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Hydroxynitrile lyase from Linum usitatissimum (LuHNL) is
an enzyme involved in the catabolism of cyanogenic glycosides
to release hydrogen cyanide upon tissue damage. This enzyme
strictly conserves the substrate- and NAD(H)-binding domains
of Zn2+-containing alcohol dehydrogenase (ADH); however,
there is no evidence suggesting that LuHNL possesses ADH
activity. Herein, we determined the ligand-free 3D structure of
LuHNL and its complex with acetone cyanohydrin and (R)-2-
butanone cyanohydrin using X-ray crystallography. These
structures reveal that an A-form NAD+ is tightly but not
covalently bound to each subunit of LuHNL. The restricted
movement of the NAD+ molecule is due to the “sandwich
structure” on the adenine moiety of NAD+. Moreover, the
structures and mutagenesis analysis reveal a novel reaction
mechanism for cyanohydrin decomposition involving the
cyano-zinc complex and hydrogen-bonded interaction of the
hydroxyl group of cyanohydrin with Glu323/Thr65 and H2O/
Lys162 of LuHNL. The deprotonated Lys162 and protonated
Glu323 residues are presumably stabilized by a partially des-
olvated microenvironment. In summary, the substrate binding
geometry of LuHNL provides insights into the differences in
activities of LuHNL and ADH, and identifying this novel re-
action mechanism is an important contribution to the study of
hydroxynitrile lyases.

Hydroxynitrile lyases (HNLs) are primarily found in higher
plants (1, 2), microorganisms (3–5), and millipedes (6, 7) as
crucial enzymes participating in the process of cyanogenesis, in
which it was identified to catalyze the decomposition of cya-
nohydrins to corresponding carbonyl compounds and toxic
hydrogen cyanide (HCN) (8–10). The toxic HCN is released as
a defense compound to protect from intruders. The HNLs
identified to date can be classified into seven superfamilies that
include FAD-binding oxidoreductase (PaHNL (11–14),
PmHNL (15), PsHNL (16), EjHNL (17, 18)), α/β-hydrolase fold
(AtHNL (19, 20), MeHNL (21–28), HbHNL (29–32), SbHNL
(33–35), BmHNL (36, 37)), dimeric α+β barrel (PeHNL (38,
39)), lipocalin-like fold (ChuaHNL (6, 40, 41), PlamHNL (42)),
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cupin (AcHNL (4), PsmHNL (5), BpHNL (5), GtHNL (3)), bet-
v1 like fold (DtHNL (43)), and Zn2+-dependent alcohol de-
hydrogenase (LuHNL (44–47)). Among these, one or more
HNL structures have been determined in each superfamily,
except for the Zn2+-dependent alcohol dehydrogenase super-
family. In early 1981, it had demonstrated that the microsomal
preparations from dark-grown Linum usitatissimum (linen
flax) seedlings can transfer L-valine to acetone cyanohydrin,
the precursor of the cyanogenic glucoside linamarin, which is
the stock form of HCN in vivo (Fig. 1) (48). In 1987, LuHNL,
the only member of the Zn2+-dependent alcohol dehydroge-
nase superfamily, was purified for the first time from young
seedings of flax (L. usitatissimum L.). It was characterized as a
dimer with a subunit molecular mass of 42,000 Da (44). In
1997, the full-length cDNA encoding LuHNL was isolated and
cloned into Escherichia coli. The amino acid sequence of
LuHNL showed significant similarities to the alcohol dehy-
drogenase (ADH) family, rather than to other known HNLs.
From the sequence alignment of LuHNL and ADHs, it was
found that the residues coordinating with Zn2+ ions and the
ADP-binding βαβ unit motif in ADHs were highly conserved
in LuHNL. However, neither ADH activity in LuHNL nor
HNL activity in ADH was detected. From the loss of inhibition
of LuHNL activity with the addition of Zn2+ chelators, it was
concluded that the Zn2+ ions were not directly involved in the
catalysis of cyanohydrin cleavage (45). Furthermore, the sub-
sequent site-directed mutagenesis analysis of LuHNL by its
overexpression in Pichia pastoris indicated that the residues
involved in catalysis of Zn2+-ADHs were also functionally
important in LuHNL. From these results, it was presumed that
all the Zn2+ ions in LuHNL possess only the function of sta-
bilizing the structure and not participating in the catalysis (46).
All these conclusions seem reasonable based on the experi-
mental results but not from direct evidence. Until now, no
convincing evidence has been described to clarify these ques-
tions, and the catalytic mechanism of LuHNL is also a mystery.
To address these issues, the crystal structures of LuHNL were
determined using X-ray crystallography. In total, three struc-
tures of LuHNL were determined: ligand-free LuHNL
(LuHNL_lig_free, PDB ID: 7VB3), acetone cyanohydrin-
complexed LuHNL (LuHNL_CNH, PDB ID: 7VB5), and
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Figure 1. The pathway for the conversion of L-valine to acetone and HCN in Linum usitatissimum.

Structure of hydroxynitrile lyase from Linum usitatissimum
(R)-2-butanone cyanohydrin-complexedLuHNL(LuHNL_BCN,
PDB ID: 7VB6). Based on these crystal structures and site-
directed mutagenesis analysis results, we proposed a catalytic
mechanism for LuHNL on cyanohydrin decomposition and
elucidated the function of NAD+ and Zn2+ in LuHNL. The
structural information of LuHNL also provided insights into
the differences in its activity as compared with ADHs.
Results

