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Region of interest (ROI) extraction is a key step in finger vein recognition preprocessing. &e current method takes the finger
region in the vein image as the ROI, but this method cannot obtain better recognition accuracy because it only removes the
background noise of the image and ignores factors such as the position and shape of the finger. To solve this problem, we limited
the ROI to a fixed region between two finger joint cavities, proposed a new large receptive field gradient operator, and designed
and implemented a new method for ROI extraction. It uses a large receptive field to search the target, which is similar to human
vision, thus solving the problem of difficult ROI localization for images with large gradient areas. Moreover, for external factors
such as noise and uneven illumination in the vein image, the interference factors can be eliminated by averaging them to a larger
range with a larger size operator to improve the accuracy of the subsequent matching recognition. To verify the effectiveness of the
proposed method, we conducted sufficient matching experiments on three public finger vein datasets. On various datasets, our
method significantly reduced the identified EER value, with the lowest EER value reaching 0.96%. &e experimental results show
that the proposed ROI extraction method can effectively eliminate the influence of finger position, finger shape, and other factors
on the subsequent recognition performance, accurately locate the finger joint cavity, and effectively improve the
recognition performance.

1. Introduction

Finger vein recognition is a biometric recognition tech-
nology that uses near-infrared light to collect finger vein
images and identify them according to the extracted finger
vein features [1]. Compared with common biometric fea-
tures such as face [2] and fingerprint [3], the biggest ad-
vantage of finger vein feature is that it is located inside the
human body. Moreover, due to the convenience of collection
and quick identification of digital vein information, the
identification can only be done in vivo, and it has a high level
of safety [4]. After years of development, finger vein rec-
ognition has been widely used in smart homes, intelligent
transportation, education examinations, intelligent security,
and other fields. In recent years, with the global COVID-19
pandemic, serious international health security issues have

emerged, and there is an urgent need for a convenient and
secure identification method. As a second-generation bio-
metric technology, finger vein recognition has gained wide
attention due to its high level of convenience and security
[5]. It is noteworthy that noncontact and unconstrained
finger vein recognition technology can achieve high rec-
ognition accuracy. &erefore, it can realize identification
while providing safety guarantees for public health. How-
ever, noncontact and unconstrained digital vein image ac-
quisition will inevitably introduce various factors that affect
recognition performance to a greater extent, such as uneven
light, finger deformation, and displacement. If we use the
finger region as the ROI and only remove the noise in the
image background, we cannot solve the influence of finger
deformation, displacement, and other factors on recognition
performance.&erefore, it is necessary to design and develop
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a more robust and effective ROI extractionmethod for finger
vein images to minimize the impact of these factors on
recognition performance. In the study of existing joint cavity
localization methods, we found that it is unreasonable to
only search the joint cavity locally. &e greyscale variation in
the joint cavity is a large gradient, and its region usually
occupies a large part of the finger region. For human vision,
it is impossible to find the joint cavity if it is only observed in
a small field of view. For computers, similar to human vision,
the vertical orientation of the ROI is often inaccurate if only
a local region is searched. &e existing methods are usually
pixel counting for the local area or localization based on the
unstable features of the joint cavity region. In this way, the
shape and position of the finger, as well as the noise gen-
erated by the device, strongly affect the positioning of the
joint cavity, resulting in incorrect or unstable position in-
formation. We propose a large receptive field gradient op-
erator, which can accurately locate the joint cavity, further
segment the finger region, limit the area between the two
joint cavities of the finger, and eliminate the influence of
finger displacement and deformation. Each search covers
approximately 20% of the finger region, and the noise in the
image is greatly reduced due to the use of a large field
operator. In addition, we study the size of the gradient
operator of a large receptive field in detail to find the optimal
size. &e main contributions of this paper are as follows:

(1) A novel gradient operator called the large receptive
field gradient operator is proposed, which can solve
the problem of joint cavity localization caused by a
large gradient in the process of finger joint cavity
imaging.

(2) According to the change in finger joint cavity width,
we designed the most suitable range of receptive
fields for the localization search of finger joint
cavities in finger vein images so that the size of the
large receptive field gradient operator is most suit-
able for the localization of finger joint cavities.

(3) A new ROI extraction method for finger vein images
is proposed. It consists of three steps: first, the finger
region is extracted by the Kirsch operator and dy-
namic threshold based on the 3σ criterion; second,
the proposed large receptive field gradient operator
is used to locate the joint cavity position as a vertical
reference line, and then the finger region is further
segmented; third, the ROI of the finger vein image is
obtained through vertical lines and some soft finger
features.

