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The yield-line method of analysis is a long established
and extremely effective means of estimating the
maximum load sustainable by a slab or plate.
However, although numerous attempts to automate
the process of directly identifying the critical pattern
of yield-lines have been made over the past few
decades, to date none has proved capable of
reliably analysing slabs of arbitrary geometry. Here,
it is demonstrated that the discontinuity layout
optimization (DLO) procedure can successfully be
applied to such problems. The procedure involves
discretization of the problem using nodes inter-
connected by potential yield-line discontinuities, with
the critical layout of these then identified using linear
programming. The procedure is applied to various
benchmark problems, demonstrating that highly
accurate solutions can be obtained, and showing that
DLO provides a truly systematic means of directly and
reliably automatically identifying yield-line patterns.
Finally, since the critical yield-line patterns for many
problems are found to be quite complex in form, a
means of automatically simplifying these is presented.

1. Introduction
The yield-line method is a long established and highly
effective means of estimating the ultimate load-carrying
capacity of slabs and plates. The term ‘yield-line’
was coined by Ingerslev [1], with a comprehensive
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theory developed by Johansen [2], and, in parallel, by Gvozdev [3]. The upper bound status of
the method within the context of the then emerging plastic theories of structural analysis was
later confirmed by others (e.g. [4,5]). The method traditionally involves postulating a collapse
mechanism which is compatible with the boundary conditions and then using the principle of
virtual work to compute the ultimate load, or ‘load factor’.

For certain special cases, it has been possible to calculate provably exact failure load factors
(e.g. Fox [6] established the exact solution for the case of a uniformly loaded fixed square slab).
However, in the case of most real-world geometrical configurations exact load factors are not
available. In such cases, unless the critical yield-line pattern has been identified, the computed
load factor will over-estimate the true load factor. While lower bound methods can be used to
bound the load factor from below, the gap between a yield-line solution and a solution obtained
using common hand-based lower bound analysis methods (e.g. the strip method proposed by
Hillerborg [7], which simplifies the problem by allowing analyst/designer to select load paths
while ignoring twisting moments) will typically be found to be quite wide. This situation is clearly
unsatisfactory and has undoubtedly limited the extent to which hand-based yield-line analysis is
used in practice.

Consequently, various computational methods have been applied to the problem over the
past few decades. For example, Anderheggen & Knopfel [8] were among the first to apply
finite-element limit-analysis techniques to slabs, showing that rigorous lower bound solutions
could be obtained providing a suitable element formulation was employed. More recently, it
has been demonstrated that nonlinear optimization [9] and the second-order cone programming
techniques [10–12] can be applied, obviating the need to linearize the yield surface. Meshless
(element-free Galerkin) methods have also been applied to slab problems, and reasonably good
approximations of the collapse load factor can be obtained rapidly [13]. However, despite the
promise of such methods, they have not found their way into routine engineering practice and
at present practising engineers typically have to instead rely on potentially cumbersome iterative
elasto-plastic analysis methods. Furthermore, since finite-element (and meshless) methods are
concerned with treatment of an underlying continuum mechanics problem, these methods do not
directly identify patterns of yield-lines, though in many cases these can subsequently be inferred
from the output.

To address this, computational methods capable of explicitly identifying yield-lines have
also been developed in parallel. For example, Chan [14], and later workers such as Munro &
Da Fonseca [15] and Balasubramanyam & Kalyanaraman [16], proposed (very similar) methods
in which potential yield-lines are placed at the boundaries of rigid elements arranged in a finite-
element mesh. This permits linear programming (LP) to then be used to identify the most critical
layout of yield-lines. While available computing resources of the time meant that only relatively
coarse meshes could be treated, the most significant problem is sensitivity of the results obtained
to the chosen initial mesh layout, with the consequence that refining the mesh alone does not
necessarily lead to an improved estimate of the collapse load factor. This, for example, means that
when using a structured triangular mesh, however fine, it is impossible to accurately simulate
a fan-type mechanism. Numerous attempts to overcome this fundamental problem have been
made, for example, by subsequently changing the topology of the initial rigid finite-element
mesh through the use of geometry optimization or other techniques (e.g. [17–19]), but no fully
satisfactory solution to the problem has been found. (This was also the conclusion of Johnson
[20], who, after many years work in the field, asserted that the upper bound problem was simply
‘too difficult’ to solve computationally.) A possible way round this was recently put forward by
Jackson [21] and Jackson & Middleton [22], who proposed that the lower bound solution could
be used to suggest the form of the yield-line solution. Promising results were presented, but the
procedure involves both a manual interpretation step and a potentially problematic and time-
consuming nonlinear optimization step, suggesting that a truly systematic means of identifying
yield line patterns had yet to be found.

