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Abstract: It has been demonstrated that microalgae play an important role in the food, agriculture
and medicine industries. Additionally, the identification and counting of the microalgae are also
a critical step in evaluating water quality, and some lipid-rich microalgae species even have the
potential to be an alternative to fossil fuels. However, current technologies for the detection and
analysis of microalgae are costly, labor-intensive, time-consuming and throughput limited. In the past
few years, microfluidic chips integrating optical components have emerged as powerful tools that can
be used for the analysis of microalgae with high specificity, sensitivity and throughput. In this paper,
we review recent optofluidic lab-on-chip systems and techniques used for microalgal detection and
characterization. We introduce three optofluidic technologies that are based on fluorescence, Raman
spectroscopy and imaging-based flow cytometry, each of which can achieve the determination of cell
viability, lipid content, metabolic heterogeneity and counting. We analyze and summarize the merits
and drawbacks of these micro-systems and conclude the direction of the future development of the
optofluidic platforms applied in microalgal research.

Keywords: optofluidics; microalgae; fluorescence; Raman spectroscopy; imaging-based flow
cytometry; lipid; pigment

1. Introduction

There are about 200,000 to 800,000 microalgal species, spread widely in oceans, lakes,
and rivers around the world [1]. As microalgae have unique properties of fast growth, high
photosynthetic efficiency, short doubling time of multiplication and high yield per unit of
volume [2], they play an important role in both the ecosystem and economics. Microalgae
are rich in nutrients such as protein, Omega-3 polyunsaturated fatty acids, polysaccharides,
and various vitamins [3,4], and microalgae are also key sources of aquatic animal food. The
endogenous pigments within the microalgae have numerous commercial applications in
the biotechnology, food, and pharmaceutical industries [5,6], such as labels in immunology
experiments [7], natural food colorants [8,9], and nutraceuticals [10]. Moreover, it has
recently been demonstrated that some microalgae species containing rich lipid could be an
alternative to potentially replace fossil fuels as an emerging renewable biofuel, provided the
microalgae species with high content of specific pigments and lipid can be with effectively
screened out for selective cultivation [11,12]. On the other hand, eutrophication-induced
microalgal multiplication could cause serious impacts on the water quality and the entire
ecosystem due to the increasing industrial and agricultural production activities of hu-
mankind [13–15]. Considering the influences of microalgae in both economics and aquatic
ecosystems, it is essential to monitor and analyze microalgae species dynamics in terms
of the estimation of growth and activity, as well as the lipid and pigment quantification
of microalgae.

Generally, detection or evaluation methods for the acquisition of microalgae infor-
mation can be divided into two main categories: optical and non-optical. As non-optical
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methods, manual observation [2], chromatography (HPLC or GC) [16], targeting of specific
molecules [17], and dielectric spectroscopy [18–20] have been widely applied to microalgal
growth estimation, species identification, and lipid and pigment quantification. Conven-
tionally, people can simply observe the chromaticity and turbidity of the culturing medium
of microalgae to evaluate the growth rate of the different microalgae species. Destructive
techniques usually involve chemical solvent to extract the pigments and lipid inside the
cell for subsequent chromatographic analysis [16], which can be used to realize both identi-
fication and quantification of lipid and pigments. However, these methods rely greatly on
experience-based assessment, and cannot be applied to single-cell analysis. Additionally,
the procedure of chemical extraction could introduce damages to the cellular structure of
the microalgae. Recently, lectin-cell surface polysaccharide binding [21,22] and antibody or
oligonucleotide probes [23] have been employed with emerging biotechnologies for the
detection of microalgae species with high sensitivity and specificity, but these methods
require complicated operation procedures under strict experimental conditions, which
could be time-consuming, labor-intensive and not cost-effective. Dielectric spectroscopy
methods have recently emerged for the intracellular analysis of microalgae [24–26], and
these methods can be used to evaluate the lipid level of the microalgae according to the
permittivity and conductivity of microalgae cellular components [27,28]. Compared with
other non-optical detection methods, dielectric spectroscopy has the advantages of less
sample consumption, and rapid label-free and nondestructive measurement [29]. However,
there is still the challenge that multiple factors such as ions and proteins within the cell can
influence the effective dielectric properties of the cell, which may introduce crosstalk into
the interpretation of detection results.

Optics-based detection methods have been flavored as powerful instruments for mi-
croalgal analysis and quantification due to their high sensitivity and specificity. Optical
microscopy is one of the most popular methods used to identify microalgae according
to the morphology of different microalgae species at micro-scale [30]. Different from the
optical microscopy methods, the fluorescence-based methods and spectroscopy-based
methods are mainly used to acquire intracellular information. The fluorescence-based
methods can acquire multiple types of information according to the fluorescence inten-
sity emitted by pigments via autofluorescence or stained dye fluorescence [31,32]. For
example, the chlorophyll autofluorescence intensity can be used to assess microalgae
cell activity and growth rate, and the fluorescence intensity of the BODIPY- or Nile red-
stained lipid can reflect intracellular lipid amount. Spectroscopy-based techniques such as
VIS/NIR spectroscopy [33–35], Raman spectroscopy [36] and Fourier transform infrared
spectroscopy [37–39] have also been widely used for both identification and quantifi-
cation of the pigments and lipid from the extracted spectral data. On top of this, the
spectroscopy-based techniques can be applied for long-distance and real-time detection.
Additionally, due to the rich pigments existing in microalgae cells, which absorb light at
specific wavelengths, spectrophotometer-based methods can also be used for microalgae
pigments and species quantitative analysis [40,41]. Compared with the non-optical meth-
ods, optics-based methods can simultaneously provide the information of both intracellular
and morphological parameters.

