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The respiratory disease caused by the Influenza A Virus is occurring worldwide. The transmission for new strain of the H1N1
Influenza A virus is studied by formulating a SEIQR (susceptible, exposed, infected, quarantine, and recovered) model to describe
its spread. In the present model, we have assumed that a fraction of the infected population will die from the disease. This changes
the mathematical equations governing the transmission. The effect of repetitive contact is also included in the model. Analysis
of the model by using standard dynamical modeling method is given. Conditions for the stability of equilibrium state are given.
Numerical solutions are presented for different values of parameters. It is found that increasing the amount of repetitive contacts
leads to a decrease in the peak numbers of exposed and infectious humans. A stability analysis shows that the solutions are robust.

1. Introduction

Influenza virus can be divided into three types: influenza A,
B, and C. The virus is spread when droplets from a cough
or sneeze of an infected person is propelled through the
air and deposited on the mouth, nose, or eye of persons
nearby.The virus can also land on surfaces in the surrounding
environment and survive on the surfaces for 24 hours if
the surface is hard and around 20 minutes if the surface is
soft. The subtype H1N1 (2009) influenza virus is one of the
influenza viruses that can cause respiratory illnesses. It is
related to the virus which caused the 1918 flu pandemic. It
is now called the swine flu virus because the virus causing
pigs in the United States to become sick shortly after the 1918
pandemic was identified as being the H1N1 virus [1].

Between 1997 and 2002, new strains of the H1N1 (three
different subtypes and five different genotypes) started to
emerge as the causes of influenza among pigs in North
America. By 2009, a new virus began to spread among people
in the American continent. It was identified as being related
to the virus infecting the pigs in Mexico and was labeled as

the H1N1 (2009) virus (WHO Bulletin, 24 April 2009). This
virus quickly spread to 160 countries and territories. By mid-
2009, there were 135,000 cases and 816 deaths. The H1N1
(2009) virus has spread from the American continent to the
rest of the world, that is, Europe, the Middle East, Asia, the
Pacific and Africa, making this disease a pandemic.

In Thailand, H1N1 (2009) was isolated from pigs with an
influenza-like symptom in 1990 [2]. In 2005, a new subtype
of the virus H1N1 was isolated from pigs in Saraburi province
[3].Thai people quickly became sick with this virus.Themost
common clinical symptoms of the 2009 H1N1 influenza A
pandemic were fever, cough, sore throat, malaise, headache,
vomiting, and diarrhea. Other common symptoms are chills,
myalgias, and arthralgias [4, 5].These are also common to the
symptoms of seasonal fever, so that proper diagnoses require
laboratory tests. The most active areas of pandemic influenza
virus transmission are now in parts of Southeast Asia, West
Africa, and in the tropical zone of the Americas. The Centers
for Disease Control and Prevention (CDC) recommends the
antiviral drugs Tamiflu (oseltamivir) or Relenza (zanamivir)
for treatment and prevention of infection with the swine flu
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virus. Antiviral drugs work best if started within 2 days of
symptoms [6].

New strains of the influenza A virus constantly appear.
For example, on March 29, 2013, the Chinese Center for
Disease Control and Prevention discovered three human
infections with an avian influenza A (H7N9) [7]. A total of
131 confirmed cases of human infection with avian influenza
A (H7N9) virus have been reported to the WHO by China
National Health and Family Planning Commission and one
case by the Taipei Centers for Disease Control (Taipei CDC).
Although cases have been reported in both sexes and across a
wide range of ages, most cases have occurred among middle-
aged and older men. Thirty-two people have died, and most
of the other cases are considered severe. In addition to the
case reported by Taipei CDC (with a history of recent travel
from Jiangsu), cases have been reported from Anhui, Fujian,
Henan, Hunan, Jiangsu, Jiangxi, Shandong, and Zhejiang
and the municipalities of Beijing and Shanghai. Seasonal
influenza A virus continues to spread among persons in area
where H7N9 cases have been detected. The Chinese Centers
for Disease Control and Prevention had reported that rates
of influenza-like illness are consistent with expected seasonal
flu levels.