The overall structure of LuHNL

Because of the low sequence identity of LuHNL with
structures of known proteins, the initial structure model of
ligand-free LuHNL (LuHNL_lig_free) was built using the
BALBES program (49). BALBES suggested a possible initial
model of the human σ σ alcohol dehydrogenase (PDB ID:
1D1T, 32.47% sequence identity with LuHNL) (50) and a
subsequent molecular replacement was successfully processed.
Further refinement was performed using REFMAC5 (51) and
Phenix (52). The crystal belongs to the monoclinic space group
P21 with unit-cell parameters a = 94.12 Å, b = 52.18, c =
168.51; α = 90.00, β = 95.01, γ = 90.00. The Rwork and Rfree
values of the refined coordinate are 0.156 and 0.183 at 1.48 Å
Figure 2. Structure view of LuHNL. A, the overall structure of LuHNL with two
in green (chain A), cyan (chain B), magenta (chain C), yellow (chain D), respectiv
Zn2+ ions (gray spheres), one NAD+ molecule, one Mg2+ ion (green spheres), and
complexed with metal ions were shown as red spheres. The GOL refers to g
highlighted by ribbon. The parts with poor electron density map were marke
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as shown in Table S1 (Supporting information, Section 1). Two
dimers (dimer 1: chain A + B and dimer 2: chain C + D) in
parallel as shown in Figure 2A were found in the asymmetric
unit. The secondary structure of LuHNL consists of 13 α-he-
lices, 6 310-helices, 19 β-sheets, 10 strict β-turns, and 1 strict α-
turn, as shown in the Figure 3. The root-mean-square devia-
tion (RMSD) between the Cα atoms of two dimers was
0.514 Å. Each of the two chains in dimer 1 (chain A + B) and
dimer 2 (chain C + D) superimposed with an RMSD of 0.308
and 0.278 Å at the Cα atoms, respectively. Large conforma-
tional variations were observed in the β-turn between β7 and
β8, β-turn between η2 and α8, and the residues around η4 and
β16 of each chain in the dimers, which may be disordered as
the electron density is not well defined. The conformational
changes among four chains (Chain A, B, C, D) in terms of
RMSD are 0.093 to 0.248 Å for β-turn between β7 and β8 (aa
146–158), 0.317 to 0.792 Å for β-turn between η2 and α8 (aa
268–283), and 0.092 to 0.327 Å for the residues around η4 and
β16 (aa 326–334), respectively.

The interface region between two subunits in one dimer was
in the β16α10β17 area (Fig. 2B), which contains 12 hydro-
phobic residues (Ile331, Phe332, Phe333, Phe335, Phe338,
Leu339, Phe340, Gly341, Gly342, Val344, Val345, Gly346),
parallel dimers observed per asymmetric unit. The four chains were colored
ely. B, structural features observed in LuHNL. As indicated in the picture, two
S-nitrosylation of Cys265 were identified in each chain. The water molecules
lycerol molecule. The interface of two subunits (β16α10β17 moiety) was

d as gold color. The protein structures were displayed using PyMOL (79).



Figure 3. Secondary structure–based multiple sequence alignment of LuHNL with alcohol dehydrogenase (AtADH, PDB ID: 4RQU, derived from
Arabidopsis thaliana; Hl_ADH, PDB ID: 6ADH, derived from Equus caballus) (80, 81) and formaldehyde dehydrogenase (FDH, PDB ID: 1M6H, derived
from Homo sapiens) (82). The secondary structural elements were shown as α-helices (medium squiggles with α symbols), 310-helices (small squiggles with η
symbols), β-strands (arrows with β symbols), strict β-turns (TT letters), and strict α-turns (TTT letters). The residues for catalytic Zn2+ coordination that are
conserved in all four proteins were highlighted as triangle symbols. The four cysteines for structural Zn2+ coordination that are conserved in all four proteins
were marked by bold dots. The fingerprint of ADH-binding βαβ units (53) were indicated as circles. The alignment was done using ESPript 3.0 server (http://
espript.ibcp.fr/) (83).
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four electrically charged residues (Arg330, Asp334, Lys336,
Asp337), and one polar uncharged residue (Asn343). The
central area of this βαβ unit is occupied by hydrophobic res-
idues. The electrically charged residues and polar uncharged
residue were located on the periphery and extended outward.
A salt bridge between the ε-amino group in Lys336 and the
carboxyl group in Glu136 of another chain was observed at 2.7
to 3.0 Å (Fig. 4A).

The electron density of NAD+ was observed in the crystal
without the addition of exogenous NAD+ during enzyme
crystallization or soaking of the crystal in an NAD+ solution
before X-ray diffraction (Fig. 4B). The NAD+ molecule was
bound to the β11α6β12 fold, a classic binding domain for ADP,
which is consistent with the fingerprint for ADP binding that
identified from the amino acid sequence of LuHNL (Fig. 3)
(53). Furthermore, two classical tetra-coordinated complexes
of Zn2+ ions were observed. One was bonded to Cys115,
Cys118, Cys121, and Cys 129 at a distance of 2.3 to 2.4 Å
(Fig. 4C), and the second Zn2+ complex formed bonds with
Cys63, His85, Cys199, and one molecule of water at a distance
of 2.0 to 2.4 Å (Fig. 4D). Beyond the water molecule that
bonded to the second Zn2+ ion, a glycerol molecule was
trapped via hydrogen bond interaction with the water mole-
cule and residues of Thr111, Lys162, Glu323, and Thr349
(Fig. 5, A and B), which implies that the second Zn2+ area is the
catalytic site of LuHNL. In addition, a hexa-coordinated
complex of Mg2+ ion was observed on the enzyme surface
that bonded with residues of Glu52, Glu140, and four mole-
cules of water at 2.0 to 2.2 Å (Fig. 4E). The quantitative
measurement of metal ions in LuHNL using inductively
coupled plasma mass spectrometry indicated that the contents
of metal ions were 2.22 Zn2+ and 0.35 Mg2+ in each subunit,
respectively (Table S2, Supporting information, Section 2).
Moreover, it was noted that a positive Fo-Fc omit map was
attached to the thiol group of Cys265 in β13 during structure
refinement, which suggests that the Cys265 was modified in
LuHNL. According to the possible modification forms of
cysteine in protein (54), an S-nitrosylation form of Cys265 was
proposed in LuHNL, which fits the observed electron density.
However, we failed to detect the S-nitrosyl group in LuHNL
solution by Saville’s method (55). Of interest, the S-nitrosyl
group can be detected in lyophilized LuHNL. The results
J. Biol. Chem. (2022) 298(3) 101650 3
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Figure 4. Structural features of LuHNL in detail. A, the interface area in a dimer; (B) the NAD+ molecule electron density of Fo-Fc map (green) before
inserting NAD+ and 2Fo-Fc map after refinement; (C) the structural Zn2+ ion complexed with four cysteines; (D) the catalytic Zn2+ complexed with two
cysteines, one histidine, and one water molecule (red sphere); (E) the complexed structure of Mg2+ coordinated with four water molecules (red spheres) and
two glutamic acid residues. The GOL in D refers to glycerol. The Fo-Fc map was displayed in COOT (76) and contoured at 3.0 σ. The positive omit map was
displayed as green, and the negative omit map was displayed as red. The 2Fo-Fc map was displayed using PyMOL (79) and contoured at 1 e−/Å3. The protein
structures were displayed using PyMOL (79).
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suggest that the S-nitrosylation of Cys265 may be formed
during crystallization or X-ray diffraction, rather than the
posttranslational modification of LuHNL.
The complex structures of LuHNL