However, the abovementioned optics-based methods still involve non-standardized
manual operation, which would lead to a low throughput of detection and analysis. To en-
hance the throughput, commercial flow-cytometer can be used for microalgal detection [42],
which usually makes use of the unique fluorescent and optical scattering properties of
individual algae cells to achieve identification and counting of species. However, the tradi-
tional cytometer equipment is costly and bulky, which makes it unsuitable for application
of on-site detection. Generally, traditional optical methods for microalgal detection are not
suitable for continuous measurement and not applicable for an integrated platform of the
multi-functional automated detection. Therefore, development of new methodologies and
novel devices, which can offer cost-effective, high-throughput and non-destructive analysis
of microalgae species has attracted increasing interests from research communities.
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The past decades have witnessed the flourishment of microfluidic technologies, which
have been developed for applications in fields of biotechnology, environment monitoring,
analytical chemistry and pharmaceutics [43–46]. Microfluidic devices are widely favored
due to their portable size for on-site analysis, their cost-effectiveness for disposable usage,
and their high level of integration for multiple functions [47]. Recently, some researchers
have been using microfluidic technologies for microalgae-relevant research, such as mi-
croalgal cultivation [48,49], strain selection [50] and harvesting [51], lipid extraction [52,53],
and in situ measurement [54]. The microfluidic systems for microalgal detection mainly
contain integrated optical and electrical architectures. The electrical integrated microfluidic
systems mainly make use of electrical parameters such as capacitive [24], impedance [55,56]
and dielectric properties [57,58] to characterize microalgae. Song et al. [55,56] developed
resistive pulse sensors to monitor cell number, estimate cell size, and distinguish live cells
from lysed cells in the PDMS microchannel, and the same group also identified activity
of cells by a capacitive sensing device [24] according to the shift of capacitive response
between live and dead cell. Fellahi et al. [59] quantified the lipid content of microalgae
using dielectric spectroscopy based on a slight decrease of dielectric permittivity due to
lipid content accumulation within the microalgae cell. The microfluidic detection platforms
based on electrical characterizations usually involve complex procedures of fabrication of
microelectrodes [60–62]. To ensure the accuracy of measurement, it is necessary to carefully
arrange the positions of the microelectrodes and treat the sample in advance to control the
medium composition.

In recent decades, optofluidic technologies, as a marriage between micro-optics and mi-
crofluidics, have emerged as powerful tools for biomedical and biochemical assays [63–68].
Recently, intensive research attention has been directed towards microalgal analysis using
optofluidic technologies due to the unique advantages of high level of system integration,
compactness and portability of the system, non-invasive manner of measurement, and
capacity for multi-parameter extraction. Integrated photobioreactor has been proposed
and demonstrated for on-chip d culture [69,70], with controllable light conditions for opti-
mized microalgal photosynthesis to promote microalgal growth and lipid accumulation.
Additionally, many researchers have reported integrated fluorescence sensing [71–73],
spectroscopy [74–76], and other imaging techniques [28,36,77] on microfluidic platforms,
which can be applied in microalgal detection to achieve acquisitions of both morphological
and intracellular information with high throughput and low cost. However, few literature
reviews have been reported on the recent progress of microalgae research using optofluidic
technologies. In this review, we categorize and summarize the recent optofluidic systems
and techniques for microalgal detection and characterization. Considering recent emerged
microfluidic systems integrated with optical detection methods used for microalgal analysis
with excellent performances, we specifically aim to summarize the effective optofluidic de-
tection systems for microalgal analysis. In detail, we first introduce the optofluidic detection
systems based on their categorization, such as fluorescence sensing, Raman spectroscopy
and imaging flow cytometer, followed by comparisons and discussions of their merits
and drawbacks, and then we conclude the possible directions of further development of
microfluidic systems for microalgal detection and characterization. Table 1 summarizes
the applications of the microfluidics for microalgal detection and quantification based on
fluorescence, Raman spectroscopy and imaging-based flow cytometry.



Micromachines 2021, 12, 1137 4 of 20

Table 1. Applications of the microfluidics for microalgal detection and quantification.

Applied Species To Be Detected/
Function Throughput Detection Method Light Source Sensing Principle Ref.

