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Abstract: The broad beneficial effects of dietary polyphenols on human health have been confirmed.
Current studies have shown that dietary polyphenols are important for maintaining the homeostasis
of the intestinal microenvironment. Moreover, the corresponding metabolites of dietary polyphenols
can effectively regulate intestinal micro-ecology and promote human health. Although the patho-
genesis of depression has not been fully studied, it has been demonstrated that dysfunction of the
microbiota-gut-brain axis may be its main pathological basis. This review discusses the interaction
between dietary polyphenols and intestinal microbiota to allow us to better assess the potential
preventive effects of dietary polyphenols on depression by modulating the host gut microbiota.
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1. Introduction

Polyphenols are the most abundant natural compounds in plants and can be found
in fruits, vegetables, tea, coffee, cocoa, and wine, among other things [1]. Polyphenols are
classified as flavonoids or non-flavonoids based on the presence of one or more hydroxyl
groups attached to their benzene ring. Flavonoids share a carbon skeleton with diphenyl
propane, which has two benzene rings joined by a three-carbon chain. The middle three-
carbon chain joins the A-benzene ring to form a closed pyran ring. Flavonoids involve the
common carbon skeleton of diphenylpropane, in which two benzene rings are connected
by a linear three-carbon chain. The central three-carbon chain forms a closed pyran ring
with the A-benzene ring. Flavonoids are classified as flavones, flavonoids, anthocyanins,
flavanones, flavonols, and isoflavones based on the oxidation state of the core pyran ring.
The main types of nonflavonoids are phenolic acids, which can be subdivided into benzoic
acid derivatives, such as gallic acid and protocatechuic acid, and cinnamic acid derivatives,
including coumaric acid, caffeic acid, and ferulic acid. Dietary polyphenols refer to phenolic
substances obtained from natural sources [2]. Not only do dietary polyphenols have an-
tioxidant properties, but they are emerging as compounds with antidepressant efficacy [3].
As a flavonoid, hesperidin is found to have a high content in citrus fruits [4]. Studies
have shown that hesperidin can inhibit apoptosis and protect neuronal degeneration by
increasing the levels of PI3K, Akt, and mTOR [5]. Apigenin is widely distributed in warm
tropical vegetables and fruits, especially in celery. By inhibiting p38 and JNK, apigenin
can pass the blood-brain barrier (BBB) and have an anti-inflammatory impact on BV-2 and
primary microglia [6].

Trillions of bacteria engage in complicated interactions with the host system in the
human gut microbiota [7] and human genetic and metabolic diversity have also been
found in the gut microbiota [8]. In addition, important homeostasis consequences result
from the stability of the gut microflora. The host’s immune system and general health are
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maintained by the gut microbiota, which is also engaged in the management of nutrients
and several metabolic pathways (such as bile acid metabolism, choline metabolism, and
tryptophan metabolism for different homeostatic regulation) [9]. Regarding its low bioavail-
ability, curcumin directly absorbed by the small intestine represents only a small part, the
majority remains in the intestinal tract [10]. Several strategies aiming to improve its oral
bioavailability have been considered [11]. In the gut, curcumin is biologically converted to
metabolites by the microbiota, those metabolites can in turn regulate the composition and
function of intestinal microbiota [12]. Reduced immune function can arise from intestinal
mucosal barrier injury caused by intestinal microflora homeostasis disruption [13]. Nu-
merous illnesses, including depression, multiple sclerosis, diabetes, autism, and cancer are
linked to disturbed gut flora [14]. Through the neurological, endocrine, immunological,
and metabolic systems, the brain’s interactions with the gut microbiota mostly have an
indirect impact on cognition [15], sleep [16], and mood [17]. The gut microbiota not only
mediates the physiological processes of host metabolism and immunity but also plays a
significant role in the bidirectional response of the gastrointestinal tract and the central
nervous system [18], according to numerous animal and clinical studies conducted over
the past ten years [19].

