracy. It is also observable that the accuracy
values get saturated with the count of epoch.

*e loss outcome analysis of the FCMBS-RSIC meth-
odology on AID dataset is demonstrated in Figure 14. *e
figure is obvious that the FCMBS-RSIC technique has re-
ferred to the lower validation loss over the training loss. It

Table 2: Comparative analysis of the FCMBS-RSIC technique with existing approaches under the AID dataset.

Methods
Training/testing (80 : 20) Training/testing (50 : 50)

Precision Recall Accuracy Precision Recall Accuracy
D-CNN 89.81 91.10 90.82 95.78 97.77 96.89
SC-CNN 89.15 91.48 91.10 92.12 94.41 93.30
VGG-VD16-SAFF 89.18 90.49 90.25 92.51 95.46 93.83
Gated BD-GF 90.43 92.78 92.20 94.18 96.85 95.48
VGG16-MSCP 90.36 92.00 91.52 93.11 95.24 94.42
LWCNN model 92.51 94.18 93.85 96.22 98.75 97.64
FCMBS-RSIC 98.36 99.42 99.31 97.86 99.12 99.06
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Figure 11: Comparative analysis of the FCMBS-RSIC technique
under training/testing (80 : 20) data of the AID dataset.
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can be additionally noticed that the loss values get saturated
with the count of epoch.

Lastly, a detailed computation time (CT) analysis of the
FCMBS-RSIC technique on the test UCM21 and AID datasets
is given in Table 3 and Figure 15. *e experimental values
indicated that the D-CNN model has shown ineffective results
with the maximum CT on the test datasets. In addition, the
gated BD-GF and VGG16-MSCP techniques have resulted in
slightly reduced CT over the D-CNN technique.

Along with that, the SC-CNN and VGG-VD16-SAFF
techniques have reached moderately closer CT. *ough the

Table 3: Computation time analysis of FCMBS-RSIC technique
under two datasets.

Computation time (sec)
Methods UCM21 dataset AID dataset
D-CNN 354 383
SC-CNN 136 198
VGG-VD16-SAFF 116 125
Gated BD-GF 262 332
VGG16-MSCP 181 272
LWCNN model 089 074
FCMBS-RSIC 064 058
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Figure 14: Loss analysis of FCMBS-RSIC technique on the AID
dataset.
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Figure 13: Accuracy analysis of the FCMBS-RSIC technique on
AID dataset.
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Training/Testing (50:50)

96

V
al

ue
s (

%
)

94

92

90

88
Precision Recall Accuracy

98

100

102

VGG16-MSCP

LWCNN Model

FCMBS-RSIC

D-CNN

SC-CNN

VGG-VD16-SAFF

Gated BD-GF

Figure 12: Comparative analysis of the FCMBS-RSIC technique
under training/testing (80 : 20) data of AID dataset.
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LWCNN technique has attained reasonable CT of 89s and
74s on the UCM21 and AID datasets, the proposed FCMBS-
RSIC technique has outperformed the other methods with
the lower CTof 64s and 58s, respectively. By looking into the
above mentioned tables and figures, it is ensured that the
FCMBS-RSIC technique has the ability of effectually classify
RSIs.

5. Conclusion

In this study, a new FCMBS-RSIC methodology was de-
veloped for the detection and classification of RSIs. *e
proposed FCMBS-RSIC method encompasses different
subprocesses such as preprocessing, RetinaNet-based feature
extraction, FCM-based classification, and BSA-based pa-
rameter tuning.*e design of BSA helps to properly tune the
parameters contained in the FCMmodel, and consequently,
the classification efficiency can be improved. *e perfor-
mance validation of the FCMBS-RSIC technique takes place
using benchmark open access datasets and the results are
examined under several aspects. *e comparative experi-
mental outcomes described the enhanced outcomes of the
FCMBS-RSIC method over its recent approaches. *erefore,
the FCMBS-RSIC technique can be treated as an effective
tool for RSI classification. In future, hybrid DL models can
be derived to improve the classifier results of the FCMBS-
RSIC technique.
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