&e organizational structure of this paper is as follows:
Section 2 reviews the representative research results of ROI
extraction in recent years; Section 3 introduces the ROI
extraction method combining the Kirsch operator with the
dynamic threshold strategy of 3σ criterion; Section 4 elab-
orates on the proposed joint cavity localization method, that
is, the large receptive field gradient operator; Section 5
describes a large number of experiments designed and
carried out based on three different public finger vein
datasets to test and verify the recognition performance of the

proposed method; and Section 6 clarifies the research
conclusions of this paper and prospects the future research
direction of ROI extraction filed.

2. Related Work

ROI extraction is a part of image preprocessing and an
important part of finger vein recognition.&e quality of ROI
extraction directly affects the effect of image enhancement
and normalization. Generally, the steps of ROI extraction
include horizontal reference line localization, image cor-
rection, and vertical reference line localization. According to
different localization methods, ROI extraction is divided
into threshold-based methods and mask-based methods.

&e threshold-based method is a kind of method widely
used in the early research of finger vein recognition. Such
methods usually use a fixed threshold or OTSU threshold.
After obtaining the binary finger image, we use it as a mask
to remove the background image. Kumar and Zhou [4]
obtained a binary image using a fixed threshold of 230,
subtracted it from the binary image using a horizontal Sobel
operator, and finally obtained the mask through connected
domain analysis. P. Gupta and P. Gupta [6] binarized the
image using the global threshold, obtained the finger region
through morphological operation, and used it as a mask.
&reshold-based methods have rarely been used in recent
research. Ideally, the pixel values in the finger region are
higher or lower than those in the background region.
However, in practical applications, due to the different
lighting conditions of different acquisition devices, it is
difficult to avoid the pixel value distribution in the finger
region being similar to that in the background region.

Masked-based methods are the most widely used.
Generally, this type of method uses the horizontal edge
extraction operator to extract finger edges and remove the
complex background in the image. Lee et al. [7] divided the
image into upper and lower parts and used the horizontal
edge detection operator to extract finger edges. Wang and
Tang [8] combined the horizontal operator in [7] with the
horizontal Sobel operator to detect finger edges and remove
line segments whose length is less than the threshold. Finally,
only the edges of the finger are retained in the binarized
image. Inspired by [7], Lu et al. [9] extended the horizontal
Prewitt operator to extract finger edges and corrected the
wrong edges using finger orientation angles. Song et al. [10]
used the Laplace operator to extract finger edges and used
average curvature to complete finger edges. In the process of
detecting finger edges with a horizontal edge extraction
operator, the maximum response value is usually used as the
finger edge. Most operators are sensitive to noise data. As the
background difference of vein images acquired by different
devices is relatively large, it is easy for operators to take
background noise as the maximum response, resulting in the
detection of incorrect edges. &erefore, this type of method
usually requires more postprocessing operations [11]. Yao
et al. [12] first introduced the Kirsch operator to the edge
extraction of finger vein images and extracted edges using
two horizontal Kirsch operator templates.&ey also set three
dynamic thresholds, combined with the 3σ principle, for
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further processing finger edges. Tao et al. [13] used the Mask
RCNN method to predict the ROI mask. Wang et al. [14]
used the active contour model (ACM) to obtain the finger
vein ROI mask. Gao et al. [15] proposed simplified statistical
region merging (SSRM) to obtain finger regions, and a new
directed link clustering method (DLCM) and parameter
selection (PS) were introduced to ensure edge qualification
and further correct the tilt angle. &is method is very ef-
fective for finger edge detection, which can extract weak
finger edges and filter out background noise to a large extent.