Depression is one of the most common mental illnesses, with continuous and long-term
depression as the main clinical feature, and is the most important type of preventable mental
illness [20]. Depression currently affects 4.4% (322 million people) of the population [21]. In
fact, according to the World Health Organization (WHO), depression will overtake physical
infirmity as the second-leading cause of mental disease in the future [22]. It is quite difficult
to understand how depression develops. The monoamine theory, one of the most widely
recognized theories, contends that depression is brought on by lower levels of monoamines,
such as gamma-aminobutyric acid (GABA), norepinephrine (NE), and serotonin (5-HT) in
the cranial nervous system [23].

Increased oxidative stress and elevated inflammatory markers can trigger depressive
symptoms [24]. According to randomized controlled research, antioxidant supplementation
for 6 weeks significantly raised plasma antioxidant levels in depressed individuals and was
linked to a considerable decrease in depressive symptoms [25]. Dietary polyphenols are a
class of antioxidants that appear in a variety of antioxidant supplements and offer a range of
physiological advantages that aid in the treatment of mental diseases. The most typical form
of depression, major depressive disorder (MDD), is a serious and incapacitating mental
condition [26]. MDD poses a serious challenge to health systems because it frequently recurs
and is difficult to treat [27]. The pathophysiology of MDD has not yet been determined,
but an increasing number of animal and clinical research have demonstrated that the
“microbiota-gut-brain” axis’ malfunction is the primary pathogenic cause of depression
and that it may also have potential influencing variables [28]. Through the gut-brain
axis (GBA), bidirectional interactions between the central nervous system (CNS) and
the gastrointestinal tract have been known to affect mood. Studies have shown that
gastrointestinal diseases often accompany MDD, and the behavior and diet of MDD patients
can change the composition of gut microbiota and have an impact on the pathogenesis of
MDD [29].

Polyphenols can regulate intestinal flora and maintain intestinal stability [30]. Natu-
rally derived polyphenols, such as quercetin, can reduce depressive and anxious behaviors
in rats [31]. By modulating the short-chain fatty acids (SCFAs) produced by the gut
microbiota, dietary polyphenols affect the levels of neurotransmitters in the brain, the de-
velopment of the central nervous system, and immune barriers. They also treat depression
by lowering the stress-induced increases in brain cortisol through the vagus nerve [32].
Although it has been suggested that dietary polyphenols have a role in controlling gut flora,
nothing is known about how these two organisms interact. To offer fresh perspectives on
the prevention and treatment of depression with dietary polyphenols, this review will dis-
cuss the interaction between dietary polyphenols and intestinal microflora, with a focus on
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how dietary polyphenols regulate intestinal flora through GBA and affect the development
of depression.

2. The Metabolism of Dietary Polyphenols in the Gut

When dietary polyphenols are ingested, they undergo a long journey through the
gastrointestinal tract (Figure 1). Biotransformation of polyphenols occurs in the enterocytes
of the small and large intestines [33]. By brush border or microbial enzymes, many polyphe-
nols are hydrolyzed in the small intestine, and the resulting aglycone compounds are
typically absorbed by enterocytes by passive diffusion. Unabsorbed polyphenols are bro-
ken down into smaller phenolic compounds in the large intestine, and the microbiota breaks
down glycosidic linkages and disassembles polyphenols’ biphenylpropane structure [34].
Aglycones and oligomers are mostly released by microbial esterases and glycosidases
during the degradation of polyphenols [35]. For example, the hydrolysis products of ester
bonds of catechin gallates, such as allocated polyphenols (-)-epigallocatechin-3-gallate
(EGCG) and (-)-epicatechin-3-gallate (ECG), in the gut undergo phase II biotransformation
in the gut and liver and interact with the gut microbiota to release free catechins, glucalde-
hyde acidified/sulfated/methylated conjugates, phenolic acids, and other catabolites [36].
Anthocyanins are deglycosylated and converted to phenolic acids such as protocatechuic
acid, syringic acid, and gallic acid by colonic bacteria [37]. Protocatechuic acid, the pri-
mary metabolite of anthocyanins, is a physiologically active chemical with significant
promise in treating a variety of chronic diseases [38]. Overall, this extensive microbial
metabolism ultimately breaks down dietary polyphenols into a limited number of simple
aromatic metabolites.
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3. Effects of Dietary Polyphenols on the Intestinal Microbial Environment
3.1. The Effect of Dietary Polyphenols on the Enzymatic Activity of Gut Microbiota