However, the popularity of application-specific yield-line analysis tools, for example the
COBRAS reinforced concrete bridge assessment tool developed at the University of Cambridge,
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and which involves automatically searching through a library of possible yield-line failure
mechanisms [23], indicates that a systematic yield-line method would undoubtedly find
widespread application. Furthermore, a 2004 industry report reiterated the potential economic
benefits of using yield-line design, despite the fact that at present the analysis must by necessity
be performed by hand [24]. In the report, it is recommended that, because a hand analysis may not
lead to identification of the most critical mechanism, a 10% margin of error (safety factor) should
pragmatically be assumed. However, the basis for this particular value is not entirely clear, and
the fact that a factor of this sort is needed at all is clearly not entirely satisfactory.

In this paper, the upper bound problem will be revisited using a ‘discontinuous’ rather
than continuum analysis approach, on the surface similar to the methods proposed by Chan
[14], Munro & Da Fonseca [15] and others. However, the significant difference here is that by
formulating the problem in terms of discontinuities rather than elements, a very much wider range
of failure modes will be able to be identified, thereby overcoming the sensitivity to the initial mesh
layout encountered when using previously proposed methods. Furthermore, rather than initially
considering the yield-line analysis problem directly, as most others have done (with only limited
success), the procedure described in this paper was developed following a conjecture that there
existed a direct analogy between the layout of bars in optimum trusses and the layout of yield-
lines in slabs, since such an analogy had been identified in the case of in-plane plasticity problems
[25]. As the problem formulation is somewhat different in this case, the original sequence of
development is also preserved in this paper, with the nature of the analogy examined initially.

2. Analogy between optimal layouts of truss bars and yield-lines

(a) Background
The analogy between the compatibility requirements of yield-line patterns and the equilibrium
requirements of trusses appears to have been identified comparatively recently [26]. This finding
is of interest since numerical layout optimization techniques have been applied to the problem
of identifying optimal trusses for several decades (e.g. [27,28]). Furthermore, the efficiency of
such methods have dramatically increased recently, with the advent of modern interior point LP
solvers and also the application of adaptive refinement procedures [29]. Thus, layout optimization
problems containing several billion potential connections between nodes (i.e. bars or yield-lines
in this case) can now be solved on current generation personal computers.

However, while Denton [26] showed that a truss corresponding to a compatible yield-line
pattern must have at least one state of self-stress (or ‘degree of redundancy’), it can be shown that
there must always exist a statically determinate optimum solution for the single load case truss
layout optimization problem. This makes the analogy perhaps less immediately obvious than that
identified between discretized optimal truss layouts and the critical arrangement of slip-lines in
plane plasticity problems [25]; in the latter case, many important plane plasticity problems have
patterns of slip-lines defining the failure mechanism which correspond to the layouts of bars in
statically determinate trusses. Furthermore, it is not immediately obvious how issues such as the
presence of distributed out-of-plane live loading can be treated using the type of procedure used
to identify optimal truss layouts (such loading is obviously often present in slab problems, but
is absent from the basic truss layout optimization problem). To investigate this further, various
approximate-discretized LP truss layout optimization formulations will now be considered.

(b) Layout optimization of trusses: linear programming formulations
First, consider a potential planar design domain which is discretized using n nodes and
m potential nodal connections (truss bars). The classical ‘equilibrium’ plastic truss layout
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Figure 1. Simple truss layout optimization problems: (a) design domain with fixed pin and pin/roller supports and an applied
load; (b) a solution to problem (a) with 2 × 2 nodes (volume= 4 when σ− = σ+ = 1); (c) as (b) but with 13 × 13 nodes
(volume= 3.164, less than 1% greater than exact value ofπ ); (d) alternative ‘self-stress’ problem; (e) solution to problem (d)
with 2 × 2 nodes (volume= 16) and (f ) as (e) but with 25 × 25 nodes (volume= 12.656, 4× the volume for problem (c)).
(Online version in colour.)

optimization formulation for a single load case is defined in equation (2.1) as follows (after [27]):

min V = cTq

subject to: Bq = f

q ≥ 0,

(2.1)

where V is the total volume of the structure, qT = {q+
1 , q−

1 , q+
2 , q−

2 . . . q−
m}, and q+

i , q−
i are the tensile

and compressive forces in bar i; cT = {l1/σ+
1 , l1/σ

−
1 , l2/σ

+
2 , l2/σ

−
2 . . . lm/σ−

m }, where li, σ+
i and σ−

i
are, respectively, the length and tensile and compressive yield stress of bar i. B is a suitable
(2n × 2m) equilibrium matrix containing direction cosines and fT = {f x

1 , f y
1 , f x

2 , f y
2 . . . f y

n } where f x
j

and f y
j are the x and y components of the external load applied to node j ( j = 1 . . . n). The presence

of supports at nodes can be accounted for by omitting the relevant terms from f, together with
the corresponding rows from B. This problem is in a form which can be solved using linear
optimization, with the bar forces in q being the LP variables.