Six species (a) Cell viability and
counting NM (b) Autofluorescence A 488 nm laser Chlorophyll fluorescence [71]

Four species (c) Algae identification
and counting ~100 cells/min Autofluorescence A 488 nm and a

633 nm laser
Chlorophyll, phycoerythrin

and cells’ shape [73]

Dunaliella salina
and Tetraselmis Chui Cell viability NM Autofluorescence A 488 nm laser Chlorophyll fluorescence [72]

Three species (d) Algae identification ~100 cells/min Autofluorescence and
electrical impedance

A 532 nm and
a 633 nm laser

Fluorescence properties (e)

and electrical impedance
[78]

Three species (f) Growth dynamics and
cells screen NM Autofluorescence A 488 nm laser Chlorophyll Fluorescence [79]

Three species (g) Lipid content
and cell viablity NM Fluorescence dye

staining
No laser (Fluorescence

microscope)
BODIPY fluorescence dye and

SYTOX fluorescence probe [80]

Neochloris oleabundans Lipid content NM Fluorescence dye
staining

No laser (Epifluorescent
microscope) BODIPY fluorescence dye [81]

Chlamydomonas reinhardtii
and Botryococcus braunii

Growth and
lipid content ~300 cells/min Autofluorescence and

fluorescence dye staining A blue LED Chlorophyll fluorescence
and BODIPY fluorescence dye [82]

Phaeodactylum tricornutum
Photosynthetic
efficiency and

lipid accumulation
~6000 cells/min Autofluorescence and

fluorescence dye staining
A 785 nm laser

and a 470 nm LED
Chlorophyll fluorescence
and Nile Red fluorescence [83]

Saccharomyces cerevisiae Carotenoid content ~240 cells/min Raman spectrum A 532 nm laser Molecular bond [76]

Haematococcus pluvialis Astaxanthin content ~260 cells/min Raman spectrum A 532 nm laser Molecular bond [74]

Chlamydomonas reinhardtii
and Botryococcus braunii Lipid content NM Raman spectrum A 532 nm laser Molecular bond [84]

Synechocystis sp. Carotenoid content ~120 cells/min Raman spectrum A 532 nm laser Molecular bond [85]

Trachydiscus minutus Lipid unsaturation ~6 cells/min Raman spectrum A 785 nm laser Molecular bond [75]

Haematococcus lacustris
Astaxanthin content
and photosynthetic

dynamics
~2000 cells/s Raman spectrum A pair of

femtosecond laser Molecular bond [86]
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Table 1. Cont.

Applied Species To Be Detected/
Function Throughput Detection Method Light Source Sensing Principle Ref.

Pseudo-nitzschia Cell identification
and counting ~5000 cell/min Digital holographic

microscopy Three LEDs Morphology difference [87]

Euglena gracilis Metabolic
Heterogeneity (h) ~8400 cells/min Raman-activated

imaging microscopy

A wavelength
switchable laser

and a synchronized
pump pulse laser

Molecular bond [77]

Scenedesmus and
Chlamydomonas

Cells classification
and counting NM Optofluidic time-stretch

imaging microscopy
A broadband
pulsed laser Morphology difference [88]

Euglena gracilis Cell identification
and counting ~10,000 cells/s Optofluidic time-stretch

imaging microscopy
A broadband

pulse laser
Morphology difference and

fluorescence signal [89]

Euglena gracilis Screen cells and
number statistics ~10,000 cells/s Optofluidic time-stretch

imaging microscopy

Sapphire femtosecond
pulse laser and a 488 nm

pulse laser
Morphology difference [90]

(a) Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordi formis, Pyramidomonas delicatula and Dunaliella salina. (b) NM means not mentioned. (c) Karenia b., Synechococcus sp.,
Pseudo-Nitzchia and Alexandrium. (d) Isochrysis Galbana, Rhodosorus. m and Synechococcus sp. (e) Pigments fluorescence of chlorophylls, phycoerythrin and allophycocyanine. (f) Synechocystis PCC 6803,
Synechococcus PCC 7002 and Chlamydomonas reinhardtii. (g) Chlorella vulgaris, Chlamydomonas sp. and Botryococcus braunii. (h) Microalgae culturing in different nitrogen condition have different content of
chlorophyll, paramylon and lipids.
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2. Fluorescence-Based Sensing

As one of the most popular optical detection methods, fluorescence detection methods
have been widely used in the detection and characterization of biological and biochemical
samples in microfluidic chips [28]. Fluorescence of microalgae can be a result of either
endogenous pigments, such as chlorophyll, phycoerythrin and phycocyanin inside the
microalgae cell, or artificial staining dyes. The pigments in the cell can emit fluorescence
with different wavelengths upon the excitation of the light, and different microalgae species
have their unique fluorescence spectrums due to the different ratio of the pigments within
the microalgae cells [91]. In addition, the endogenous fluorescence intensity can also be
used to study cell viability [92]. Staining dyes, such as Nile red and BODIPY, can be used
to label the algae cell for detection and quantification with application for lipid content
estimation in microalgae species [93,94].