Intestinal enzyme activity is critical for the digestion and absorption of animal nutri-
ents, as well as for body growth and development. The intestinal microbiota has a diverse
spectrum of enzyme systems that are engaged in a variety of physiological activities, such
as the movement of energy, materials, and genetic information of the host [39], and mostly
contains hydrolases, oxidoreductases, lyases, and transferases. Enzymatic mechanisms in
the gut microbiota digest and absorb 90–95% of polyphenols, which are then transformed
into low molecular weight bioactive metabolites [40]. According to research, inhibiting
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the activities of α-amylase, α-glucosidase, and β-glucosidase decreases oxidative stress
and inflammation-related hyperglycemia while also modifying the gut microbiota to lower
blood sugar levels [41]. Anthocyanins derived from blueberries and blue honeysuckle can
be developed as possible α-glucosidase inhibitors [42], delaying carbohydrate digestion
and extending digestion time, resulting in a decreased rate of glucose absorption, and
therefore slowing the digestion of the meal [43]. Currently, dipeptidyl peptidase IV inhibi-
tion has been recognized as an effective strategy for the management of type 2 diabetes by
enhancing the incretin system, thereby promoting beta-cell efficiency and insulin release
in a glucose-dependent manner [44]. The quercetin contained in mugwort extract has a
strong inhibitory effect on dipeptidyl peptidase IV, and the maximum inhibition rate of
dipeptidyl peptidase IV is 90% when the extract concentration is 4000 µg/mL [45]. Tea
polyphenols, one of the most common dietary polyphenols, have been found to influ-
ence the enzymatic activity of the gut microbiota [46]. Tea polyphenols were shown to
significantly reduce α-glucosidase levels in rats fed high-fat diets, and they also helped
to ameliorate hyperglycemia symptoms in obese rats [47]. Tea polyphenols can directly
affect some intestinal microbial enzymes, primarily by interacting with enzyme protein
molecules [48]. According to the study, catechin can bind to the ATP-binding site on the
gyrase B subunit, blocking the Escherichia coli DNA gyrase from activating [49].

3.2. Effects of Dietary Polyphenols on Gut Microflora

While polyphenols undergo a series of metabolisms in the gut, polyphenols also shape
the microbiota and have a positive impact on health [50]. Dietary polyphenols can change
the variety and composition of the gut microbiota and can also modify the quantities of
intestinal metabolites, such SCFAs and bile acids [51]. Polyphenols are not only beneficial in
improving local damage in the intestine, such as intestinal inflammation and permeability,
but also in preventing or treating some systemic metabolic diseases, such as diabetes and
obesity [52]. After entering the circulation, dietary polyphenols and their metabolites may
have some local biological effects in the gut, such as protecting the gut barrier, as well as
some systemic effects [53]. Specific bacterial populations in the gut are impacted by a diet
high in polyphenols. By encouraging the development of lactic acid bacteria, such as Lacto-
bacillus and Bifidobacterium, polyphenols have prebiotic effects (Figure 1). These prebiotics
can also effectively control the microorganisms Faecalibacterium prausnitzii and Akkermansia
muciniphila, which have anti-obesity characteristics [54]. Theanine and flavonoid glycosides
and catechins found in black tea increase the formation of bifidobacterial. Polyphenols
not only encourage the growth of helpful bacteria in the gut, but they also prevent the
growth of potentially harmful bacteria [55]. Anthocyanins have been shown to limit the
development of Gram-positive bacteria (Bacillus subtilis, and Enterococcus faecalis) and Gram-
negative bacteria (Escherichia coli, Citrobacter freundii, Pseudomonas aeruginosa) [56]. Citrus
fruits include flavonoids (such as hesperidin and naringenin) that can inhibit Escherichia
coli, Staphylococcus aureus, and Salmonella typhimurium [57]. As a flavonoid, quercetin has
antioxidant, anticancer, and neuroprotective effects [58]. In a rat in vivo dietary interven-
tion study, gavage of rats with quercetin reduced the Firmicutes/Bacteroidetes ratio and
inhibited the growth of Erysipelas and Bacillus. Studies of dietary intervention experiments
and metagenomic sequencing in mice have shown that changes in Firmicutes/Bacteroidetes
ratios are strongly associated with diseases such as obesity. A different animal study found
that mice’s intestinal microbiota was altered by fermented green tea extract high in tea
polyphenols, affecting the phyla Firmicutes and Bacteroidetes and the ratio of Bacteroidetes to
Prevotella [59].