The structures for acetone cyanohydrin (CNH) complexed
LuHNL (LuHNL_CNH) and (R)-2-butanone cyanohydrin
(BCN) complexed LuHNL (LuHNL_BCN) were determined at
a resolution of 1.58 and 1.72 Å, respectively. These two
complex structures have similar unit cell dimensions with
LuHNL_lig_free, as summarized in Table S1 (Supporting
information, Section 1). The RMSD between LuHNL_lig_free
and LuHNL_CNH, LuHNL_lig_free and LuHNL_BCN was
0.524 and 0.309 Å, respectively, at Cα atoms of all four sub-
units. This indicates that the complex structures of LuHNL did
not change significantly as compared with the ligand-free
LuHNL structure. Large conformational variations were
observed in the N-terminal, β-turns between β7 and β8, and β-
turns between η2 and α8. The electron density of all the
structural features that was observed in the LuHNL_lig_free
structure was also well defined in the complex structures, such
as tightly bound NAD+ molecule, two tetra-coordinated Zn2+

ions, one hexa-coordinated Mg2+ ion, and S-nitrosylation of
Cys265 in each subunit. In addition, the RMSD between
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LuHNL_CNH and LuHNL_BCN was 0.297 Å for the Cα
atoms of all four chains. In the LuHNL_CNH structure, the
electron density of the acetone cyanohydrin (CNH) in the
catalytic pocket was only observed in subunits of A, B, and C.
However, the electron density of (R)-2-butanone cyanohydrin
in the catalytic pocket of the LuHNL_BCN structure was well
defined in all four subunits. These two complexes indicate the
same substrate binding pattern in the catalytic site (Fig. 5, C–
F), which is different from the glycerol binding pattern in
LuHNL_lig_free as described above (Fig. 5B). In the substrate
complexed structures, the nitrile group of the substrate
replaced the water molecule observed in the LuHNL_lig_free
structure (Fig. 5B) to bond with the catalytic zinc ion coordi-
nated with Cys63, His85, and Cys199 at a distance of 2.2 to
2.3 Å. The hydroxyl group of cyanohydrins oriented to form
direct hydrogen bond interaction with Glu323 at a distance of
2.7 Å and indirect interaction with Lys162 via one molecule of
water at a distance of 2.6 to 2.8 Å for each hydrogen bond.
Furthermore, the hydrogen bond relay was extended to the
O2D of NAD+ from Glu323 via Thr65 residue at 2.7 Å for each
hydrogen bond. In addition, two substrate entry tunnels were
observed in the subunit of LuHNL, as shown in Figure 6A. The
substrate entry tunnel 1 is a long and tortuous channel that
connects the surface of the protein with the bottom of the
catalytic pocket. Oppositely, the substrate entry tunnel 2 is



Figure 5. Catalytic sites in LuHNL. A, the Fo-Fc omitmap (green) of GOL in ligand-free structure of LuHNL before inserting GOL; (B) the ligand-free structure of
LuHNL; (C) the Fo-Fc omit map (green) of CNH in LuHNL-CNH complex before inserting the CNH molecule; (D) the complex structure of LuHNL with acetone
cyanohydrin; (E) the Fo-Fc omit map (green) of (R)-BCN in the LuHNL–BCN complex before inserting the (R)-BCN molecule; (F) the complex structure of LuHNL
with (R)-2-butanone cyanohydrin. GOL refers to glycerol; CNH refers to acetone cyanohydrin; (R)-BCN refers to (R)-2-butanone cyanohydrin; Wat refers to water
molecule. The Fo-Fc map was displayed in COOT (75) and contoured at 3.0 σ. The positive omit map was displayed as green, and the negative omit map was
displayed as red. The 2Fo-Fc map was displayed using PyMOL (79) and contoured at 1 e−/Å3. The protein structures were displayed using PyMOL (79).
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located at the upper part of the catalytic pocket and close to
the interface of the dimer (β16α10β17 fold). However, in the
dimer structure of LuHNL, the substrate entry tunnel 2 was
completely shielded by the Phe340 on the helix α10 fragment
of another subunit (Fig. 6A), resulting in a closed upper part of
the catalytic pocket.
The framework of NAD+-binding cavity

The well-defined electron density of NAD+ (Fig. 4B) in
LuHNL indicates that the cofactor NAD+ is tightly bound to
the enzyme. Although several rare covalent bonding examples
of NAD(P)+ with cysteine residue in enzyme were reported in
aldehyde dehydrogenases (56–58), the release of NAD+ by
denaturing the enzyme using 4 M guanidine suggests that
NAD+ is trapped in the cavity via hydrogen bonding in-
teractions rather than covalent bonding. The quantitative
measurement of NAD+ showed that one subunit of LuHNL
contains approximately 0.68 molecule of NAD+ (Fig. S1,
Supporting information, Section 3). From the anti-
conformation of NAD+, it was noted that it is the re-face of
nicotinamide in NAD+ that approaches the catalytic sites,
suggesting that the NAD+ in LuHNL belongs to the A-form
(59). Considering the diversity of ADHs and simplifying the
J. Biol. Chem. (2022) 298(3) 101650 5