Biological factors such as the duration of infectious
period and social factors can influence the spread of this
disease. Repetitiveness of contacts is also known to be the
relevant factors effect to the transmission of droplet or contact
transmitted diseases. In 2009, Smieszek et al. showed that
random mixing models provide acceptable estimates of the
total outbreak size if the number of contacts per day is
high [8]. Klinkenberg et al. [9] presented the strategy for
emergency vaccination during an epidemic of classical swine
fever virus (CSFV) and formulated a mathematical model of
CSFV transmission between pig herds which quantifies the
effect of control strategies with and without vaccination and
estimate the model parameters from data of the 1997/1998
CSFV epidemic inThe Netherlands.

Nishiura [10] showed that predictions based on math-
ematical modeling have two components: projections and
forecasting. Projections involve the simulation of what would
happen if certain assumptions and hypotheses aremadewhile
a forecasting is a quantitative prediction of what will happen
in the future. Weather forecasting is an attempt to predict
what the weather at some times in the future will be.This can
be done if the future is several days. Long term forecasting
is impossible since the equations used for the forecasting are
input sensitive equations meaning that the solutions depend
on values of the initial values of the input which depend on
random events. Prior to the 2009 pandemic, mathematical
modeling offered projections on “what if ” scenarios. Keeping
this in mind, Chowell et al., [11] used mathematical modeling
to make projections on what would happen if nonmedical
interventions such as school closing were used to control
the spread of 2009 influenza A/H1N1 pandemic in Mexico.
Zhou andGuo [12]made projections on the spread ofA/H1N1
virus when a vaccination program was used to control the
pandemic. Jin et al., [13] carried an analysis of an A/H1N1
epidemic if it occurred on a network and what it would be if
different vaccination policies were applied at different points

on the network. Prosper et al., [14] looked at the control
strategies for the pandemic H1N1 influenza in a background
of seasonal influenza which affects a greater number of
people.

In this paper, we study the transmission of a new H1N1
influenza A virus in human with the effect of repetitive
contact taken into consideration. A statistical model was
developed to estimate the social contact network within a
high school using friendship network data and a survey of
contact behavior [15]. We consider the transmission of a
new strain of the H1N1 influenza A virus with the effect of
repetitive contact included by constructing the mathematical
model. We employ an SEIQR model (𝑆 denoted susceptible
human; 𝐸, exposed; 𝐼, infectious; 𝑄, quarantine, and 𝑅

denotes a recovered human) [16] to describe the transmission
of the new virus in the population. Any new strains of
influenza pose a danger to society since the populace does not
have any immunity to the virus and therefore there is a greater
chance that some of the infected people will die. We have
taken into account the possibility that some of the infected
populace will die in the model. We have simulated the effects
of varying the number of repetitive contacts, the percentage
of infected individuals being put in quarantine and allowing
for infected individuals to die from the disease.

2. Dynamical Equations

We consider the transmission of H1N1 influenza A virus’ in
human. We have included the effect of repetitive contact and
taken into account that people having a prior illness have a
higher mortality rate. We begin by defining

𝑆(𝑡) as being the number of susceptible persons at
time 𝑡;

𝐸(𝑡) as the number of exposed persons at time 𝑡;

𝐼(𝑡) as the number of infectious persons at time 𝑡;

𝑄(𝑡) as being the number of quarantine persons at
time 𝑡;

𝑅(𝑡) as being the number of recovered persons at time
𝑡.

Our model is based on the standard SEIQR (susceptible,
exposed, infected, quarantine, and recovered) model for con-
tact transmission. A susceptible human becomes an exposed
person if he comes in contact, direct or indirect (i.e., by
touching a surface on which the new strain of the H1N1 virus
may lie). If 𝐶 is the number of contacts a human makes with
someone who could pass on the virus, then 𝐶(𝐸(𝑡) + 𝐼(𝑡)) is
the number of contacts which could result in a person being
exposed to the virus. 𝑆(𝑡)/𝑁(𝑡) (𝑁(𝑡) being the total number
of humans at time 𝑡) is the probability that the person being
contacted is a susceptible human. If a certain percentage
of the contacts are repeated ones, then the increase in the
number of exposed human is given by

(1 − 𝑟
𝑐
) 𝐶𝑆 (𝑡)

(𝐸 (𝑡) + 𝐼 (𝑡))

𝑁 (𝑡)
, (1)
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Figure 1: Flow chart of the dynamics in the model.

where 𝑟
𝑐
is the percentage of contacts which are repetitious.