&e purpose of ROI extraction of finger vein images is to
quickly extract the same region from the same finger vein
image collected under different conditions. After obtaining
the horizontal segmentation reference line for the ROI from
the inner tangent of the finger edge, the problem focuses on
how to find the appropriate segmentation reference line in
the vertical direction to limit the ROI to a fixed region of the
finger. Initially, most researchers chose to use a fixed-size
window for vertical reference line segmentation. For ex-
ample, literature [8, 10] used fixed-size rectangular boxes to
delineate fingers. After finding the centroid of the binary
image, Rosdi et al. [16] used the centroid as the centre of the
rectangular box to delineate the finger. Recent studies have
paid more attention to the structural characteristics of
fingers because the gap between finger cartilage can transmit
more near-infrared light, so it appears as two brighter re-
gions at the joint cavities of the collected finger vein images
(displayed as higher pixel values on the digital image, as
shown in Figure 1). Researchers usually choose the finger
joint cavity as the reference line for vertical segmentation
and propose some joint cavity search algorithms. &e initial
algorithm was based on the cumulative value of regional
pixels. Literature [17] proposed calculating the cumulative
value of pixels per column and then selecting the maximum
cumulative value to locate the joint cavity. In the follow-up
study, it was found that the uneven illumination of the finger
vein capture device affected the search effect of the joint
cavity. &erefore, to improve the joint cavity localization
method based on the cumulative value of a single column of
pixels, the researchers proposed a calculation method of the
multicolumn pixel cumulative value based on a sliding
window and used the maximum value to locate the finger
joint cavity [18]. Qiu et al. proposed a joint cavity search
algorithm based on double sliding windows, which uses two
windows for difference to eliminate the problem of affecting
recognition [19] in the imaging process. Zeng et al. [20]
proposed that sliding method summation was employed to
reduce missing pixels from finger ROIs. Yang et al. [21]
proposed a method in which the finger region was obtained
using a fixed window and image standard deviation. &en,
the finger region was enhanced using a Gaussian-based
anisotropic ordinal filter (GAOF). Finally, the maximum
cumulative value in the calculated row was the distal venous
joint. After positioning the finger joint cavity, the seg-
mentation reference line in the vertical direction was ob-
tained, and the ROI was extracted from the corrected finger
vein image using the obtained horizontal and vertical seg-
mentation reference lines. At this point, the difference in
finger vein features between different individuals is relatively

the largest, and the difference in finger veins collected by the
same individual under different conditions is relatively the
smallest, which lays a foundation for the next step of vein
image enhancement and improving the final matching and
recognition performance. However, the existing articular
cavity localization methods mentioned above cannot solve
the problem of a large range of grey gradients generated by
the joint cavity of the finger vein during imaging. Methods
based on pixel accumulation can mostly find the brightest
local region, but due to the influence of illumination, the
brightest region is usually not the whole joint cavity region.
&e key to locating the joint cavity is to calculate the gradient
in the image. &erefore, we propose a large receptive field
gradient operator and a new joint cavity localization
method. Using the operator we proposed, a wide range of
gradients in the vertical direction of the finger region and
more accurate joint cavity localization can be achieved.

3. ROI Extraction Combining the Kirsch
Operator and the 3σ Criterion Dynamic
Threshold Strategy

3.1. Kirsch Edge Detection. Edge extraction operators have
been widely used in ROI extraction [22]. However, there are
a series of individuals, environments, devices, and other
factors in the acquisition process, resulting in a large number
of low-quality finger vein images, especially the disap-
pearance of finger edges or the generation of weak edges,
which have a great impact on the extraction of finger edges.
When there are a large number of weak edges in an image,
the usual edge detectors cannot obtain the complete edge or
introduce a large number of false edges. &e Kirsch edge
operator achieves excellent performance in identifying weak
edges and false edges [12]. It uses eight templates (as shown
in Figure 2) to convolve the image. Usually, only two
templates (M1; M2) in the horizontal direction are used to
extract finger edges, and the gradient with the largest di-
rectional response is selected as the edge.

3.2. Dynamic $resholding Based on 3σ Criterion. &e la-
belling strategy for the longest connected component in a
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Figure 1: Finger region pixel distribution.
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binary image is a good way to filter finger edges. Using
connected components to filter edges is in line with practical
application scenarios, and it provides higher real-time per-
formance and robustness. For the Kirsch edge detector,
setting different thresholds produces different edge images.
High thresholds are used to detect clearly defined edges, and
correspondingly, low thresholds provide more complete
weak edges. Additionally, different regions of the same vein
image have different qualities; thus, different thresholds are
needed. Yao found that, under ideal conditions, when per-
forming edge detection [12], there are only finger edges in the
binary image. Considering this, the greyscale distribution in
Kirsch gradient images can be regarded as a Gaussian dis-
tribution. In a Gaussian distribution, the mean μ determines
the location of the overall distribution. A variable that is
closer to the mean is considered to have a higher probability
of occurrence. &e variance in the variable σ determines the
amplitude of the distribution. &e smaller the variance is, the
more concentrated it is, and vice versa.&e 3σ criterion in the
Gaussian distribution can process samples with near-
Gaussian distributions. For the 3σ criterion, different interval
values are distributed with different probabilities, which are
(μ− σ, μ+ σ): 0.6827, (μ− 2σ, μ+ 2σ): 0.9544, and (μ− 3σ,
μ+ 3σ): 0.9974 (as shown in Figure 3).