Figure 6. Substrate entry tunnels in LuHNL and Hl_ADH. A, substrate entry tunnels in LuHNL_BCN; (B) substrate entry tunnel 2 in LuHNL_BCN; (C)
substrate entry tunnel in Hl_ADH (PDB ID: 4NFH) (60). Subunit A was displayed as green, and subunit B was displayed as cyan. The entry tunnel 1 in LuHNL
was indicated by arrow. The entry tunnel 2 of LuHNL and the entry tunnel of Hl_ADH were marked by bold black line. The ligands in (A) and (B) were
displayed as yellow color, which refer to 2-butanone cyanohydrin. The ligand in (C) was displayed as yellow color, which refers to 2,3,4,5,6-pentafluorobenzyl
alcohol. The protein structures were displayed using PyMOL (79).

Structure of hydroxynitrile lyase from Linum usitatissimum
description, we focus on the comparison of LuHNL and well-
studied horse liver ADH (Hl_ADH) in the following narrative.
The superposition of the LuHNL_lig_free structure with horse
liver ADH (Hl_ADH, PDB ID: 4NFH) (60) showed a significant
difference in the residues located at the entrance of the NAD+-
bound cavity. In LuHNL, the adenine part is buried in a
“sandwich structure” of Arg249/adenine of NAD+/Tyr300,
resulting in a twisted NAD+ molecule in the cavity (Fig. 7A). In
such a situation, the twisted NAD+ molecule becomes less
flexible, which may restrain its free movement. Moreover, the
comparison of the protein surface in the entrance of NAD+-
binding cavities of LuHNL (Fig. 7B) and Hl_ADH (Fig. 7C)
give us a more intuitive vision on the buried NAD+ of LuHNL,
in which the adenine part of NAD+ is embedded in a narrow
space, rather than an open space as shown in Hl_ADH.
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The role of NAD+ in LuHNL
To investigate the function of NAD+ in LuHNL, we tried to

prepare the apo-LuHNLby refolding the denatured protein or to
synthesize the apoenzyme by cell-free protein synthesis systems.
However, both failed to make an apo-LuHNL. Then amutant of
LuHNL-R249G/S268A/E269L that mutated on the residues
located at the entrance of NAD+-bound cavity was constructed
and successfully expressed. In the purification of the enzyme
using ion-exchange column of Mono Q 5/50 GL, three proteins
(LuHNL-S3, S4, and S5 in Fig. S2, Supporting information,
Section 4) possessing the same size in SDS-PAGE were eluted
out at different ionic strengths. The LC-MS/MS analysis
revealed that all the proteins were LuHNLs (data not shown).
TheCD-spectral analysis showed that the secondary structure of
the first to be eluted enzyme (LuHNL-S3) was different from



Figure 7. Comparison of NAD+-binding cavities in LuHNL and Hl_ADH. A, the superposition of NAD+-binding cavities of LuHNL-lig-free and Hl_ADH (PDB
ID: 4NFH) (60). B, the protein surface at the entrance of the NAD+-binding cavity in LuHNL-lig-free structure. C, the protein surface at the entrance of the
NAD+-binding cavity in Hl_ADH structure. GOL refers to glycerol, and PFB refers to 2,3,4,5,6-pentafluorobenzyl alcohol. The LuHNL-lig-free structure was
colored as cyan, and Hl_ADH structure was colored as green. The protein structures were displayed using PyMOL (79).
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that of the latter two (LuHNL-S4, S5). The latter two enzymes
(LuHNL-S4, S5) had secondary structures similar to that of the
LuHNLwild type (LuHNL-S2). However, except for the protein
that was eluted last (LuHNL-S5), the enzymes (LuHNL-S3, S4)
showed no activity. The specific activity of the last enzyme
(LuHNL-S5) on acetone cyanohydrin decomposition is 11.5 U/
mg, about 23% of the wild-type enzyme activity (LuHNL-S2,
49.8 U/mg). Furthermore, 0.35 molecule of NAD+/monomer
was detected in the last protein (LuHNL-S5), about 56% of the
NAD+ content that was detected in the wild type (LuHNL-S2,
0.62 molecule NAD+/monomer), whereas the other proteins
(LuHNL-S3, S4) lost NAD+ completely. We also found that the
enzyme activity (LuHNL-S1, S3, S4) could not be recovered by
the addition of external NAD+, and no improvement in activity
was observed for the active fractions of the LuHNL-R249G/
S268A/E269L (LuHNL-S5, 12 U/mg) or LuHNL-wild (LuHNL-
S2, 48.8 U/mg) in the presence of NAD+ (Fig. S2, Supporting
information, Section 4).

Site-directed mutagenesis analysis of LuHNL

Site-directed mutagenesis of the catalytic residues was car-
ried out according to the substrate binding geometry in
LuHNL. Activity measurements on the acetone cyanohydrin
decomposition revealed that the mutants of T65A, K162G,
K162A, E323A, E323H, C63S, C199S, H85A, H85C, and C63S/
C199S completely lost activity as compared with the wild type
(Fig. 8A). In addition, the mutation of Cys121 to alanine also
inactivated the enzyme completely, which is consistent with
the findings of a previous report (46). Moreover, alanine mu-
tation analysis of the residues that coordinated with Mg2+ was
also performed. The E52A was expressed in an insoluble form
using E. coli as the host, but E140A was successfully expressed
and purified. The activity analysis suggests that the mutant of
E140A possesses approximately 61% activity compared with
the wild type (Fig. 8A, details are shown in Supporting
information, Section 5). The mutation of Cys265 to alanine
also showed a negligible effect on enzyme activity, and
approximately 80% residual activity was detected for C265A
(Fig. 8A, details are shown in Supporting information, Section
5). Subsequently, the mutation analysis on the residues of
F340, K336 that are located at the interaction area (on the helix
α10) of two subunits was also carried out. Compared with the
wild type, the F340A showed 5% residual activity, whereas the
F340H lost activity completely (Fig. 8A, details are shown in
J. Biol. Chem. (2022) 298(3) 101650 7