These contacts do not lead to a new exposed human. It should
also be noted that just because a person comes in contact with
an exposed person, hemaynot come in contactwith the virus.
We also do not know atwhat point a person exposed to a virus
becomes infectious, we must assume that an exposed person
could transmit the virus before he is placed in the infectious
class.

The change in the number of humans in any group is
equal to the number entering the group minus the number
leaving the group. Thus the change in the number of sus-
ceptibles is equal to the number of people entering into the
population (𝜆

ℎ
is the birth rate of humans)minus the number

of susceptibles being exposed to people (given by (1)) and the
number of susceptibles dying from natural causes.

Consider

𝑑

𝑑𝑡
𝑆 (𝑡) = 𝜆

ℎ
𝑁(𝑡) − (1 − 𝑟

𝑐
) 𝐶𝑆 (𝑡)

𝐸 (𝑡) + 𝐼 (𝑡)

𝑁 (𝑡)
− 𝑑
𝑛
𝑆 (𝑡) .

(2)

The number of humans exposed to the N1H1 virus is equal to
the number of susceptibles exposed (again given by (1)) to the
virus minus those who recover, who become infectious, and
who die (by a natural cause or an induced cause); that is,

𝑑

𝑑𝑡
𝐸 (𝑡) = (1 − 𝑟

𝑐
) 𝐶𝑆 (𝑡)

(𝐸 (𝑡) + 𝐼 (𝑡))

𝑁

− (𝜌 +
1

IP
+ 𝑑
𝑛
+ 𝛿𝑑
ℎ
)𝐸 (𝑡) .

(3)

In this equation, 𝛿𝑑
ℎ
is the additional death rate caused by the

new virus for which the human population has no immunity.
The change in the number of infectious humans is equal to
the percentage of the exposed humans, who develop into
infectious humans minus the number of infectious humans

who are placed in quarantine, who die from any cause and
who recover,

𝑑

𝑑𝑡
𝐼 (𝑡) =

1

IP
𝐸 (𝑡) − (𝛼 + 𝛾 + 𝑑

𝑛
+ 𝛿𝑑
ℎ
) 𝐼 (𝑡) . (4)

The change in the number of humans who are quarantine is
equal to the percentage of infectious humans, who are placed
into quarantine minus the number who die or recover,

𝑑

𝑑𝑡
𝑄 (𝑡) = 𝛾𝐼 (𝑡) − (𝑘 + 𝑑

𝑛
) 𝑄 (𝑡) . (5)

Finally, the change in the number of recovered humans is
equal to the number of exposed humans, infectious humans,
and quarantine humans recover minus the number of recov-
ered humans who die from natural causes,

𝑑

𝑑𝑡
𝑅 (𝑡) = 𝜌𝐸 (𝑡) + 𝛼𝐼 (𝑡) + 𝑘𝑄 (𝑡) − 𝑑

𝑛
𝑅 (𝑡) . (6)

The total number of humans is the sum of the five population
groups at time 𝑡; that is,

𝑁(𝑡) = 𝑆 (𝑡) + 𝐸 (𝑡) + 𝐼 (𝑡) + 𝑄 (𝑡) + 𝑅 (𝑡) . (7)

Then (7) becomes

𝑑

𝑑𝑡
𝑁 (𝑡) = 𝜆

ℎ
𝑁(𝑡) − 𝑑

𝑛
𝑁(𝑡) − 𝛿𝑑

ℎ
(𝐸 (𝑡) + 𝐼 (𝑡)) . (8)

With the assumption that 𝜆
ℎ
= 𝑑
𝑛
, then we have

𝑑

𝑑𝑡
𝑁 (𝑡) = −𝛿𝑑

ℎ
(𝐸 (𝑡) + 𝐼 (𝑡)) . (9)

If the summation of 𝐼
ℎ
and𝐸

ℎ
are not equal to zero, the human

population will decline.The flow chart of this model is shown
in Figure 1. A summary of the definitions of the parameters of
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Table 1: Definitions of our parameters in our dynamical equations.