In [9], the image processing method based on Gaussian
bilateral filtering was first used, which divided the image into
four parts: upper left corner, lower left corner, upper right
corner, and lower right corner. Dynamic thresholds are set
according to the 3σ criterion. &e initial threshold is set to
µ+ 2σ, and only 2.28% of the points are reserved as edges. In
this case, distinct strong edges are preserved for high-quality
images. For weak edges that are not detected, the threshold
can be released to µ+ σ, extending the candidate edges to
15.87%. Finally, those edges that still do not satisfy the
requirements should be filtered out using μ+ 0.5σ. During
the detection process, the length of the connected compo-
nents is used to automatically determine whether further
processing is needed. An edge larger than the threshold L
(generally 1/2 of the width of the detection area) is con-
sidered to be a relatively complete edge. If the connected
component is less than L, the threshold needs to be released
for further processing. Finally, the four subgraphs are in-
tegrated, the complete edge line is completed by interpo-
lation, and the complex background noise is removed by the
edge line.

Usually, this type of method removes the complex
background noise, but the finger position and shape in-
formation remain in the ROI. However, in the subsequent
vein pattern matching, the position and shape of the fingers
do not determine the features. &ese features largely cause
the classifier to make incorrect judgements. In response to
this problem, we further divide the finger region by limiting
the ROI between the two joint cavities to remove the po-
sition and shape information of the finger in the ROI.
Moreover, we propose a new large receptive field gradient
operator to accurately locate the joint cavity.

4. Large Receptive Field Gradient Operator

In some datasets, there is little difference between image
samples of the same finger; that is, there is little variation in
the sample data within the class. &e methods in [12] can
achieve high recognition accuracy for the extraction of the
ROI of such datasets, but we found that this type of method
only uses the finger region to extract the ROI, which often
requires a stable and unchanged finger position and finger
shape. Once the position and shape of the finger change
greatly, the performance of the system identified by the ROI
obtained by these methods will decline sharply. &erefore,
the large receptive field gradient operator we proposed is
necessary. After obtaining the coordinates of the finger, the
image is corrected, the finger region is further segmented by
the proposed method, and the ROI region between the
proximal and distal joint cavities is limited, which can
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eliminate the influence of the changes in the position and
shape of the finger on the recognition system performance.

In the study of the existing joint cavity localization
methods, we found that only positioning the joint cavity is
often inaccurate. Similar to human vision, the greyscale
change in the joint cavity is a larger gradient, and its area
usually occupies a large portion of the finger area. If only
observed in a small range, it is impossible to determine
whether this joint cavity is located. Similarly, for computers,
the vertical orientation of the ROI is often inaccurate if only
local areas are searched. &us, this paper proposes a method
for searching the joint cavity based on a large receptive field,
with each search covering approximately 20% of the finger
region:

(1) Reduce the finger area to a quarter of the original
image using “double triple” interpolation to obtain
g′(x, y) of size (m′ × n′).

(2) Use our proposed new large receptive field (6× 7)
gradient operator (Figure 4) to extract the vertical
gradients from finger vein images.

(3) Select the location of the distal joint cavity and use
jr, jl to indicate the position of the distal and
proximal joint cavities, respectively, then calculate
the cumulative value of pixels in each of the three
columns in gradient plot g′ and denote them as Sc,
and then use formula (1) to obtain the coordinates of
their minimum value; after reduction, this is the
position of the distal joint cavity, which is multiplied
by 3 and 4 to determine the reduction gradient of the
pixel value statistics and the position change gen-
erated when the image size is reduced. In addition,
the position of the proximal joint cavity is obtained
using the width w of the finger at the distal joint,
where 1.25 refers to the ratio of the length of the
interarticular cavity to the width of the distal finger
joint cavity obtained in statistics [23]:

S � 
m′

i

g′(i, c: c + 3), c � 1, 4, 7, . . . , n′ − 3

jr � argmin(S)∗ 3∗ 4

jl � jr − 1.25∗w

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

&e complete process of ROI extraction is described as
follows: first, the finger edge is obtained by using the finger
region extraction method in reference [12] (as shown in
Figure 5(a)), and the minimum inner tangent of the finger is
used as the segmentation reference line in the horizontal
direction (as shown in Figure 5(b)); second, the finger edge
midline is fitted, the angle between the finger and the
horizontal direction is obtained as the correction angle, and
the image is corrected by affine transformation; third, the
finger region of the corrected image is segmented by the
horizontal segmentation line; then, the large receptive field
gradient operator proposed in this paper is used to locate the
joint cavity, and the segmentation reference line in the
vertical direction can be obtained. To ensure minimal loss of

feature information in the ROI, we update the horizontal
segmentation line twice. In the first case, the coordinates of
the corrected finger edge change, so the horizontal reference
lines also change accordingly. We choose to use formula (2)
to update the coordinates of the reference line. In the second
case, we limit the selection of horizontal reference lines to
two joint cavities. Similarly, we use formula (2) to update the
horizontal reference line (the final reference segmentation
line is shown in Figure 5(c)). Finally, we use horizontal and
vertical reference lines to delineate the ROI on the corrected
image (as shown in Figure 5(d)).