4. The Effect of Gut Microbiota on Depression
4.1. Gut Microbiota and GBA

Depression is a significant mental condition that has been linked to GBA and gut
microbiota. This indicates that alterations in gut microbiota and GBA are significant
pathways for elucidating the pathophysiology of depression and foretelling potential
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depression treatments [60]. In fact, the number of bacteria in the gut is many times greater
than that of human cells, and the number of related genes is 100 times greater than that of the
human genome [61]. As a result, the microbiota in the gut is the most diverse and abundant
in the human body. In addition to preventing pathogen invasion, increasing digestion and
metabolism, boosting nutrient absorption, and controlling the development and operation
of the host immune system, the gut microbiota is crucial to many physiological processes in
the human body [62]. As a result, the hypothalamic-pituitary-adrenal (HPA) axis, immunity,
and neurotransmitters between the gastrointestinal system and the brain are all integrated
by the gastrointestinal-brain axis (GBA) [63]. Its malfunction or imbalance is linked to a
number of immunological, mental, and neurological illnesses [64] (Figure 2).
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Figure 2. The role of the GBA in depression. Dysbiosis in the gut flora can be caused by an unhealthy
lifestyle, excessive and continuing stress, disease, or other factors. The GBA’s bidirectional control of
aberrant physiological states via neural, immunological, or chemical signals may result in depression.

The CNS can influence the gut microbiota both directly and indirectly [65]. For exam-
ple, the brain’s HPA axis and autonomic nervous system have a direct influence on gut
physiology. Similarly, the CNS influences the composition and function of gut microor-
ganisms indirectly by producing signaling molecules such as cytokines and antimicrobial
peptides. The gut flora also has an impact on CNS function. Through interactions with the
vagus nerve and enteric nervous system, gut bacteria can influence CNS development and
regulation. The immune system is one of the primary physiological systems that the gut
microbiota regulates in depressive-related pathways. Changes in gut flora boost peripheral
immunity, resulting in an inflammatory response [66]. When diverse inflammatory chemi-
cals reach the CNS via various pathways, the activation of microglia, a prominent source
of pro-inflammatory molecules in the brain, increases the likelihood of depression [67].
To control the bacterial population in the gut, the gut environment, the central nervous
system, and the immune system all collaborate [68]. For example, it has been shown that
the mucosal antimicrobial peptide Reg gene family member 3γ (RegIIIγ), which is secreted
by intestinal epithelial cells, binds to the peptidoglycan on the surface of Gram-positive
bacteria and directly kills them [69].

GBA regulation is influenced by neurotransmitters and neurotrophic factors [70]. The
gut microbiota has been demonstrated in studies to be involved in the creation of numer-
ous neuroactive chemicals such as melatonin, GABA, catecholamines, acetylcholine, and
histamine [71]. Disruptions in the gut microbiota can induce decreased neurotransmitter
and other neurotrophic factor syntheses, which can change mood and body movement
and increase the risk of depression. For example, GABA signaling dysregulation has been
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associated with depression [72]. GABA is generated by a variety of bacteria, including
Bifidobacterium and Lactobacillus [73]. Lactobacillus rhamnosus JB-1 (a common Lactobacil-
lus species) was also reported to reduce anxiety and depressive behavior in mice in a
vagus-dependent manner and to produce GABA. GABA is produced by Bifidobacterium by
enzymatic dehydration of rat glutamate.