Parameters Definition
𝜆
ℎ

Birth rate of human population
𝑟
𝑐

Percentage of contacts which are repetitive

𝐶
Contact rate of H1N1 between the human
population

𝑑
𝑛

Natural mortality rate of human population

𝛿𝑑
ℎ

Increase in the mortality rate of human population
caused by the disease per 1 time infection

𝜌
Rate at which exposed human changes to become a
recovered human

IP Incubation period of H1N1 in human population

𝐾
Rate at which quarantine human changes to become
a recovered human

𝛼
Rate at which infectious human changes to become
a recovered human

𝛾
Rate at which infectious human changes to become
a quarantine human

𝑁(𝑡) Total human population at time 𝑡

our dynamical equations are given in Table 1. We reduce our
dynamical equations by introducing the new variables:

𝑆 (𝑡) =
𝑆 (𝑡)

𝑁 (𝑡)
, 𝑒 (𝑡) =

𝐸 (𝑡)

𝑁 (𝑡)
, 𝑖 (𝑡) =

𝐼 (𝑡)

𝑁 (𝑡)
,

𝑞 (𝑡) =
𝑄 (𝑡)

𝑁 (𝑡)
, 𝑟 (𝑡) =

𝑅 (𝑡)

𝑁 (𝑡)
.

(10)

Taking the time derivative of a normalized population 𝑥(𝑡) =

𝑋(𝑡)/𝑁(𝑡), then

𝑑

𝑑𝑡
𝑥 (𝑡) =

𝑑

𝑑𝑡

𝑋 (𝑡)

𝑁 (𝑡)
=

1

𝑁 (𝑡)

𝑑

𝑑𝑡
𝑋 (𝑡) − 𝑥 (𝑡)

1

𝑁 (𝑡)

𝑑

𝑑𝑡
𝑁 (𝑡) .

(11)

Substituting (𝑑/𝑑𝑡)𝑁(𝑡) = −𝛿𝑑
ℎ
(𝐸(𝑡) + 𝐼(𝑡)) in (11), then we

obtain

𝑑

𝑑𝑡
𝑥 (𝑡) =

1

𝑁 (𝑡)

𝑑

𝑑𝑡
𝑋 (𝑡) − 𝑥 (𝑡)

1

𝑁 (𝑡)
(−𝛿𝑑
ℎ
(𝐸 (𝑡) + 𝐼 (𝑡)))

=
1

𝑁 (𝑡)

𝑑

𝑑𝑡
𝑋 (𝑡)

− 𝑥 (𝑡)
1

𝑁 (𝑡)
(−𝛿𝑑
ℎ
(𝑒 (𝑡)𝑁 (𝑡) + 𝑖 (𝑡)𝑁 (𝑡)))

=
1

𝑁 (𝑡)

𝑑

𝑑𝑡
𝑋 (𝑡) − 𝑥 (𝑡) (−𝛿𝑑

ℎ
(𝑒 (𝑡) + 𝑖 (𝑡))) ,

𝑑

𝑑𝑡
𝑥 (𝑡) =

1

𝑁 (𝑡)

𝑑

𝑑𝑡
𝑋 (𝑡) + 𝑥 (𝑡) (𝛿𝑑

ℎ
(𝑒 (𝑡) + 𝑖 (𝑡))) .

(12)

Therefore, we get

𝑑

𝑑𝑡
𝑥 (𝑡) =

1

𝑁 (𝑡)

𝑑

𝑑𝑡
𝑋 (𝑡) + 𝛿𝑑

ℎ
𝑥 (𝑡) (𝑒 (𝑡) + 𝑖 (𝑡)) . (13)

With the above equation, the dynamical equations of the
normalized populations are given by

𝑑

𝑑𝑡
𝑠 (𝑡) = 𝜆

ℎ
− (1 − 𝑟

𝑐
) 𝐶𝑠 (𝑡) (𝑒 (𝑡) + 𝑖 (𝑡))

− 𝑑
𝑛
𝑠 (𝑡) + 𝛿𝑑

ℎ
𝑠 (𝑡) (𝑒 (𝑡) + 𝑖 (𝑡)) ,

(14)

𝑑

𝑑𝑡
𝑒 (𝑡) = (1 − 𝑟

𝑐
) 𝐶𝑠 (𝑡) (𝑒 (𝑡) + 𝑖 (𝑡))

− (𝜌 +
1

IP
+ 𝑑
𝑛
+ 𝛿𝑑
ℎ
) 𝑒 (𝑡)

+ 𝛿𝑑
ℎ
𝑒 (𝑡) (𝑒 (𝑡) + 𝑖 (𝑡)) ,

(15)