Figure 1a shows the definition of a typical truss layout optimization problem, with the
solutions when 2 × 2 nodes and 13 × 13 nodes are used to discretize the problem given in
figure 1b,c, respectively. (In both cases, each node was inter-connected to every other node
to create a ‘fully connected ground structure’, with LP then used to identify the optimum
subset of truss bars). Note that, in the latter case, the solution is within 1% of the analytical
optimum solution.

However, noting the observation of Denton [26] that the truss corresponding to a compatible
yield-line pattern must have at least one state of self-stress (i.e. is ‘pre-stressed’), it is of interest
to instead consider the closely related problem of finding the optimal layout of a truss which has
no external loading (i.e. where f = 0), but which is in a state of self-stress. Though this particular
problem appears not to be explicitly considered in existing structural optimization literature, an
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appropriate mathematical formulation can tentatively be postulated. Thus, since this remains a
‘layout optimization’ problem, it seems appropriate to prescribe the state of self-stress rather
loosely, for example, leaving open the possibility of many different bars being subjected to the
self-stress (i.e. so as not to over-constrain the problem). This means that a single constraint can be
added to give the following modified problem formulation:

min V = cTq

subject to: Bq = 0

hTq = 1

q ≥ 0,

(2.2)

where hT = {h1, −h1, h2, −h2 . . . − hm} and where hi is a factor used to prescribe how the self-stress
is to be distributed between each bar i (i = 1 . . . m) in the frame. Alternatively, specific bars could
be allocated specific prescribed self-stress forces, if required.

A sample self-stress problem is defined in figure 1d, with the solutions when 2 × 2 nodes
and 25 × 25 nodes given in figure 1e,f, respectively. To obtain the particular results shown, the
self-stress coefficients in the constraint hTq = 1 for each truss bar were defined by using the centre-
point of the domain as a focus, achieved by using the following simple, though perhaps not
intuitively obvious, rules: if the centre-point (i.e. [0.5, 0.5] in this case) lies in a vertical strip
drawn directly above a given potential truss-bar i then coefficient hi is taken as the perpendicular
distance from the truss bar to the centre-point of the domain; otherwise, this is taken as zero. This
gives solutions which are by inspection directly comparable to those for the problem defined in
figure 1a, with the optimum structures shown in figure 1b,c clearly representing one-quarter of the
structures shown in figure 1e,f, respectively (which are in fact simple two-dimensional tensegrity
structures, with the former being the main part of the ‘X-shaped module’ referred to by Snelson
[30], hinting at the potential for this type of problem formulation to be adapted to synthesize such
structures).

It is also evident that the topology of the solution given in figure 1f is reminiscent of the ‘fan’-
type mechanism which is critical when a slab is subjected to a point load (e.g. [5]; the numerically
computed volume is also within 1% of the analytical load factor for the slab problem when a
unit load is applied). In fact, it will now be demonstrated that it is this latter formulation which
is directly analogous to the yield-line layout optimization problem, with the equilibrium truss
optimization problem corresponding to the kinematic yield-line layout optimization problem.

(c) Yield-line layout optimization: linear programming formulation
Maintaining precisely the same form of linear optimization problem as given in (2.2), the
kinematic yield-line layout optimization formulation for an out-of-plane, quasi-statically loaded,
perfectly plastic slab with supported edges and discretized using m nodal connections (yield-line
discontinuities), n nodes and a single load case can be defined in equation (2.3) as follows:

min E = gTd

subject to: Bd = 0

fT
Ld = 1

d ≥ 0,

(2.3)

where E is the energy dissipated due to rotation along the yield-lines, dT = {θ+
1 , θ−

1 , θ+
2 , θ−

2 . . . θ−
m },

where θ+
i , θ−

i are the positive and negative relative rotations along the yield-line i;
gT = {m+

p1l1, m−
p1l1, m+

p2l2, m−
p2l2 . . . m−

pmlm}, where li, m+
pi and m−

pi are, respectively, the length and
positive and negative plastic moment of resistance per unit length for potential yield-line i. Note
that when Johansen’s square yield criterion [2] is applied to isotropic slab problems, the plastic
moment of resistance per unit length will be the same for all potential yield-lines, irrespective of
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Figure 2. Strip ‘above’ potential yield-line i (AB), considered when calculating the effects of uniform live loading q (where O is
the centroid of the strip).

their orientation. B is a suitable (2n × 2m) compatibility matrix. The (relative) rotations along the
yield-lines in d are the LP variables. (Note that for convenience the terms ‘energy dissipation’
and ‘rotation’ are here used as shorthand for ‘rate of energy dissipation’ and ‘rotation rate’,
respectively.)