Figure 8. Mutagenesis analysis and EDTA effect investigation of LuHNL. A, site-directed mutagenesis analysis of LuHNL. The activity of LuHNL-wild type
was set at 100%. B, the EDTA effect on LuHNL activity. The LuHNL enzymes were incubated with a range of concentration of EDTA (0–100 mM) at 30 �C for
2 h. The activity of LuHNL incubated at 0 �C for 2 h was set at 100%. C, the kinetic parameters for active mutants of LuHNL (The details are shown in
Supporting information, Section 6).
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Supporting information, Section 5). The mutant of LuHNL-
K336A did not show significant change in enzyme activity, and
approximately 76% residual activity was detected (Fig. 8A,
details are shown in Supporting information, Section 5). Of
note, when Met74, a residue located at the top of the catalytic
pocket (Fig. 6A), was mutated to alanine, it resulted in a sig-
nificant decrease in enzyme activity, and only 8% residual ac-
tivity was detected (Fig. 8A, details are shown in Supporting
information, Section 5). Then the kinetic parameters of
LuHNL-wild and its active mutants were determined (details
are shown in Supporting information, Section 6). As shown in
Figure 8C, the KM value of the mutants is similar to that of the
wild-type enzyme (KM = 2.7 ± 0.3 mM) except for the mutant
of LuHNL-F340A (KM = 5.4 ± 2.3 mM). It means the mutation
of Phe340 to Ala340 decreases the affinity of the enzyme to the
substrate.

Effects of EDTA on LuHNL activity

In a previous study (45), it was observed that the LuHNL
activity cannot be inhibited by addition of o-phenanthroline
(dissociation constant of monophenanthroline-zinc: Kd = 3.7 ×
10−7 M (61)), a competitive inhibitor of horse liver alcohol
dehydrogenase (Hl_ADH) chelating with Zn2+ ion in the
enzyme (62). The findings suggested that Zn2+ ions in LuHNL
are not directly involved in cyanohydrin decomposition (45).
Here, we tested the effect of a much stronger Zn2+ chelator
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(dissociation constant of EDTA-zinc: Kd = 2.3 × 10−14 M (63))
on the activity of LuHNL by incubation of the enzyme with
0 to 100 mM EDTA at 30 �C for 2 h (details are shown in
Supporting information, Section 7), as a previous study did on
yeast alcohol dehydrogenase (YADH), in which 64% of Zn2+

ions were removed by incubating the YADH with 100 mM
EDTA at 30 �C for 2 h, resulting in a strong inhibitory effect of
EDTA on YADH activity (64). However, the results showed
that approximately 84% residual activity was detected on
acetone cyanohydrin decomposition after incubation of
LuHNL with 100 mM EDTA at 30 �C for 2 h (Fig. 8B). And the
metal content analysis showed that there is still 68% residual
Zn2+ in the LuHNL after incubation with 100 mM EDTA for
2 h. It suggests that the low extracting efficiency of EDTA on
the Zn2+ from LuHNL is the reason for the slight inhibitory
effect of EDTA on LuHNL activity. Compared with the EDTA
effect on YADH, it implies that the Zn2+ ion is bound tightly in
LuHNL and important for LuHNL activity. The need of Zn2+

ion for LuHNL activity is also supported by the results that the
enzyme activity was improved 1.03- to 1.20-fold by addition of
0.1 to 50 mM of Zn2+ in the activity assay mixture.

Discussion

LuHNL, a hydroxynitrile lyase that independently evolved
from an ancestor protein possessing an ADP-binding βαβ
domain, has unique structural features that differ from those of
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all known hydroxynitrile lyases. The sequence alignment of
LuHNL suggests that its structure is closer to that of Zn2+-
containing alcohol dehydrogenase (ADH), sharing the sub-
strate and NAD+-binding domains. The LuHNL_lig_free and
Hl_ADH superimposed with an RMSD of 8.40 Å at 669 Cα
atoms, reflecting the similarity of structures to some extent.
However, the difference in activity indicates the existence of
very significant structural changes.
Absence of ADH activity in LuHNL and vice versa

In Hl_ADH, the hydroxyl group of the substrate was bonded
to the catalytic Zn2+ that coordinated with Cys46, His67, and
Cys174 (Fig. 9A). The deprotonation of the hydroxyl group is
Figure 9. Substrate binding patterns and proposed reaction mechanism
LuHNL; (C) proposed reaction mechanism for LuHNL. CNH refers to acetone cya
structures were displayed using PyMOL (79).
carried out by a general base of His51 via a hydrogen bonding
relay consisting of Ser48 and O2D of NAD+. The following
hydride transfer from the α-carbon atom of the substrate to
C4N of NAD+ occurs at a distance of 3.3 to 3.5 Å via substrate
mobility (PDB IDs: 4NFH and 1MG0) (60, 65). However, in
LuHNL, it is the nitrogen atom of the substrate nitrile group
that coordinates with catalytic Zn2+, rather than the oxygen
atom of the substrate hydroxyl group. His51, which acts as a
general base for deprotonation in Hl_ADH, is replaced by
Leu68 in LuHNL. In addition, the residues of Phe140 and
Val294 in Hl_ADH were replaced by Lys162 and Glu323 in
LuHNL, which act as catalytic sites in the decomposition of
cyanohydrin in LuHNL (Fig. 9B). The distance of cyanohydrin
alfa-C atom to C4N of NAD+ is about 5.1 to 5.4 Å, much
. A, substrate binding pattern in Hl_ADH; (B) substrate binding pattern in
nohydrin, and PFB refers to 2,3,4,5,6-pentafluorobenzyl alcohol. The protein
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further than that in Hl_ADH, suggesting that the C4N of
NAD+ in LuHNL is not directly involved in the reaction
mechanism. In addition, the binding geometry of glycerol, a
pseudosubstrate that bound in the catalytic pocket of ligand-
free LuHNL structure (LuHNL-lig-free) suggests that a hy-
droxyl group cannot replace the water molecule to bond with
catalytic Zn2+, even in the absence of a nitrile group (Fig. 5B).
This may explain the slight inhibitory effect of EDTA on the
activity of LuHNL. The two different substrate binding pat-
terns provide insight into differences in the activities of
LuHNL and Hl_ADH.