It has been reported that chlorophyll fluorescence intensity is proportional to chloro-
phyll concentration within cells, which can be used to evaluate photosynthesis capacity
and viability of the microalgae cell [95–97]. Wang et al. proposed a micro-device for inves-
tigation of individual microalgae cell activity based on the chlorophyll fluorescence [71], as
shown in Figure 1a. This microfluidic chip consists of three microchannels, the laminar
flows from two branch channels can force the microalgae cells in the main channel to align
into a single line. A 488 nm laser diode was used as the excitation light to illuminate
the sample cells. A photodiode was selected to measure chlorophyll fluorescence with
output voltage corresponding to the fluorescence intensity. It can be used to identify dead
cells and living cells by calibrating the fluorescence intensity. This device was able to
distinguish six different species, among which the smallest cell detected by this biosensor
was 3 µm. Hashemi et al. constructed a special microfluidic chip which can focus flows in
two dimensions [73]. There are two grooves on the top and bottom of the channel, creating
two symmetric sheath streams to wrap around a central core stream (Figure 1b). A 404 nm
and a 532 nm laser were used to excite chlorophyll and phycobilins fluorescence, and
three PMTs (photomultiplier tube) were used to record the fluorescence signals and light
scattering signal. The differences in fluorescence signals can be used to reveal the different
ratios of chlorophyll and phycobilins in microalgae species, and the differences in light
scattering signals can be used to evaluate the size and shape of the microalgae cells. Four
species of phytoplankton microalgae cells were identified and counted by this microflow
cytometer, among which the smallest microalgae of the four is Synechococcus sp. with a
size about 1 µm in diameter. Best et al. proposed a droplet-based microfluidic device for
studying the growth dynamics of the microalgae cells, which has the capability to sort the
cell encapsulated in the droplet according to the chlorophyll autofluorescence [79]. Microal-
gae cells cultured in sufficient and deficient nitrogen medium can possess different levels
of chlorophyll content. Generally, microalgae cells grown in the medium with sufficient
nitrogen have relatively higher levels of chlorophyll. Cells with high and low levels of
chlorophyll were prepared in a ratio of 1:1 and injected into the microfluidic chip, and the
microalgae cells were encapsulated into the droplets (one droplet contains one cell) by
setting proper flow rates. As the droplet passed through the laser spot, the fluorescence
signal from the microalgae cell was excited and received by the PMT and then recorded for
analysis. Droplets containing higher levels of chlorophyll cells can lead to a higher signal
peak above the pre-set threshold that can be treated as a ‘sorting event’. Upon triggering
the ‘sorting event’, a sorting voltage was implemented to deflect the droplet into a ‘positive
channel’, and those droplets containing lower levels of chlorophyll content were deflected
into the other ‘negative channel’.
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Figure 1. Optofluidic devices for microalgae detection based on fluorescence. (a) Schematic of the optofluidic system
for single-cell activity study based on chlorophyll autofluorescence [71]. (b) Schematic of the optofluidic cytometer. The
enlarged part is the chevron grooves on the PDMS substrate [73]. (c) Schematic of the optical setup and droplet-based
microfluidic chip for cell sorting [82]. (d) Schematic of the microfluidic device for the generation of alginate hydrogel
microcapsules containing microalgae cells [80].

In addition to the autofluorescence measurements, some biocompatible staining dyes
have also been used to evaluate the level of lipid content inside the cells. Holcomb
et al. developed a device to study the influence of the nitrogen-depleted condition on
microalgae cell lipid accumulation [81]. The device was able to realize both on-chip staining
and culturing, and the experimental results showed that the microalgae cells grown in
the nitrogen-limited conditions have a higher lipid content. Do-Hyun et al. proposed
a microfluidic chip generating gelation droplets for the analysis of the lipid content of
the microalgae cells with the aim of improving the throughput (Figure 1d) [80]. The
stained cells suspended in the Na-alginate solution were encapsulated into droplets. The
integrated micro-bridge structure was used to introduce calcium for continuous gelation
of the microcapsule containing microalgae cells with sufficient spacing. After that, the
trapped cells were collected into the microwells to acquire the fluorescent images by the
fluorescence microscope. Normalized fluorescent intensities suggested that the intracellular
lipid content is distinguishable in different microalgae species and the characterization
of the lipid content on single cell resolution in the same species was also achieved. This
method can significantly avoid evaporation of lipid and overlap of the fluorescence signal.

Autofluorescence combined with staining dye fluorescence has also been used as a
powerful technique to simultaneously acquire information related to the endogenous pig-



Micromachines 2021, 12, 1137 8 of 20

ments and lipid of microalgae cells, which can serve to estimate cell growth, photosynthetic
efficiency and lipid accumulation at the same time. Hyun et al. proposed a microfluidic
platform that can simultaneously achieve the analysis of the microalgal growth and lipid
content (Figure 1c) [82]. This platform consisted of three interconnected modules: an on-
chip staining region, an incubation region, and an analysis/sorting region. Microalgae cells
suspended in the droplet were injected into the on-chip staining region, and the microalgae
was stained with the BODIPY followed by incubation in a chamber for complete lipid
staining. After that, the droplets were then delivered into the analysis region, where a
blue LED was used to simultaneously excite both chlorophyll (red emission) and BODIPY
(green emission), and the emitted light was split by a bandpass filter and detected by
two PMTs. Chlorophyll fluorescence intensity was used to characterize cell number as a
growth indicator, and the BODIPY-stained fluorescence was used to quantify intracellular
lipid amount.