4.2. Changes in Gut Microbiota in Depressed Patients

The research of genetic, neurochemical, and environmental factors is critical for depres-
sion therapy [74]. Bidirectional interactions between neurotransmitters in the brain and the
central nervous system, enteric nervous system, and gastrointestinal tract demonstrate the
effects of these systems on emotion, pain and stress regulation, and brain function [75]. This
shows that the composition and changes in the gut microbiota might affect and interfere
with the mental health of depressed persons [76]. Animal studies have revealed that the gut
microbiota may greatly influence host behavior [77], primarily via neurotransmission, the
HPA axis, and inflammation. Furthermore, the presence or exposure to pathogenic bacteria
in the stomach increases depressive-like behaviors [78]. Because of their ability to produce
exotoxins and generate settings conducive to inflammation, this species’ overgrowth may
exacerbate depressive symptoms. According to clinical investigations, the incidence of
gastrointestinal illnesses in persons with depression is around 29.6% [79]. Additional
research has revealed that depressed people have drastically altered gut microbiota [80].
For instance, a study comparing the gut microbiota of 46 depressed patients with that of
30 in the control group revealed that the abundance of Bacteroidetes, Proteobacteria, and Acti-
nobacteria was significantly higher in the depressed patients than it was in the control group,
while the abundance of Firmicutes decreased quickly [81]. Prevotella and Klebsiella were
found in significantly higher numbers in people with major depressive disorder, according
to a different study [82]. When rats with low levels of microbiota received fecal microbiota
from depressed people, the transplanted rats began to exhibit depressive symptoms.

4.3. The Interactions of SCFAs and Gut Microbiota on Depression

Specifically, through direct changes in critical metabolite levels and indirect impacts of
circulating serum metabolite changes, metabolism is a primary avenue by which the gut
microbiota affects depression through the GBA. These effects further affect alterations in
the CNS that control depressive behavior. The important metabolites created by the typical
microbiota play a direct or indirect role in maintaining healthy bodily functions as well
as controlling mental and emotional processes. The gut microbiota’s “hidden weapons”
are SCFAs. They not only take part in energy metabolism but also control how the gut
produces hormones and how different nutrients are absorbed [83]. Butyric acid is one of the
most important SCFAs, it is a major fuel source for colon cells and plays a non-negligible
role in gut health [84]. Butyric acid is the main nutrient of human intestinal epithelial
cells; more than 95% of the butyric acid in the human body is produced and absorbed
in the colon [85], and a certain level of butyric acid can keep colon cells stable, thereby
preventing or inhibiting cancer, regulating intestinal flora imbalance and treating irritable
bowel syndrome, antibiotic-associated enteritis, acute and chronic diarrhea, and other
diseases [86]. SCFAs (e.g., acetate, propionate, and butyrate) also have potential therapeutic
effects on depression [87]. Multiple SCFA-producing bacteria, including those from the
genera Subdoligranulum, Dialister, Fuscatenibacter, Ruminococcus, and Dorea, were lost in stool
samples from patients with pediatric depression, according to a study that compared the
distal gut microbiota composition of 70 healthy and 101 depressed children [88]. Due to
their role in maintaining the homeostasis of colonic regulatory T-cell populations, SCFAs
primarily have immunomodulatory and anti-inflammatory actions [89]. A lack of SCFAs
in the gut weakens the gut wall, allowing gut bacteria to pass through the leaky gut and
causing abnormal host behavior by activating the immune system [90,91].
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4.4. The Effect of the Antioxidant Properties of Probiotics on Depression

Antioxidant supplements have been shown to ease mood disorders. In fact, some
antidepressants (e.g., escitalopram and olanzapine) are protective against oxidative stress.
Probiotics exhibit antioxidant properties, and probiotics can improve depression and anxi-
olytic behaviors caused by associated comorbidities [92]. Probiotics’ antioxidant benefits
have been related to studies on aging, diabetes, brain injury, neurodegenerative illnesses,
and other disease models that all contribute to MDD and the decline of cognitive func-
tion [93]. According to research on animals, the hippocampus, cortex, and striatum of
mice treated with Enterococcus faecalis CFR3003 displayed increased activity in antioxi-
dant enzymes such as catalase and lowered levels of oxidative stress (ROS) indicators in
brain tissue [94]. Rats’ behavioral cognition and depression symptoms were improved
by a probiotic supplement including Lactobacillus rhamnosus, Lactobacillus reuteri, and Bi-
fidobacterium [95]. Researchers have also supplied individuals with type 2 diabetes with
fructooligosaccharides (a prebiotic substance), Lactobacillus acidophilus, Lactobacillus casei, Lacto-
bacillus rhamnosus, Lactobacillus bulgaricus, Bifidobacterium breve, Bifidobacterium longum, and
Streptococcus thermophilus. This probiotic mixture lowered the quantities of superoxide and
hydroxyl radicals, improved diabetes, and strengthened antioxidant defenses, including
plasma glutathione levels [96]. Type 2 diabetes is intimately linked to depression and
cognitive decline, despite the fact that it is not a neurodegenerative disease in and of itself.
Anxiety, depression, and other mental diseases can be brought on by type 2 diabetes.