Catalytic mechanism of LuHNL

In a common catalytic mechanism of hydroxynitrile lyases,
one residue acts as a base to extract the proton from the hy-
droxyl group, and the left cyanide anion is stabilized in a
microenvironment with a positive electrostatic potential (66).
Based on the complex structure of LuHNL and site-directed
mutagenesis results, the reaction presumably occurred in the
catalytic Zn2+ pocket. When the cyanohydrins were bound to
the catalytic sites, the hydrogen bonding relay may be perturbed
in a specific microenvironment to form deprotonated Lys162
and protonated Glu323. Then the deprotonated Lys162 acts as
a base to extract the proton from the hydroxyl group via one
molecule of water, and the electrostatic interaction between
positively charged Zn2+ and cyanide ion renders the cyanide a
better leaving group. Then, the proton in the protonated
Glu323 is transferred to the cyanide anion to release HCN
(Fig. 9C). Unlike the utilization of histidine as a general base to
extract the proton in the first step, as observed in PaHNL (14),
HbHNL (32), AtHNL (20), and PeHNL (39), Lys162 acts as the
base for proton extraction in LuHNL. However, lysinium has
much higher pKa value than histidinium, let alone glutamic
acid. How the enzyme stabilizes the transition state consisting
of deprotonated lysinium (Lys162) and protonated glutamate
(Glu323) especially in a weak acidic solution is a fascinating
issue. Such proton transfer from lysinium to aspartate followed
with proton extraction from substrate by the deprotonated
lysine has been reported in ChuaHNL. The deprotonated lysine
in ChuaHNL was proposed to be stabilized by the desolvation
effect in the hydrophobic active site (41). The desolvation effect
by placing the side chain into a specific microenvironment can
significantly perturb the pKa of a nucleophile, as detected for
the buried lysine (67) and glutamic acid (68) in the interior of
proteins. In LuHNL, the catalytic sites (Lys162, Glu323) are
located in the upper part of the catalytic pocket as shown in
Figure 6A. When the substrate is bound to the enzyme, the
substrate entry tunnel 1 is blocked by the substrate molecule.
The catalytic sites are partially removed from the bulky water
by shielding the substrate entry tunnel 2 in a dimer form
bearing only one molecule of water for proton delivery, which
may result in the pKa shift of Lys162 and Glu323.

The catalytic pocket in LuHNL

The complete inactivation of LuHNL by site-directed
mutagenesis of the catalytic residues of Thr65, Lys162,
10 J. Biol. Chem. (2022) 298(3) 101650
Glu323, Cys63, His85, and Cys199 supports the above pro-
posed reaction mechanism. As discussed in the catalytic
mechanism of LuHNL, a hydrophobic microenvironment may
be essential to stabilize the deprotonated Lys162 and proton-
ated Glu323, which involves the tightly bound NAD+ and the
shielded substrate entry tunnel 2 in the dimer form of LuHNL
(Fig. 6A).

In enzymatic dehydrogenation reactions, a free NAD(P)H
or NAD(P)+ is essential to catalyze the redox reaction by
providing or accepting a hydride ion. An exception is form-
aldehyde dehydrogenase derived from Pseudomonas putida
(PFDH), which catalyzes the disproportionation of aldehydes
without the external addition of cofactor. The structural
origin is a long insertion loop in PFDH, shielding the adenine
part of the bound NAD+ molecule from the solvent (69).
However, the reaction catalyzed by LuHNL is not a dispro-
portionation reaction, so the tightly rather than covalently
bound cofactor suggests that NAD+ is unlikely to play a redox
role in LuHNL. However, the loss of activity in the correctly
folded apo-LuHNL-R249G/S268A/E269L (LuHNL-S4 in
Fig. S2, Supporting information, Section 4) indicates the
importance of NAD+ in LuHNL activity. Once the LuHNL
loses NAD+, the activity will also be lost and can no longer be
recovered. Presumably, instead of acting as a redox role to
participate in the reaction, the NAD+ in LuHNL is part of the
catalytic pocket to define a specific microenvironment. The
similar function of cofactor for an enzyme was reported in the
FAD-containing PaHNL, in which the oxidized cofactor of
FAD is solely required for electrostatic reason, rather than a
redox role (14).

In addition, it is noteworthy that, in Hl_ADH, the substrate
entry tunnel is located beside the interface of two subunits,
same position as the substrate entry tunnel 2 observed in
LuHNL, but the tunnel in Hl_ADH is still open when the
substrate is bound to catalytic sites in a dimer structure, as
observed from the ligand-complexed structure (PDB: 4NFH)
(60) (Fig. 6C). However, in LuHNL, the substrate entry tunnel
2 was completely shielded by the helix-α10 of another chain
when two subunits assemble into a dimer. The residue Phe340
on the helix-α10, acting as a hydrophobic lid, completely
covered the entire entry tunnel 2, resulting in the formation of
a specific microenvironment (Fig. 6B). The significant decrease
on the activity of LuHNL by site-directed mutagenesis of
Phe340 and Met74 to alanine supports this viewpoint that a
semi-closed catalytic pocket is indispensable for enzyme
activity.