Detection methods based on the fluorescence principle have been widely used in mi-
croalgal study for cell viability characterization, lipid quantification, species identification
and photosynthesis estimation, with a high level of sensitivity and specificity. The chloro-
phyll fluorescence intensity is proportional to the chlorophyll content, which can be used
as an index to evaluate cell activity, growth and photosynthesis effectiveness [95–97]. It can
also be used to quantify the concentration of living cells in the sample solution, as well as
the resistance of microalgae to chemical reagents [98]. As the pigments in different species
have different proportions, this method can also be used to classify the microalgae while
simultaneously taking into consideration the cell shape and size [78]. The lipid-staining
dye can be helpful for estimating the lipid production of the cells, based on which the
sorting of high-lipid microalgae on single cell level can be achieved [80,81]. Combining
autofluorescence and staining dye fluorescence can simultaneously realize multi-functional
detection on a single chip [82,83]. However, the signal from the florescence staining dye
can easily be impacted by background fluorescence noise due to autofluorescence and
the absorption of the staining dye onto the PDMS. In addition, it is well known that the
staining dye will stain all the lipids within the cell, so it is impossible to reflect the types
and composition of the lipids.

3. Spectroscopic Method for Microalgae Study

As a conventional detection method, Raman spectroscopy can provide chemical
identification and quantification of microalgae for label-free and non-destructive measure-
ment [84,99]. Raman spectroscopy is based on the inelastic monochromatic light scattering
enabled by a laser in the visible, near infrared or ultraviolet ranges [100]. The Raman effect
was first described by the Indian scientist Raman in 1928 [101] and was initially used in
biological samples with the introduction of the Fourier-transform Raman instrument in
mid-1980s [102–104]. Raman spectra can provide specific-chemical analysis of the lipid
and pigments according to the molecular bonds of the chemicals. In a typical Raman
spectrum diagram, the abscissa indicates the Raman shift and the ordinate indicates the
Raman intensity, which can be used to analyze both components and their content [105].
Although the Spontaneous Raman scattering is very weak, improvements in the hardware
and techniques have been made to boost the signal of conventional Raman spectroscopy,
such as resonant Raman spectroscopy [106], surface-enhanced Raman spectroscopy [107],
confocal Raman spectroscopy [108], coherent anti-Stokes Raman spectroscopy [109] and
stimulated Raman spectroscopy [110]; these methods effectively enhance the Raman signal
and are widely used in microalgae detection [105].

Recently, there have been many investigations on microalgae using off-chip Raman
spectroscopy, and the Raman spectrum can reveal the presence and concentration of
intracellular chemicals such as beta-carotene chlorophyll, astaxanthin and lipid in different
microalgae species [111–113]. Brahma et al. proposed a resonance Raman method that
can achieve detection and identification of microalgae in water on the basis of differences
in chlorophyll and beta-carotene in Raman signals [114]. Collins et al. proposed using
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confocal Raman microscopy and multivariate analysis for the investigation of pigments
in Chlorophyceae cells, and this method can acquire the distribution map of beta-carotene,
chlorophyll and astaxanthin in three different cellular morphotypes [115]. Daniej et al.
studied the intracellular lipid accumulation of Monoraphidium neglectum under nitrogen-
limited conditions [109]. The results showed that Raman scattering microscopy could
also be a reliable tool for directly estimating and quantifying the neutral lipid content
for microalgae.

Despite the effectiveness and reliability in microalgae pigments and lipid quantifica-
tion and characterization using the off-chip spectroscopic method, it still involves manual
operation for the manipulation of cells, which is labor-intensive and time-consuming,
resulting in a significant decrease in the throughput of the entire test and analysis. There-
fore, many researchers have leveraged optofluidic technology to explore the integration of
Raman microscope in microfluidic platforms for improvements on the test throughput and
the system compactness.