up′ � up − 2∗φ

lower′ � lower − 2∗φ
.

⎧⎨

⎩ (2)

Figure 6 shows the original ROI obtained using our
proposed method and the corresponding vein features
extracted using the maximum curvature [24] method. By
comparing the ROI obtained in literature [12] with the
method proposed in this paper, it can be found that the ROI
extraction method limited to the area between the two joint
cavities of the finger can effectively remove the position and
shape information of the finger so that there is almost no
difference in the characteristics between the same finger
samples. In each ROI, we retain only the unique vein in-
formation of each finger, which is the most important and
effective vein information of each finger. &en, after size
normalization and feature extraction, there is only the vein
pattern of the finger in the ROI image, which can maximize
the performance of the recognition system.

5. Experimental Results

5.1. Datasets. In some published finger vein datasets, there
are few interclass changes in the vein data samples repre-
senting the same finger. &erefore, the robustness of some
ROI extraction and recognition methods has not been
verified in practice, and accurate matching and recognition
cannot be realized in practical applications. For the ex-
periments in this paper, we selected three publicly available
finger vein datasets: UTFVP [25], published by the Uni-
versity of Twente in the Netherlands, MMCBNU_6000 [26],
published by Korea Joensuu University, and FV-USM [27],
published by University TechnologyMalaysia. Among them,
the UTFVP dataset is characterized by smaller interclass
differences and less background noise for clear finger vein
images, while the MMCBNU_6000 dataset and FV-USM
dataset are characterized by larger sample sizes and sufficient
interclass differences for the same finger vein data. In
particular, in the FV-USM dataset, each finger was captured
6 times in one acquisition, and each finger participated in
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Figure 4: Large receptive field gradient operator.
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two acquisitions over a period of two weeks to generate more
practical data samples. &e details of these three datasets are
shown in Table 1.

5.2.DimensionofGradientOperatorwithaLargeFieldofView

5.2.1. Required Height and Width. &e gradient operator in
a large field of view solves the grey change in the gradient
type by calculating the grey area of the image, which takes
more calculation time. We solve this problem by reducing
the size of the image, but we still need to obtain the best
efficiency while ensuring accuracy when we locate the ROI.
&erefore, by changing the size of the gradient operator in
the large field of view and comparing them, we obtain
different equal error rates (EERs) on the FV-USM dataset (as
shown in Table 2). It should be noted that when the width of
the operator is 3, each row is calculated using [1, 0, −1].
When the width of the operator is greater than 3, we fix the
scanning area of the finger joint cavity to a width of 3 pixels,
such as [1, . . ., 1, 0, 0, 0, −1, . . ., −1], and then the subsequent
increase in width only needs to add 1 and −1 at both ends of
the operator. &e template matching method for obtaining
EER is described in detail in Section 5.3. When using the
conventional gradient scale (3× 3) operator, a larger EER
value (3.048) was obtained, and within a certain range, the
EER value obtained from the matching experiments grad-
ually decreased with increasing operator length and width.
&rough the experiment, we concluded that when the size of
the operator is 6× 7, the lowest EER value of 2.811 was
obtained.

Figure 7 shows a heatmap of the EER values calculated by
operators of different sizes. It can be clearly observed that when
the width of the operator increases gradually, EER values show
a significant downward trend. In addition, for operators with
smaller widths, the EER values obtained are more stable when
the width increases. &is is because the robustness of the
gradient operator with a small range to noise is relatively poor,
while the risk of noise influence is relatively small when the
gradient operator is in the large field of view. For the FV-USM
dataset, we obtained amore stable EER value at a width of 7 and
a minimum EER value (2.811) at a height of 6. &is is because
the size of the finger joint cavity is limited, and oversizing will
cover the finger area at both ends of the joint cavity, resulting in
an incorrect gradient calculation.