Although there are various communication pathways between the stomach and the
brain, the role of gut bacteria in the development of brain illnesses is as yet unknown. We
still need to learn more about the GBA and how it is impacted by gut microbiota in order
to uncover new targets for the prevention and treatment of brain diseases.

5. Preventive and Therapeutic Effects of Dietary Polyphenols on Depression by
Regulating Intestinal Microbiota
5.1. Dietary Polyphenols Exert Anti-Depressant Effects by Modulating Intestinal Microbiota

Oriental medicine uses Licgusticum. L., a plant that reduces inflammation and is high in
ferulic acid, and a hydroxycinnamic acid that boosts Bifidobacterium relative abundance [97].
Free FA may be one of Bifidobacterium’s fermentation substrates, according to in vitro
experiments that showed the bacteria can change it [98].

On the one hand, Bifidobacterium exhibits antidepressant potential through a 5- hy-
droxytryptophan (5-HTP)-dependent mechanism, which acts as a precursor of 5-HT in
humans [99]. Several double-blind studies have shown that 5-HTP can increase the con-
centration of serotonin in the brain and improve depression [100]. On the other hand,
after treating mice with Bifidobacterium, it was found that another pathway associated
with depression is the glutamatergic synapse. Glutamate is an excitatory neurotransmitter
in the CNS [24], glutamate transport provides a new therapeutic site for depression by
activating N- The methyl-D-aspartate receptor (NMDAR) involved in the regulation of
synaptic activity, brain plasticity, and energy reserve, thereby exerting an antidepressant
effect [101].

5.2. Dietary Polyphenols Improve Depression by Modulating Tryptophan through
Intestinal Microbiota

An essential amino acid called tryptophan is converted along the kynurenine pathway
to produce a number of metabolites that are crucial to understanding the pathophysiology
of depression. According to research conducted on animals, tryptophan metabolism is
impacted by the modulation of polyphenol signaling and their metabolites through the
kynurenine pathway [102]. Resveratrol, a natural polyphenol, was found to significantly
reduce tryptophan levels and increase the ratio of kynurenine to tryptophan by 1.30 times
after injecting resveratrol into healthy volunteers [103]. Black tea catechins, in particu-
lar, raised kynurenine levels in healthy volunteers, leading to a greater kynurenine-to-
tryptophan ratio [104]. Researchers have also transplanted fecal microbiota from depressed
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patients into germ-free rats and found that they caused changes in tryptophan metabolism,
anhedonia, and anxiety-like behaviors [105]. At the same time, tryptophan is utilized by
the gut flora to synthesize serotonin locally, and the production of serotonin directly links
the gut with nerve signaling [106].

One of the most potent blood indicators of serious depression is the depletion of sero-
tonin, a crucial neurotransmitter in the GBA [107]. Serotonin is neuroactive and is generated
peripherally, which is important for neuropsychiatric diseases such as depression [108].