Some researchers have developed droplet-based optofluidic platforms to improve
the throughput for cell analysis. Hyun et al. proposed a droplet-based microfluidic for
microalgae cell on-chip culture and analysis [84], which can overcome the high Raman
background noise from PDMS by inverting the microfluidic chip (Figure 2d), achieving
high throughput, time-course tracking and analysis of differential lipid accumulation in mi-
croalgae cells under different culture conditions. In this work, the Chlamydomonas reinhardtii
(C. reinhardtii) cells prepared in a medium with eight different nitrogen concentrations
were encapsulated in the droplet by a typical T-junction droplet generator and delivered
into eight culture chambers for on-chip culturing. The cultured microalgae cells were then
analyzed by confocal Raman microscopy. In addition, the lipid content of the C. reinhardtii
under eight nitrogen concentration conditions was also performed with Nile red staining
for estimation of their lipid contents using fluorescence measurement. The comparison
between the Raman analysis and the fluorescence detection shows that these two meth-
ods have a strong correlation, with R2 number up to 0.8614. Wang et al. presented a
Raman-activated cell sorting microfluidic system based on the level of astaxanthin content
within microalgae cells (Figure 2b), which has a high detection and sorting effectiveness of
about 260 cells/min, as well as a high accuracy of 98.3% [74]. Moreover, 92.73% of sorted
cells remained alive and were able to proliferate. In this work, the Haematococcus pluvialis
(H. pluvialis) cells in the microchannel were hydrodynamically focused into a single line
upon the squeezing of two buffer flows. As the cell passed through the detection region,
the content of the astaxanthin in the cell was measured from the Raman spectroscopy, and
then the detected cell was encapsulated into the droplet for next-step sorting. Positive
dielectrophoresis was used to manipulate the cell in the droplet with efficient trap-and-
release, thus forcing cells with different contents of astaxanthin into the pre-designed
collection channel or waste channel according to their Raman spectroscopic responses.
Besides the dielectrophoresis-based sorting methods, David McIlvenna et al. developed a
Raman activated cell sorting system that can realize the cell classification according the
carotenoid Raman signal through the control of the pressure in micro-channel [85]. In
this work, they integrated a novel microfluidic pressure divider in the chip, aiming to
eliminate local pressure fluctuations and provide a stable flow field in the detection region.
Carotenoid-containing microorganisms Synechocystis sp. were hydrodynamically focused
in the detection channel for continuous Raman signal acquisition. If the acquired Raman
spectra meet the sorting criteria, the system drives the pump to switch the output pressures
to direct the target cell flow to the collection channel. The proposed system can achieve a
speed of 0.5 Hz with 96.3% purity of the selected cells. To further improve the throughput,
Hiramatsu et al. proposed a flow cytometry integrated with rapid-scan Fourier-transform
coherent anti-Stokes Raman scattering spectrometer, which allows stable Raman spectral
acquisition with higher efficiency [116]. In this work, the cells were focused into a single
line by acoustofluidic force, and the information regarding astaxanthin and chlorophyll
was obtained simultaneously to evaluate astaxanthin productivity and photosynthetic
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dynamics under the condition of nitrogen deficiency with a high throughput of about
2000 events/s.
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chip design of the Raman-activated droplet sorting using dielectrophoresis for screening of microalgae single-cells [74].
(c) Schematic of the continuous microalgae cell sorting based on resonance Raman spectrum [85]. (d) Schematic of the
Raman spectroscopy integrated with droplet-based microfluidics [84].

Raman spectroscopy integrated with microfluidic chip can overcome the limitation
of the low throughput of traditional Raman spectroscopy; as a result, numerous devices
have been demonstrated to realize the detection and quantification of carotenoid [75,117],
astaxanthin [74,76], and lipid content [75,84] in individual cells. The microfluidic platforms
combined with Raman microscopy can offer accurate identification and quantification
of the composition of the microalgae cell via a label-free, non-destructive, real-time and
high-throughput manner. However, the spontaneous Raman signal is relatively weak
because of strong Rayleigh scattering. In addition, the autofluorescence from the pigments
in the algae cells can overlie the Raman spectrum and lead to misinterpretation during
data analysis, limiting the application of this method to some microalgae species with
strong autofluorescence intensity [116,118]. As a popular material for the fabrication
of microfluidic chips, PDMS can also generate Raman signals that may overwhelm the
relatively weak signal from the microalgae cell to be analyzed, so preliminary calibration
has to be implemented to eliminate the effect from the PDMS.

4. Imaging-Based Flow Cytometry for Algae Analysis

One of the most important challenges is that of realizing rapid and highly efficient iden-
tification of a signal microalgae cell group with multiple mixed species and a large sample
volume. In the past few decades, many efforts have been devoted to automatic microalgal
classification and analysis using flow cytometry, which can be used for species identifi-
cation, quantitative analysis and the extraction of individual-level parameters [119–121].
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Generally speaking, a typical flow cytometer can process thousands of cells per minute,
which can be much faster than manual observation via optical microscopy [122,123]. How-
ever, this kind of conventional cytometer is generally based on the light scattering prop-
erties or fluorescence of the microalgae cells, which cannot offer the characterization of
the spatial dimensions and distinguish the cells through differences in the cell-surface
morphologies [124–126]. To overcome this challenge, imaging-based flow cytometry has
been introduced for microalgae research, which can offer plenty of information at the
single-cell level to differentiate microalgae species on the basis of cell morphology.

To further downsizing the system, microfluidic platforms with optical imaging mod-
ules have been introduced for on-chip visualization of microalgae cells with high temporal–
spatial resolution [87,127,128]. Benazzi et al. reported a lab-on-chip flow cytometer used
for the analysis of the microalgae cells in 2007 [78]. The device was able to simultaneously
measure the fluorescence and electrical impedance signals as the algae cells passed through
the detection region, and was able to achieve classification and counting of microalgae
cells on the basis of the differences in the microalgae cells’ morphological and physio-
logical characteristics. Since then, several fluorescence-based flow cytometers have been
developed [129,130].