Obviously, compared with the long and winding substrate
entry tunnel 1, substrate entry tunnel 2 is a more suitable
channel for substrate to enter the enzyme if it is not shielded
by the residue Phe340 (Fig. 6A). Thus, in the process of sub-
strate binding and product release, whether there is confor-
mational change of two subunits in one dimer is an interesting
issue. Unfortunately, in the ligand-free structure of LuHNL, a
pseudosubstrate of glycerol was trapped in the catalytic pocket.
Thus, whether the conformation of enzyme varies with the
absence or presence of a compound in the catalytic pocket
remains to be studied.
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The function of Zn2+ in LuHNL

The presence of two Zn2+ ions in each subunit of LuHNL
was confirmed by quantitative measurement. One of them that
is located in the catalytic pocket is presumably involved in the
catalysis of cyanohydrins decomposition via the nitrile-Zn2+

complex. The positively charged Zn2+ is responsible for the
stabilization of the cyanide anion. Another Zn2+ complex with
four cysteine residues is structurally important for the correct
folding of protein. The inactivation of the enzyme by mutating
the Cys121 to alanine strengthens this viewpoint.

The Mg2+ ion and the S-nitrosylation of Cys265 on the surface
of LuHNL

Magnesium is the most abundant divalent cation in cells with
diverse biochemical functions (70, 71). Statistical studies of the
inner-sphere binding mode of Mg2+ revealed that approxi-
mately 77% of all Mg−X bonds are Mg−O bonding situations in
which either water or negatively charged oxygen functionalities
such as carboxylates (Asp, Glu) are the preferred ligands (72).
Moreover, the distances between the cation and the oxygen
atom of proteins and small molecules, as determined by crystal
structure studies, vary from 2.05 to 2.25 Å, much more con-
strained than hexa-coordinated Ca2+ (70). The magnesium
complex in LuHNL that coordinated with Glu52, Glu140, and
four molecules of waters in a distance of 2.0 to 2.2 Å is
consistent with these descriptions. However, the low content of
Mg2+ (approximately 0.35 per subunit) and active mutant of
E140A suggest that it is not essential for LuHNL activity. To
some extent it cannot be ruled out that the Mg2+ was bound on
the surface coincidently, because of the availability of a suitable
location. In addition, the S-nitrosylation of cysteine has
emerged as an important mechanism for dynamic, post-
translational regulation of most or all main classes of proteins
(73). However, the failed detection of S-nitrosylation in LuHNL
solution ruled out that the Cys265 was modified during enzyme
expression in E. coli. The formation of S-nitrosylation may
occur in the crystallization step or diffraction experiment when
exposed to high-energy X-ray. The negligible effect of C265A
on enzyme activity strengthens this viewpoint.

In summary, this study elucidates the reaction mechanism
of LuHNL on cyanohydrin degradation and provides insights
into differences in activities of LuHNL and ADH, which has
long been a challenge. This understanding of the novel reac-
tion mechanism will contribute to the study of hydroxynitrile
lyases and provide a new model for designing enzymes.

Experimental procedures

Overexpression of LuHNL and purification

The gene for LuHNL from L. usitatissimum (GenBank
accession number AF024588.1) (47) was cloned into pET-15b
vector (Novagen) with NdeI (CATATG) and BamHI
(GGATCC) restriction sites, and a His-tag peptide and a
thrombin recognition sequence (MGSSHHHHHHSSGL
VPRGSHM) were attached to the N terminus. The resulting
plasmid was transformed into competent JM109 E. coli cells,
and the copied plasmid was extracted using the Gene elute
Plasmid Miniprep Kit (Sigma-Aldrich). The extracted recom-
binant plasmid sequence was confirmed by Genetic Analyzer
3500 (ThermoFisher Scientific) using T7 promoter primer
(50-TAATACGACTCACTATAGGG-30) and T7 terminator
primer (50-ATGCTAGTTATTGCTCAGCGG-30). Then the
recombinant plasmid was transformed into SHuffle T7 Express
Competent E. coli (New England Biolabs) for expression.
Noteworthy, there are two LuHNL sequences deposited in
Genbank (Y09084.1 (47) and AF024588.1 (45)), but six base
variants exist in these two sequences. Five of them are
nonsense mutation; the remaining one shows difference at the
codon that encodes the 117th amino acid. The corresponding
amino acid sequence ID of the gene sequence of AF024588.1 is
AAB81956.1, which is Thr117 as we uploaded in the deposi-
tion. The corresponding amino acid sequence ID of the gene
sequence of Y09084.1 is P93243.1, which is Val117 as
described in the validation report. Their sequence alignments
are shown in Fig. S6 (Supporting information, Section 8).

A single colony of SHuffle T7 E. coli harboring the plasmid
of pET-15b-LuHNL was inoculated into 5 ml lysogeny broth
(LB) medium containing 100 μg/ml ampicillin (Amp) and
cultivated at 30 �C, 300 RPM overnight. Then, 3 ml preculture
was transferred into 500 ml LB medium containing 100 μg/ml
Amp and cultivated at 30 �C, 150 RPM for 5 h (A600 = 0.64),
then 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) was
added to induce the protein expression, and the cells were
continued to cultivate at 16 �C, 120 RPM for 24 h. The cells
from 4 L of medium (500 ml × 8) were harvested by centri-
fugation (6000g, 10 min, 4 �C) and the pellet was resuspended
in 100 ml lysis buffer (20 mM potassium phosphate buffer
[KPB], 20 mM imidazole, 500 mM NaCl, pH 7.4). The cells
were disrupted by sonication in an ice bath for 30 min. Then,
the debris and insoluble protein were removed by centrifuga-
tion (15,000g, 30 min, 4 �C). The supernatant was loaded onto
a 15-ml Ni Sepharose 6 Fast flow column (GE Healthcare)
equilibrated with lysis buffer (10 column volume [CV]), fol-
lowed by washing with lysis buffer (10 CV). A gradient elution
program was performed using 15 CV of lysis buffer (buffer A)
and 15 CV of buffer B (20 mM KPB, 500 mM imidazole,
500 mM NaCl, pH 7.4) to elute the bound protein. The frac-
tions were collected in volumes of 10 ml per tube. The active
fractions were pooled and dialyzed against 20 mM KPB (pH
7.4, 5 L × 2, 4 �C). Subsequently, the active fraction was
concentrated and applied to Mono Q 5/50 GL column (bed
volume: 1 ml; GE Healthcare) for further purification. The
bound protein was eluted with a linear gradient of 0 to 0.15 M
NaCl (40 CV), 0.15 to 0.25 M NaCl (20 CV), 0.25 to 0.5 M
NaCl (10 CV) in 20 mM KPB (pH 7.4). The purity of active
fractions was analyzed by SDS-PAGE, and pure fractions were
pooled and concentrated to 10.5 mg/ml (measured by BCA
method, Takara) for further crystallization.
Crystallization