5.2.2. Appropriate Joint Cavity Width. In finger vein im-
aging, the joint cavity region presents a gradual greyscale,
but there is a more obvious grey mutation at the end of the
joint cavity close to other structures in the finger. We can
find the most appropriate width value of the finger joint
cavity by constantly changing the size of the region in the
gradient operator when scanning the joint cavity. Table 3
shows the different EERs obtained under different joint
cavity detection widths, where 1, 3, 5, and so on represent the
number of zeros in each row of the operator. Table 3 shows
that, for the joint cavity regions in the gradient operator that
are not involved in the gradient calculation, a width that is
too small will lead to a gradient calculation error, while a
width that is too large will waste calculation resources and
affect performance. When the width is large enough,

Figure 6: &e effect of extracting ROI using the proposed method and extracting vein features using the maximum curvature method.

(a) (b) (c) (d)

Figure 5: &e process of robust ROI extraction method of finger vein image proposed in this paper.
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nonjoint cavity regions affecting the localization accuracy
will be covered. &erefore, when using a smaller joint cavity
detection area, a larger EER (3.082) is obtained. When the
joint cavity detection area is maintained at 5–11 pixels, the
EER is stable at 2.913, and with the continuous increase in
width, the calculation efficiency gradually decreases, and the
error further increases. &e minimum EER (2.811) value is
obtained when the size of the operator is 6× 7 and the joint
cavity detection area is 3.

5.3. Matching

5.3.1. Comparison of Different ROI Methods. To more in-
tuitively verify the effectiveness of our proposed method, we

used the maximum curvature [24] method and repeated line
tracking [28] method to extract features and carry out
template matching [29] experiments. For the similarity
measurement in template matching, we chose to use the
correlation coefficient method. We first used Yao’s method
and our proposed method to obtain the ROI, followed by
feature extraction and then comparative experiments, and
used the false acceptance rate (FAR) and false rejection rate
(FRR) to evaluate the matching performance. Due to dif-
ferent thresholds, different FARs and FRRs are obtained.
When FAR and FRR are equal, the value is equal to the error
rate (EER). Figure 8 shows the ROC curves obtained from
the matching experiments, and Table 2 demonstrates the
EERs for all experiments.

According to Figure 8 and Table 4, the effectiveness of
our method can be further verified by analysing the ex-
perimental results. When collecting finger vein information,
the finger position information and shape information are
not the key features required for subsequent matching and
recognition but interfere with the performance of matching
and recognition. Because our ROI extraction method ef-
fectively removes interference information such as finger
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Figure 7: Heatmap of EER values calculated by operators of
different sizes.

Table 3: EERs obtained by different widths of joint cavity detection
region.

Joint
cavity
width

1 3 5 7 9 11 13 15

EER 3.082 2.811 2.913 2.913 2.913 2.913 2.947 2.981
&is is the lowest EER and represents the best matching performance. In the
paper, we describe it (“&e minimum EER (2.811) value is obtained when
the size of the operator is 6× 7 and the joint cavity detection area is 3.”).

Table 2: EER values obtained by operators of different sizes.

Height
Width

3 5 7 9 11 13 15 17 19
3 3.048 2.981 2.879 3.099 3.015 3.015 2.879 2.879 2.879
4 2.933 2.893 2.870 2.982 3.014 3.014 2.911 2.913 2.879
5 3.013 3.014 2.879 2.981 2.913 2.913 2.913 2.879 2.879
6 3.048 3.048 2.811 2.947 3.014 2.913 2.947 2.913 2.913
7 2.981 2.947 2.839 2.981 2.947 2.879 2.879 2.947 2.947
8 2.981 3.082 2.851 2.981 2.947 2.879 2.913 2.913 2.913
9 3.048 2.981 3.014 2.981 2.879 2.828 2.845 2.879 2.913
10 3.048 3.014 2.913 3.014 2.981 2.947 2.913 2.879 2.913
11 2.981 2.964 2.879 3.014 3.014 2.947 2.913 2.913 2.879
12 3.150 3.014 3.014 3.014 2.981 2.947 2.947 2.879 2.913
13 3.014 3.048 2.947 3.082 3.082 2.981 2.981 2.879 2.879
14 2.981 3.048 2.879 2.981 3.014 2.981 2.947 2.913 2.913
15 2.947 3.014 2.913 3.082 3.082 3.014 2.947 2.913 2.879
&is is the lowest EER and represents the best matching performance. We have added additional descriptions in the paper.

Table 1: Dataset information for experiments.