5.3. Microbial-Derived Polyphenol Metabolites Treat Depression by Inhibiting
Microglial Activation

Microglia are important immunological mediators in the CNS, and their activation is
linked to clinical psychiatric symptoms and neuroinflammation [109]. Clinical investiga-
tions have demonstrated that the majority of depressed individuals exhibit an overactiva-
tion of microglia, and depression has been defined as a disorder linked to microglia [110].
Researchers have also found that gut microbiota can influence microglia dynamics, with
clear differences in the microglia transcriptome between germ-free and specific pathogen-
free mice [111]. Many genes involved in cell activation were down-regulated in the mi-
croglia of germ-free animals which points to the relevance of the microbiota in influencing
microglial responses [112]. Dietary polyphenols used to modulate microglial activation
require gut microbiota activity to produce appropriate bioactive metabolites for the treat-
ment of depressive symptoms. The ellagitannin-like polyphenols in pomegranate extract
are poorly absorbed in the small intestine and have low bioavailability [113], and, upon
reaching the colon, are biotransformed by the gut microbiota to produce the bioactive com-
pound urolithin (6H-dibenzo[b, d]pyran-6-one derivatives). Urolithin reduces microgliosis and
amyloid-beta plaque deposition [114], reduces anxiety-like behaviors, and improves mem-
ory [115]. In primary cultures of neuronal glia, the physiologically active microbial-derived
metabolite EGCG was found to prevent LPS-induced microglial activation [116].

5.4. Gut Microbiota and Related Polyphenol Metabolites Modulate Inflammasome Activation in the
Treatment of Depression

The gut microbiota reduces the integrity of the BBB by inducing peripheral inflamma-
tion, leading to inflammasome activation which leads to a range of depressive symptoms
while disrupting the composition of the gut microbiota. This is known as the microbiota-
inflammasome hypothesis of major depressive disorder [117]. Inflammation is the main
sign of cancer development and progression [118]. It has been found that there is a close
relationship between inflammation and tumorigenesis, including proliferation, invasion,
and metastasis [119]. The NLRP3 inflammasome is a key component of the innate immune
system [120] and mediates caspase-1 activation and secretion of the proinflammatory cy-
tokine IL-1β/IL-18 [121] in response to microbial infection and cell damage [122]. Therefore,
NLRP3 inflammatory corpuscles play a major role in regulating inflammatory response
and tumors by interfering with other cell compartments [123]. Animal experiments have
proved that during high-fat diet feeding, the activation of NLRP3 inflammatory bodies may
produce a low-grade systemic inflammation, thus promoting the development of colorectal
cancer (CAC) [124]. This is related to NLRP3’s ability to sense the danger signals caused by
a high-fat diet and promote obesity and insulin resistance caused by inflammation [125].
Various microbial pathogens that can activate the NLRP3 inflammasome have been identi-
fied, including Salmonella typhimurium, Escherichia coli, etc. [126]. Currently, the activation of
this mechanism remains to be studied. Gut bacteria can activate the inflammasome directly
or indirectly. In one study, Enterobacteriaceae were shown to stimulate IL-1β release via
inflammasome signaling after spinal cord injury [127]. These selective members of the gut
microbiota can stimulate newly recruited monocytes to induce NLRP3-dependent IL-1β
release, promoting intestinal inflammation [128]. NLRP3 gene expression was elevated
in human peripheral blood mononuclear cells (PBMCs) in patients with depression and
serum IL-1β and IL-18 levels were also elevated [129]. Dietary polyphenol intake can
reduce inflammasome activation [130] and alleviate depressive symptoms. The compo-
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nents in lychee seed are mostly polyphenols [131], such as rutin, quercetin, catechin, and
procyanidins [132]. The latest research shows that lychee seed polyphenol (LSP) can induce
autophagy through the LRP1/AMPK pathway and significantly inhibit NLRP3 inflamma-
tory bodies [133]. EGCG has been shown to affect inflammasome signaling in multiple
models [134]. Compared with an induced renal failure model, EGCG down-regulates
NLPR3 gene expression through a pathway involved in the inflammatory regulator heme
oxygenase-1 [135], and NLRP3 gene knockout can reduce depression-like behavior in mice
due to chronic stress.

6. Conclusions

The GBA functions as a bidirectional neuroendocrine system, linking the intestinal mi-
crobiota and the brain. The dysbiosis of the gut microbiota has an impact on the emergence
of a variety of chronic disorders. Dietary polyphenols are promising compounds for the
treatment of depression. They can maintain the intestinal microenvironment’s homeostasis,
and their metabolites can effectively regulate intestinal micro-ecology. However, more
clinical studies are required to determine the intervening effects of dietary polyphenols
and their metabolites on depression.
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