However, these microfluidic flow cytometry methods strongly rely on the types of
microalgae presented and cannot achieve automatic identification of specific species among
thousands of microalgae species, as along with the presence of intracellular lipid or pigment.
Thus, microfluidic flow cytometry equipped with multi-functional imaging capabilities
has emerged for the further investigation of microalgae in a high-throughput, label-free
and cost-effective manner. On top of this, image processing algorithms based on machine
learning and compressive sensing have been introduced to further improve the throughput
and accuracy. Zoltán et al. introduced an imaging-based cytometer using digital hologra-
phy that can realize real-time imaging of highly dense samples (Figure 3c) [87]. The device
can continuously detect the sample cells flowing through a 0.8-mm-thick microfluidic chip
with the captured holograms automatically segmented and reconstructed using a deep
convolutional network. They then used it for analysis of phytoplankton sampled from
the Los Angeles coastline. In the study, 24 different microalgae species were identified
in continuously flowing water samples at a high throughput of 100 mL/h. A kind of
harmful microalgae Pseuo-nitzdschia was identified in six different sampling locations, and
the concentration of the microalgae cells was also evaluated. Their results achieved a good
agreement with measurement conducted by the California Department of Public Health.

As discussed in Section 2, Raman spectroscopy can provide chemical identification
and quantification of the microalgae for label-free and non-destructive detection [84]. The
imaging based on Raman scattering can also provide structural information of cells, such
as the intracellular mapping of the lipid, protein and pigments [79]. Suzuki et al. proposed
high-speed chemical imaging flow cytometry based on multicolor stimulated Raman scat-
tering on a microfluidic platform, which can be used to study the metabolic heterogeneity
of microalgae cells (Figure 3a) [77]. The Raman spectroscopic microscopy mainly consisted
of a fast pulse pair-resolved wavelength-switchable Stokes laser, a synchronized pump
pulse laser and a galvanometric scanner. A three-dimensional acoustic microfluidic chip
is used to focus the cells into a single line passing through the detection region. The
acquired images containing information of the metabolite’s features were then analyzed
on the basis of deep learning methods. The system was able to identify the metabolites
of Euglena gracilis under nitrogen-sufficient and nitrogen-deficient conditions according
to the mapping of three intracellular contents (paramylon, lipids, and chlorophyll) with
a high throughput of 140 cells per second. In addition, the results showed an excellent
classification accuracy >99%.
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CCD or CMOS imaging sensors are necessary for digital holographic imaging cytom-
etry and Raman-activated imaging cytometry; furthermore, the built-in image sensors’
shutter speed and frame rate can be a bottleneck of the system throughput [89]. This
challenge has been mitigated by a novel method of optofluidic time-stretch microscopy
which can improve the throughput up to 100,000 cells per second. Additionally, the method
can also provide near-diffraction-limited spatial resolution and high sensitivity due to its
single-pixel detection scheme [131,132]. In 2016, Guo et al. constructed a fluorescence-
assisted optofluidic time-stretch microscope consisting of multiple modules including a
microfluidic hydrodynamic focusing module, an optical time-stretch microscopy module,
and a fluorescence detection module [90]. Optofluidic time-stretch microscopy was used to
collect images of the cells in the flow-focusing microchannel, and the fluorescence-assisted
analyzer aimed to verify the feasibility of the flow cytometer. The sample cells cultured
under nitrogen-deficient conditions were compared with the cells cultured under nitrogen-
sufficient conditions, and the results showed that cells stressed by the environment can
have a higher lipid content and a lower chlorophyll content. According to the analysis of
the acquired images, this multifunctional imaging system can be used to screen Euglena
gracilis cells under two different culture conditions, reaching a high throughput about
10,000 cells per second with a low false-positive rate of 1.0%. Later, Cheng et al. proposed
a label-free high-throughput imaging flow cytometry using optofluidic time-stretch mi-
croscopy (Figure 3b) [90], which was mainly composed of a broadband pulse laser, two
diffraction gratings and a section of dispersive fiber. The proposed system had a more com-
pact size and fewer optical components. This method basically compared the transparency
of the acquired images of the microalgae cultured under different nitrogen conditions using
a machine learning classifier trained to differentiate cell types and analyze the same type
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of microalgae cell that have different lipid content with a relatively high throughput about
1000 cells per second and accuracy 99%.

Leveraging algorithms such as deep learning and compressive sensing, microfluidic
imaging-based flow cytometry could serve the powerful function of automatically identify-
ing and counting microalgae, with a high throughput of up to thousands of cells per second
and with high accuracy. Especially enabled by novel multi-functional imaging techniques,
the microfluidic flow cytometer can offer information regarding both cell morphology
and the intracellular lipid and pigment. Compared with microfluidic devices based on
fluorescence detection and Raman spectroscopy, the imaging-based flow cytometer has
flexibility and feasibility for realizing machine automation without human intervention.
On the other hand, automatically identifying and classifying the microalgae cell requires
a database for machine training, and thus highly experience-based preparatory image
requisition of samples has to be implemented before on-site usage.