Datasets No. of subjects No. of images No. of fingers for each subject No. of images for each subject Image size
UTFVP 60 3816 6 4 672× 380 pxl
MMCBNU_6000 100 1440 6 10 640× 480 pxl
FV-USM 123 6000 4 6 640× 480 pxl
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position and shape, the EERs of our method are the lowest. It
can be seen that the ROI obtained by further processing the
finger region can have better robustness. Specifically, on the
FV-USM dataset, our method shows more obvious ad-
vantages. Moreover, when we further process the finger
region, the EERs of the matching experiment decrease
significantly, which is more consistent with the practical
application. It should be noted that we propose an ROI
extraction method without in-depth study of other factors

affecting the matching performance in the subsequent fea-
ture extraction process. It is believed that we can obtain
more ideal matching accuracy by carefully adjusting the
parameters of the feature extraction algorithm.

5.3.2. Comparison of Different Localization Methods of Joint
Cavity. In the previous section, we verified the necessity of
further finger segmentation, but if the joint cavity

0.00

0.00

0.05

FF
R 

(%
)

0.10

0.15
MMCBNU MAXIMUM CURVATURE ROC MMCBNU Repeated Line Tracking ROC

UTFVP Repeated Line Tracking ROC

USM Repeated Line Tracking ROC

UTFVP MAXIMUM CURVATURE ROC

USM MAXIMUM CURVATURE ROC

0.05
FAR (%)

0.10 0.15

0.00

0.00

0.05

FF
R 

(%
)

0.10

0.15

0.05
FAR (%)

0.10 0.15

0.00

0.00

0.05

FF
R 

(%
)

0.10

0.15

0.05
FAR (%)

0.10 0.15 0.00

0.00

0.05

FF
R 

(%
)

0.10

0.15

0.05
FAR (%)

0.10 0.15

0.00

0.00

0.05

FF
R 

(%
)

0.10

0.15

0.05
FAR (%)

0.10 0.15

0.00

0.00

FF
R 

(%
)

0.02

0.02

0.01

0.01

FAR (%)
0.04

0.04

0.03

0.03

0.05

0.05

Yao’s Method
Single Sliding Window
Fixed Window
Dual Sliding Windows
Single Line
Proposed Method

Yao’s Method
Single Sliding Window
Fixed Window
Dual Sliding Windows
Single Line
Proposed Method

Yao’s Method
Single Sliding Window
Fixed Window
Dual Sliding Windows
Single Line
Proposed Method

Yao’s Method
Single Sliding Window
Fixed Window
Dual Sliding Windows
Single Line
Proposed Method

Yao’s Method
Single Sliding Window
Fixed Window
Dual Sliding Windows
Single Line
Proposed Method

Yao’s Method
Single Sliding Window
Fixed Window
Dual Sliding Windows
Single Line
Proposed Method

Figure 8: Comparison of ROCs obtained by different ROI extraction methods.
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localization is not accurate, it may lead to worse results.
&erefore, in this experiment, some representative locali-
zationmethods of the joint cavity of the finger vein image are
compared with the localization method of the large receptive
field gradient operator we proposed, including (1) the single
sliding window method [18], (2) the fixed-window method
[8], (3) the double sliding window method [19], and (4) the
single-line cumulative value method [17]. Similarly, we use
the method in literature [12] to segment the finger region
and obtain a horizontal reference line. &en, the horizontal
reference line is used to segment the finger vein image.
Finally, different joint cavity localization methods are used
to obtain different ROIs. &e maximum curvature method
[24] and repeated line tracking method [28] are still used to
extract pattern features.

&e experimental results presented in Figure 8 and Ta-
ble 4 show that our method achieved excellent EER on each
dataset. After analysing the experimental results of different
methods, we found that the fixed-window method always
achieved good EERs on different datasets. &erefore, we used
our independently developed finger vein collection device to
test the fixed-window method. It was found that this method
only performs well on open datasets with little image vari-
ation. When we collect with our device, if we add some
changes in the direction, position, and other factors of the
finger, the EER value of this method increases dramatically.
&e single-slide window method and the single-row pixel
accumulation method (both calculate pixel values in local
columns) tend to look for the “brightest” region in the vein
image. However, in practical applications, due to the influ-
ence of various external factors, the joint cavity region is not
always the brightest region, which will lead to incorrect
localization. &e double sliding window locates the joint
cavity by subtracting the pixels in both windows, which
effectively removes noise from the image by the subtraction
operation, but it is still essentially a pixel-based operation that
does not accurately localize the joint cavity. By observing the
ROIs obtained, we found that, due to the inhomogeneity of
optical noise and background noise, some low-quality images
have obvious joint cavity effects of accurate localization. One
of the more important factors is that the joint cavity can
produce a large-area grey gradient during the imaging
process, and the existing methods cannot solve this problem
well. In fact, this is because the existing methods are only

statistical pixel gradient methods, which only simply process
column pixel values. For this problem, our method can ef-
fectively solve it by extracting the gradient of the image in the
vertical direction and can obtain a lower EER.