𝑑

𝑑𝑡
𝑖 (𝑡) =

1

IP
𝑒 (𝑡) − (𝛼 + 𝛾 + 𝑑

𝑛
+ 𝛿𝑑
ℎ
) 𝑖 (𝑡)

+ 𝛿𝑑
ℎ
𝑖 (𝑡) (𝑒 (𝑡) + 𝑖 (𝑡)) ,

(16)

𝑑

𝑑𝑡
𝑞 (𝑡) = 𝛾𝑖 (𝑡) − (𝑘 + 𝑑

𝑛
) 𝑞 (𝑡) + 𝛿𝑑

ℎ
𝑞 (𝑡) (𝑒 (𝑡) + 𝑖 (𝑡)) ,

(17)

𝑑

𝑑𝑡
𝑟 (𝑡) = 𝜌𝑒 (𝑡) + 𝛼𝑖 (𝑡) + 𝑘𝑞 (𝑡)

− 𝑑
𝑛
𝑟 (𝑡) + 𝛿𝑑

ℎ
𝑟 (𝑡) (𝑒 (𝑡) + 𝑖 (𝑡)) .

(18)

3. Analytical Solutions

The steady state of our dynamical equations is given as
follows:

(i) the disease free steady state 𝐸
0
= (1, 0, 0, 0, 0),

(ii) the endemic steady state 𝐸
1

= (𝑠
∗

, 𝑒
∗

, 𝑖
∗

, 𝑞
∗

, 𝑟
∗

),
where

𝑠
∗

= (𝑑
𝑛
(𝛿𝑑
ℎ
𝑖
∗

+ (
1

IP
)))

× (𝑑
𝑛
(
1

IP
) − 𝑖
∗

(𝛿
2

𝑑
2

ℎ
+ 𝛼 (𝛿𝑑

ℎ
− 𝐶 (1 − 𝑟

𝑐
))

+ 𝛿𝑑
ℎ
(𝛾 + (

1

IP
) − 𝐶 (1 − 𝑟

𝑐
))

− (𝑑
𝑛
+ 𝛾 +(

1

IP
))𝐶 (1 − 𝑟

𝑐
)))

−1

,

𝑒
∗

=
𝑖
∗

(𝛼 + 𝑑
𝑛
+ 𝛾 + 𝛿𝑑

ℎ
(1 − 𝑖
∗

))

𝛿𝑑
ℎ
𝑖∗ + (1/IP)

,

𝑞
∗

=
𝛾𝑖
∗

(𝛿𝑑
ℎ
𝑖
∗

+ (1/IP))
𝛿𝑑
ℎ
𝑖∗ (𝛼 + 𝛿𝑑

ℎ
+ 𝛾 + 𝑘) + (𝑑

𝑛
+ 𝑘 − 𝛿𝑑

ℎ
𝑖
∗

ℎ
) (1/IP)

,
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𝑟
∗

=
𝑖
∗

(𝛿𝑑
ℎ
𝑖
∗

+ (1/IP))
𝑑
𝑛
(1/IP) − 𝛿𝑑

ℎ
𝑖∗ (𝛼 + 𝛿𝑑

ℎ
+ 𝛾 + (1/IP))

× (𝛼 −
𝛾𝑘 (𝛿𝑑

ℎ
𝑖
∗

+ (1/IP))
𝛿𝑑
𝑓
𝑖∗ (𝛼 + 𝛿𝑑

ℎ
+ 𝛾 − 𝑘) − (𝑑

𝑛
− 𝛿𝑑
ℎ
+ 𝑘) (1/IP)

+
(𝛼 + 𝑑

𝑛
+ 𝛾 + 𝛿𝑑

ℎ
(1 − 𝑖
∗

)) 𝜌

𝛿𝑑
ℎ
𝑖∗ + (1/IP)

) ,

(19)

where 𝑖∗ is the positive solution of the following equation:

(𝛿𝑑
ℎ
𝑖
∗

(𝛼 + 𝑑
𝑛
+ 𝛾 + 𝛿𝑑

ℎ
(1 − 𝑖
∗

))

× (𝛼 + 𝛿𝑑
ℎ
+ 𝑑
𝑛
+ 𝛾 + (

1

IP
))) × (𝛿𝑑

ℎ
𝑖
∗

+ (
1

IP
))