The crystals of N-His-LuHNL were prepared using the
vapor diffusion sitting drop method at 20 �C in 96-well
Intelli-Plates (Art Robbins Instruments). The sitting drop
J. Biol. Chem. (2022) 298(3) 101650 11
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was prepared by mixing 1 μl of N-His-LuHNL (10.5 mg/ml)
with 1 μl crystallization buffer (0.1 M BIS-TRIS, pH 6.5, 20%
w/v polyethylene glycol monomethyl ether 5,000, HAMPTON
RESEARCH, Index, Reagent 46) (HAMPTON RESEARCH). A
total of 50 μl of crystallization buffer was used as reservoir
solution.

Data collection, processing, model building, and refinement

Before subjecting the crystals to flash-freezing for X-ray
diffraction, the sample for ligand-free structure of LuHNL
determination was prepared by soaking the crystal in solution I
(crystallization buffer containing 15% (v/v) glycerol) and
cryoprotectant solution II (crystallization buffer containing
25% (v/v) glycerol) successively. Similarly, the sample for
LuHNL–acetone cyanohydrin complex structure determina-
tion was performed by soaking the crystal in cryoprotectant
solution I and cryoprotectant solution III (cryoprotectant
solution II/acetone cyanohydrin: 90/10 (v/v)) for 20 min. The
sample for LuHNL-2-butanone cyanohydrin complex struc-
ture determination was similarly prepared by soaking the
crystal in cryoprotectant solution I and cryoprotectant solu-
tion IV (cryoprotectant solution II/(rac)-2-butanone cyano-
hydrin race: 98/2 (v/v)) for 5 min.

The X-ray diffraction data of ligand-free LuHNL and
LuHNL_CNH were collected at 100 K at the beamline BL-5A
of KEK-PF with a reflection record of 0.2� per image. Another
data set of LuHNL soaked by (rac)-2-butanone cyanohydrin
was collected using an in-house X-ray generator and an im-
aging plate (MicroMax-007HF and R-AXIS VII, Rigaku) with a
reflection record of 0.5� per image. All datasets were integrated
using iMosflm (74) and scaled using SCALA (75). The initial
model for molecular replacement was built using the auto-
matic molecular replacement pipeline program BALBES (49).
All models were corrected using COOT (76) and refined using
REFMAC5 (51) and Phenix (52). Rfree values were computed
from 5% of the randomly chosen reflections that were not used
for refinement. Water molecules were inserted automatically
and manually into the potential electron density map. The
validation of the water molecules was automatically performed
according to the geometric criteria and their refined B-factors
(B < 60 Å2).

Site-directed mutagenesis of LuHNL

The LuHNL mutants were prepared via site-directed
mutagenesis using the PrimeSTAR Mutagenesis Basal kit
(Takara) with forward and reverse primers of a 27-mer
oligonucleotide designed as indicated by the kit manual. The
PCR was performed for 30 cycles: (denaturation 98 �C/10 s,
annealing 55 �C/15 s, elongation 72 �C/40 s). The amplified
PCR product was purified using a Wizard SV gel and PCR
clean-up system (Promega). The resulting PCR product was
transformed into JM109 E. coli competent cell. The recombi-
nant plasmids were extracted from the JM109 E. coli and
sequenced by Genetic Analyzer 3500 (ThermoFisher Scienti-
fic) using T7 promoter primer (50-TAATACGACTCACTA
TAGGG-30) and T7 terminator primer (50-ATGCTAGTT
12 J. Biol. Chem. (2022) 298(3) 101650
ATTGCTCAGCGG-30). The confirmed plasmids were trans-
formed into SHuffle T7 Express Competent E. coli (New En-
gland Biolabs) for expression. The purification of the mutants
was performed as the protocol described for wild type.
LuHNL activity measurement

The acetone cyanohydrin degradation activity of LuHNL
was determined by monitoring the formation of CN− ion (77).
The reaction mixture was composed of an appropriate amount
of enzyme, 10 mM acetone cyanohydrin (100 μl of 100 mM
acetone cyanohydrin prepared in 0.1 M citric acid solution),
and 400 mM citrate buffer (pH 4.5) in a total volume of 1 ml,
which was monitored at room temperature by cyanide detec-
tion. For cyanide detection, 1 μl enzymatic reaction mixture
was added to 199 μl oxidants solution (27 mM succinimide
and 2 mM N-chlorosuccinimide in DIW), followed by the
addition of 50 μl coupling reagent (0.2 M barbituric acid and
24% pyridine (V/V) in deionized water). The resulting mixture
was incubated at room temperature for 10 min, then measured
at 580 nm. One unit enzyme activity was defined as the
enzyme amount needed to catalyze the formation of 1 μmol
CN− in 1 min.
Data availability

The structures of LuHNLs described in this paper have been
deposited into Protein Data Bank. The PDB IDs for the three
structures are 7VB3 for LuHNL-lig-free, 7VB5 for LuHNL-
CNH, and 7VB6 for LuHNL-BCN.
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