To compare the effects of various methods more intu-
itively, we conducted visual experimental verification of the
localization effects of different joint cavity localization
methods on different datasets. Two samples from each
dataset were filtered out, and the four different methods were
marked with four different colours (cyan: single sliding
windows; fuchsia: dual-sliding windows; blue: single line;

Table 4: EERs calculated by different ROI extraction methods.

Feature ROI MMCBNU_6000 (%) UTFVP (%) FV-USM (%)

Maximum curvature

Yao’s method 6.33 1.39 8.85
Single sliding window method 6.76 4.24 5.89

Fixed window 4.97 3.29 2.47
Dual-sliding windows 5.77 4.51 6.38

Single-line accumulation 7.19 3.59 4.50
Proposed method 4.91 2.77 2.81

Repeated line tracking

Yao’s method 4.26 1.74 13.22
Single sliding window method 3.76 1.35 3.59

Fixed window 2.38 1.04 1.52
Dual-sliding windows 3.22 1.53 4.84

Single-line accumulation 3.95 1.12 3.34
Proposed method 3.73 0.97 1.69

Sample1 Sample1

Sample2 Sample2

(a) (b) (c)

Sample1

Sample2

Single Line
Proposed MethodDual Sliding Windows

Single Sliding Windows

Figure 9: Comparison of different methods of joint cavity local-
ization. (a) MMCBNU_6000. (b) UTFVP. (c) FV-USM.
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red: proposed method in this paper). Figure 9 shows the vi-
sualization of different localization methods on different
datasets. In Figure 9(a), the three methods for comparison are
very sensitive to the change in finger illumination and are
mostly located in the brightest area of the finger. However, due
to the influence of illumination, the joint cavity is not always
the brightest area during imaging, while the method proposed
in this paper is always located in the position where the gra-
dient changes the most, that is, the left side of the joint cavity,
proving that ourmethod has strong robustness and stability. In
Figure 9(b), we observe that, in the finger vein images of this
condition, there is a large brighter area in or near the joint
cavity, which easily leads to incorrect positioning for the
existing localization methods.&e reason is that these methods
use a smaller search area, which often leads to being limited to
this area (the brightest but unstable), whereas the method of
this paper has a broader field of vision, can search over a much
larger area, and consistently can locate the finger joint cavity on
the leftmost side of the joint cavity, which is very stable.
Figure 9(c) shows that there are many complex background
noises in the finger vein images, which for unstable upper and
lower finger edge detectionmethods often provide an incorrect
search area for joint cavity localization. &e single-line and
dual-sliding window methods are very susceptible to such
problems. However, the experimental results show that the
method proposed in this paper is still steadily located on the
rightmost side of the joint cavity, which shows that ourmethod
is very stable and robust.

6. Conclusions

&e current representative ROI extraction methods only
remove the background noise of the image and only use the
finger region to obtain the ROI. However, in ROI extraction,
factors such as the movement position and shape of the
finger can adversely affect subsequent recognition perfor-
mance.&erefore, we propose a large receptive field gradient
operator. On the one hand, by using this operator, we can
effectively solve the problem of a large-scale grey gradient in
the imaging process of the joint cavity to realize the accurate
localization of the joint cavity. On the other hand, the finger
region is further segmented by the obtained vertical refer-
ence line, and the ROI is limited between the two finger joint
cavities, which effectively eliminates the influence of factors
such as finger position and shape on the recognition per-
formance. &e experiments on three publicly available
datasets show that the ROI obtained by our proposed
method has better matching performance. It is more robust
and more consistent with practical applications. Currently,
the global epidemic has raised the issue of public health
security to an unprecedented height, and finger vein rec-
ognition will evolve towards contactless and unconstrained
acquisition. Additionally, the shape of the joint cavity ex-
traction operator will be further investigated, and with the
development of deep learning, it will be a good solution for
finger vein ROI localization. In the future, this more robust
and efficient ROI extraction method will be very meaningful
and valuable for adapting to more complex application
scenarios.

Data Availability

Previously reported data (UTFVP, MMCBNU_6000, and
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2013.6744030; DOI:10.1016/j.eswa.2013.11.033). Prior stud-
ies (and datasets) are cited at relevant places within the text
as references [25–27].
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