−1

− (𝛼 + 𝑑
𝑛
+ 𝛾 + 𝛿𝑑

ℎ
(1 − 𝑖
∗

)) (𝛿𝑑
ℎ
+ 𝑑
𝑛
+ (

1

IP
) + 𝜌)

+ (𝑑
𝑛
(𝛼 + 𝛿𝑑

ℎ
+ 𝑑
𝑛
+ 𝛾 + (

1

IP
))

× (𝛿𝑑
ℎ
𝑖
∗

+ (
1

IP
))𝐶 (1 − 𝑟

𝑐
))

× (𝑑
𝑛
(
1

IP
) − 𝑖
∗

(𝛿
2

𝑑
2

ℎ
+ 𝛼 (𝛿𝑑

ℎ
− 𝐶 (1 − 𝑟

𝑐
))

+ 𝛿𝑑
ℎ
(𝛾 + (

1

IP
) − 𝐶 (1 − 𝑟

𝑐
))

− (𝑑
𝑛
+ 𝛾 + (

1

IP
))𝐶 (1 − 𝑟

𝑐
)))

−1

.

(20)

The local stability of each steady state is determined by the
signs of all eigenvalues. The eigenvalues (𝜆) are solutions of
the characteristic equation:

𝐽𝐸 − 𝜆𝐼
 = 0, (21)

where 𝐽
𝐸
is the Jacobian matrix at the steady state and 𝐼 is the

identity matrix. If all eigenvalues produce the negative real
parts, then the steady state is local stability.

3.1. For the Disease Free Steady State 𝐸
0
. The characteristic

equation is given by

(𝜆 + 𝑑
𝑛
)
2

(𝜆 + 𝑑
𝑛
+ 𝑘) (𝜆

2

+ 𝑠
1
𝜆 + 𝑠
0
) = 0, (22)

where

𝑠
1
= 𝛼 + 2 (𝛿𝑑

ℎ
+ 𝑑
𝑛
) + 𝛾 + (

1

IP
) + 𝜌 − 𝐶 (1 − 𝑟

𝑐
) ,

𝑠
0
= 𝛿
2

𝑑
2

ℎ
+ 𝛾 (

1

IP
) + (𝑑

𝑛
+ 𝛾) 𝜌

+ (𝑑
𝑛
+ 𝛾 + (

1

IP
)) (𝑑
𝑛
− 𝐶 (1 − 𝑟

𝑐
))

+ 𝛼 (𝛿𝑑
ℎ
+ 𝑑
𝑛
+ (

1

IP
) + 𝜌 − 𝐶 (1 − 𝑟

𝑐
))

+ 𝛿𝑑
ℎ
(2𝑑
𝑛
+ 𝛾 + (

1

IP
) + 𝜌 − 𝐶 (1 − 𝑟

𝑐
)) .

(23)

The eigenvalues then become

𝜆
1,2

= −𝑑
𝑛
, 𝜆

3
= −𝑑
𝑛
− 𝑘,

𝜆
4,5

=
1

2
(−𝑠
1
± √𝑠
2

1
− 4𝑠
0
) .

(24)

From calculation, all eigenvalues have negative real parts for
𝑅
0
< 1, where

𝑅
0
= (𝐶(𝑑

𝑛
+ 𝛾 + 𝛼(

1

IP
)𝐶 (1 − 𝑟

𝑐
) + 𝛿𝑑

ℎ
(1 − 𝑟

𝑐
)))

× ((𝛼 + 𝛿𝑑
ℎ
+ 𝑑
𝑛
+ 𝛾) (𝛿𝑑

ℎ
+ 𝑑
𝑛
+ (

1

IP
) + 𝜌)

+(𝑑
𝑛
+ 𝛾 + (

1

IP
))𝐶𝑟

𝑐
)

−1

.