5. Conclusions

Considering that microalgae is widespread in rivers, lakes and oceans and is closely
related to human health, environmental protection and economics, it is essential to develop
devices that are rapid, cost-effective and portable in order to monitor the dynamics of the
microalgae. As optical detection techniques have the merits of high-precision, fast, and
non-contact measurement, many researchers have explored the integration of optical instru-
ments and various microfluidic platforms for microalgal detection. So far, the developed
optofluidic devices and systems can successfully achieve microalgal characterization and
quantification such as cell activity, pigment and lipid content, as well as their metabolic
heterogeneity evaluation. The optofluidic platforms based on fluorescence detection have
been most widely favored, and can realize cell activity detection, counting, microalgae
species identification, growth and photosynthetic efficiency estimation as well as lipid
quantification. The current challenge with this method lies in the fact that some microalgae
species are resistant to the staining dye. Furthermore, the environmental light could intro-
duce perturbation into the fluorescence measurement, making the method difficult for in
situ detection. The optofluidic systems based on Raman spectroscopy are mainly used to
detect and quantify the intracellular substances of microalgae cells. It has the capacity to
provide finger-print information of the compositions according to the special molecular
bond, which does not require any labeling procedure, and can be applied in any microalgae
species, including fluorescence-dye-resistant microalgae species. However, the relatively
weak spontaneous Raman signal needs more complicated optical instruments to ensure
robust acquisition of data to avoid the interference from the PDMS and sample solution.
In addition, the data acquisition process of Raman spectra could be a bottleneck of the
analysis throughput of the entire system. Optofluidic imaging-based flow cytometers can
achieve a higher throughput, and can provide precise analysis and statistics of microalgae
species on the basis of their morphological properties. In addition, this method can be
extended by hybridization with new optical imaging methodologies, such as photoacoustic
microscopy [133,134], holographic microscopy [135,136], time-stretch microscopy [88,90],
etc., to realize multi-functional parameter extraction.

Photoacoustic imaging is a technology based on laser-generated ultrasound. When
incident light illuminates the light-absorbing material, the material absorbs the light and
partly converts the energy into acoustic waves. Photoacoustic imaging exhibits excellent ad-
vantages, such as rich optical contrast, deep penetration depth, and specific ability of three
dimensional (3D) imaging, which guarantees the wide use of visualization and detection
of biological tissues in in vitro and in vivo clinical studies [137,138]. Song et al. developed
a microfluidic photoacoustic microscopy technique that realized both 2-dimensional (2D)
and 3-dimensional visualization of the droplets with high throughput [133]; the lateral
resolution of this technique can be enhanced to reach an optical diffraction limit (~5 µm).
Subsequently, the opto-acoustic-fluidic-based technology was used for the detection and
identification of red blood cells and circulating primitive cells [139]. However, to the
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best of our knowledge, only limited studies have applied photoacoustic in single plant
cells [140,141]; considering the rich content and types of pigments inside microalgae cells,
we believe that microfluidic-based photoacoustic microscopy must have a variety of ap-
plications in microalgae identification, cell viability estimation and qualitative analysis of
pigments or lipid.

Digital holography (DHM) is an interferometric imaging technique that can record
both amplitude and phase information of the wave front diffraction of the object [142,143].
There are two main types of configurations in digital holography: off-axis DHM and on-
axis DHM. Generally speaking, on-axis DHM is often used for 3D position tracking of an
object, and off-axis DHM is a powerful tool for 3D visualization of samples with a sub-
micron resolution along the axial direction. Luo et al. developed a real-time quantitative
phase microscopy that can provide 3D information and chemical parameters of the flowing
droplets with high optical resolution (axis: 77 nm, lateral: 0.9 µm) [67]. Current microfluidic-
based DHM platforms and traditional imaging methods in microalgae research focus on
2D morphology analysis but lack 3D imaging and intracellular chemical analysis. We hold
the opinion that off-axis DHM may be a powerful tool for microalgae 3D morphology
analysis and intracellular substance visualization. Additionally, on-axis DHM-reflected 3D
position information may also have significant meaning in environment-related research,
because some swimming microalgae usually change their position in accordance with the
surrounding environment, which can be used as a biosensor for water quality monitoring
and toxicity warning [144,145].

Time-stretch imaging is a revolutionary imaging method that can temporally stretch
broadband pulses by using the dispersive properties of light in both spatial and temporal
domains, and it can image cells at a high frame and shutter time, improving the throughput
to up to 100,000 cells per second [146–148]. Optofluidic time-stretch microscopy-based
imaging cytometry applied in microalgae species significantly improves detection through-
put with high accuracy [95–97]. If this kind of technology can realize the sorting function,
it will be beneficial for microalgae strain screening and cultivation, thus improving the
productivity of the lipid, pigments and polysaccharides, and promoting the commercial
application of the microalgae [149].

In a word, the development of microfluidic platforms for microalgae detection should
lead to a successful commercialization of microalgae, which can not only provide extracel-
lular and intracellular information, but also sort target cells accurately and immediately.
Optofluidic detection methods provide multiple methods that can simultaneously real-
ize the microalgae cell detection and manipulation. In this paper, we introduced three
optofluidic technologies based on fluorescence, Raman spectroscopy and imaging-based
flow cytometry applied in microalgae detection and characterization. Then, we analyzed
the advantages and disadvantages of these methods. Finally, the outlook of the optofluidic
detection platform was investigated and discussed.
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