(25)

3.2. For the Endemic Steady State 𝐸
1
. The characteristic

equation is given by

(𝜆 + 𝑑
𝑛
− 𝛿𝑑
ℎ
(𝑒
∗

+ 𝑖
∗

) (𝜆 + 𝑑
𝑛
− 𝛿𝑑
ℎ
(𝑒
∗

+ 𝑖
∗

) + 𝑘)

× (−(𝛿𝑑
ℎ
𝑖
∗

+ (
1

IP
))

× (𝛿
2

𝑑
2

ℎ
𝑒
∗

(𝑒
∗

+ 𝑖
∗

)

− 𝛿𝑑
ℎ
𝑒
∗

(𝑑
𝑛

+𝜆 + (𝑒
∗

+ 𝑖
∗

) 𝐶 (1 − 𝑟
𝑐
))

− (𝑑
𝑛
+ 𝜆)𝐶 (1 − 𝑟

𝑐
) 𝑠
∗

) )

+ (−𝛼 − 𝛿𝑑
ℎ
− 𝑑
𝑛
+ 𝛿𝑑
ℎ
𝑒
∗

− 𝛾 − 𝜆 + 2𝛿𝑑
𝑓
𝑖
∗

)

× ( (𝑒
∗

+ 𝑖
∗

) 𝐶 (1 − 𝑟
𝑐
)

× ( − 𝛿𝑑
ℎ
+ 𝐶 (1 − 𝑟

𝑐
) 𝑠
∗

+ (𝜆 + 𝑑
𝑛
+ (𝑒
∗

+ 𝑖
∗

) (𝐶 (1 − 𝑟
𝑐
) − 𝛿𝑑

ℎ
))

× (𝜆 + 𝑑
𝑛
− 𝛿𝑑
ℎ
(2𝑒
∗

+ 𝑖
∗

− 1)

+ (
1

IP
) + 𝜌 − 𝐶 (1 − 𝑟

𝑐
) 𝑠
∗

)))) = 0,

(26)

where 𝑠∗, 𝑒∗, 𝑖∗, 𝑞∗, and 𝑟
∗ are defined in (19)-(20).

From evaluation, all eigenvalues have negative real parts
for 𝑅
0
> 1, where

𝑅
0
= (𝐶(𝑑

𝑛
+ 𝛾 + 𝛼(

1

IP
)𝐶 (1 − 𝑟

𝑐
) + 𝛿𝑑

ℎ
(1 − 𝑟

𝑐
)))

× ((𝛼 + 𝛿𝑑
ℎ
+ 𝑑
𝑛
+ 𝛾) (𝛿𝑑

ℎ
+ 𝑑
𝑛
+ (

1

IP
) + 𝜌)

+(𝑑
𝑛
+ 𝛾 + (

1

IP
))𝐶𝑟

𝑐
)

−1

.

(27)
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Figure 2: Time evolution of the susceptible human population.
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Figure 3: Time evolution of the exposed human population.

𝑅
0

= √𝑅
0
is defined as the basic reproductive number of

the disease because it represents the average number of
secondary cases that one primary case can produce [11].

4. Numerical Solutions and Discussion

In this paper, we are studying the effects of various effects of
changing various on the transmission of the H1N1 influenza
A virus. The factors we are interested in are the degree of
repetitious, the increased death of the humans when infected
by the virus, and the degree of quarantine of the infectious
humans. Wu et al., [17] has estimated that the increase in the
mortality rate due to the influenza virus during the pandemic
was 11.1 per 100,000 each year. Most of the deaths occurred
in people over 65 years old. Ejima et al., [18] has cautioned
against the use of data taken in the early stages of an outbreak
of a novel strain of influenza to estimate the case fatality
ratio of the disease. Nishiura et al. [19] showed that the early
prediction of the transmission potential of the pandemic
(2009 H1N1) virus was wrong because of the sample size.
One should not use a small sample to arrive at values for
the parameters of the model. This has not stopped Nishiura
et al. [20] from making predictions about the latest scare
concerning the novel A (H7N9) virus which just appeared
in China in 2013. Based on 20 confirmed cases, they came
up with basic production number of 0.28, meaning that this
disease would not become epidemic.
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Figure 4: Time evolution of the infectious human population.
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Figure 5: Time evolutions of the quarantine human population.

We are interested in the endemic steady state of our
dynamical equations.The initial values of parameters used in
this study are

𝑑
𝑛
=

1

(365 ∗ 65)
, 𝑟

𝑐
= 10%, 𝐶 = 20,

𝛿 = 3, 𝑑
ℎ
=

1

21
, IP = 5, 𝜌 =

1

10
,

𝛼 =
1

14
, 𝛾 =

1

7
, 𝑘 =

1

7
, 𝑅

0
= 3.53.

(28)

These may not be the true values, but since we are interested
in the changes in the projections of the behaviors of the
different time evolutions of the different populations when
the values of the parameters are changes, they will do. The
time evolution of the susceptible human population is shown
in Figure 2.We see that this decreases as time passes, reaching
an equilibrium value of 0.016, which is what is predicted by
(14). Figures 3, 4, 5, and 6 show the time evolutions of the
exposed, infectious, quarantine, and recovered populations.
We can see that the solutions oscillate to the endemic
steady state. As we see, the equilibrium values of the four
populations are 0.0000935, 0.000054, 0.000053, and 0.964;
the values predicted by (15), (16), (17), and (18).

With a mathematical model to describe the progression
of a disease, we can simulate the time course of an epidemic
when the values of various parameters are different. This
would allow us to gain insights into how the epidemic might
respond to change in the practices which could change the
values of the parameters. Recently, Aldila et al., [21] in the
context of another disease (dengue fever), usedmathematical
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Figure 6: Time evolutions of the recovered human population.
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Figure 7: Time evolutions of the infectious human population for
the different percentages of contact repetitions.

modeling to determine the best strategy to control the spread
of that disease. In the study, we look at the behaviors of the
infectious humans when the percentage of contacts which
are repetitive is changed, that is, 𝑟

𝑐
. We have set 𝑟

𝑐
to 10%,

30%, 50%, 70%, and 90%. As 𝑟
𝑐
increases, the effective contact

rate to create newly exposed susceptible decreases. This is
clearly seen in Figure 7 where the maximum numbers of
infectious humans (the peaks in each curve) decreases as 𝑟

𝑐

increases.The lower frame in Figure 7 is an expanded version
of the top frame. It shows that increasing the value of 𝑟

𝑐

causes the equilibrium value of the infectious population to
be lower. The equilibrium values are reached at an earlier
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Figure 8: Time evolutions of the infectious human population for
different increases in the death rate caused by the illness.
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Figure 9: Time evolutions of the infectious human population
for the different percentages of infectious humans being put into
quarantine.

time as 𝑟
𝑐
decreases (See bottom frame in Figure 7). Figure 8

shows the time evolutions of the infectious populations when
the death rate due to the virus increases. This happens
when the virulence of the virus increases. Since the death
rate of an infectious person is given as 𝑑

ℎ
+ 𝛿𝑑
𝑓
, where

𝑑
𝑓

= 1/21, we have 𝛿𝑑
𝑓
≫ 𝑑
𝑛
; death rates for the various

curves are 1/21, 1/7, 5/21, 1/3, and 3/7 d−1. In Figure 8, we
have plotted the simulated time evolution of the infectious
humans when the fraction (𝛿) of infected humans placed into
quarantine is increased. Exposed humans are not placed into
quarantine since many of them will not become infectious
and quarantine is a denial of a person’s human rights. This
denial cannot be justified on the basis of maybe he could
become infectious. Looking at the time evolution of this
population group, we see that the peak in the number and
the number in the equilibrium state decrease as the fraction
of infectious humans is increased.

Sensitivity Analysis.We apply the sensitivity analysis to show
that the solutions are robust. We set all the parameters in
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Figure 10: Trajectories of the different population groups when different initial values are used in the numerical simulation of the time
behaviors of the population groups (sensitivity analysis).

the model to be the same but use different initial values of
𝑠
∗

(0), 𝑒∗(0), 𝑖∗(0), 𝑞∗(0), and 𝑟
∗

(0). As we can see, all the
trajectories (solutions) converge to the same epidemic equi-
librium state (𝑠

∗

, 𝑒
∗

, 𝑖
∗

, 𝑞
∗

, 𝑟
∗

) = (0.0109, 0.00012, 0.000092,
0.000091, and 0.98). The results are as shown in Figure 10.

5. Conclusion

Figures 7, 8, and 9 show the effects of changing the rate
of repetitious contacts, the virulence of the virus, and
the fraction of infectious humans placed into quarantine.
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Figure 7 shows that the number of infectious humans at
equilibrium decreases as the rate repetition (𝑟

𝑐
) increases.

Figures 8 and 9 indicate that the number of infectious
humans at equilibrium decreases as the virulence or fraction
of infectious humans increases. A further remark is that the
repetition rate is difficult to control and that the increase or
decrease of the virulence of the virus is beyond the control of
public health officials. The only thing that can be controlled
is the fraction of infectious humans that can be quarantined.
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