In this problem, fT
Ld = 1 can be interpreted as the unit displacement constraint required in a

standard virtual work formulation, where the coefficients in fL are a function of the external live
load. This ensures that the work done by the external live load is normalized, such that only
the internal work done needs to be explicitly minimized in the formulation. However, it must
be borne in mind that the coefficients in fL must relate to the current problem variables, i.e. the
yield-line rotations in d, which are relative rather than absolute values. Thus, the contribution
to the left-hand side of the global unit displacement constraint, fT

Ld = 1, of a given yield-line i
will be

fT
Lidi = [mLni − mLni]

[
θ+

i

θ−
i

]
, (2.4)

where mLni is the moment caused by the external (unfactored) live loading on the slab. This can
conveniently be calculated by considering only the effects of loads which lie in a strip of slab
lying ‘above’ potential yield-line i (it is only necessary to work parallel to one co-ordinate axis,
in this case the Cartesian y-axis). Thus, if it is assumed that the slab is subjected to a point load,
the moment is calculated as the magnitude of the point load multiplied by the perpendicular
distance to the potential yield-line. If a uniform pressure of intensity q is applied, then it can be
seen that mLni = qaivi, where ai is the area of the strip and where vi is the perpendicular distance
to the centroid O of the strip, as indicated in figure 2. In summary, the use of relative rotations
in the calculations means that the effect of a relative rotation at an individual discontinuity on
the work done by the external live loads can readily be accounted for. Then, through summation
over all discontinuities, the total work done by all external live loads can be determined, and then
conveniently set to unity using the constraint fT

Ld = 1.



7

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140071

...................................................

(d) Worked example
Consider a fixed square slab ABCD of unit area, with unit moment of resistance per unit length,
and subject initially to a single central unit point load (assume vertices: A[0,0], B[1,0], C[1,1] and
D[0,1]). If this problem is discretized using n = 4 nodes, then a maximum of six potential yield-
line discontinuities will interconnect the nodes, and the problem matrices and vectors of (2.3) can
be written out in full as follows:

dT = [θ+
AB θ−

AB θ+
AC θ−

AC θ+
AD θ−

AD θ+
BC θ−

BC θ+
DB θ−

DB θ+
DC θ−

DC] (2.5)

gT = [1 1
√

2
√

2 1 1 1 1
√

2
√

2 1 1] (2.6)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1√
2

−1√
2

1√
2

−1√
2

1 −1

−1 1
−1√

2

1√
2

1 −1
1√
2

−1√
2−1√

2

1√
2

−1 1

−1√
2

1√
2

−1 1

1√
2

−1√
2

1 −1

−1 1
−1√

2

1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.7)

and fT
L =

[
1
2 − 1

2 0 0 0 0 0 0 0 0 0 0
]

. (2.8)

If the slab is instead subjected to a uniform out-of-plane pressure loading of unit intensity, the
only change necessary is to replace equation (2.8) with the following equation:

fT
L =

[
1
2

− 1
2

1

6
√

2
− 1

6
√

2
0 0 0 0

1

6
√

2
− 1

6
√

2
0 0

]
. (2.9)

Once the appropriate LP problems are solved, the resulting load factors at collapse can be found
to be 16 and 48 for the point load and distributed load problems defined by (2.8) and (2.9),
respectively. Other methods can of course be used to identify the same values for this very coarse
numerical discretization, but the novel feature of the formulation described here is that there has
been no need to explicitly add a node at the centre of the slab, something that is clearly not the case with
the rigid finite-element-based methods put forward by workers such as Chan [14] and Munro &
Da Fonseca [15].

In the case of the point-loaded slab, it is also evident that the solution of 16 is identical to
that obtained for the ‘truss with self-stress constraints’ problem given in figure 1e, which is to be
expected as the problems are completely equivalent mathematically. Furthermore, when more
nodes are introduced the solution to the slab problem quickly approaches the exact value of 4π

(e.g. see figure 1f for a solution to the mathematically equivalent truss problem). Similarly, in
§5, it will be demonstrated that closer and closer approximations of the exact load factor for the
uniformly loaded slab problem can be obtained as more nodes are introduced (Fox [6] identified
the exact load factor for this problem to be 42.851).
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Table 1. Features of analogy between truss and yield-line layout optimization problems.

truss problem slab problem

LP problem variables internal bar forces in q yield-line rotations in d
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

governing coefficient matrix equilibrium: B compatibility: B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

additional constraint prescribes self-stress unit displacement
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

objective function minimize volume V minimize work E
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Commentary
Layouts of bars in optimal ‘Michell’ trusses [31] form Hencky–Prandtl nets, which are orthogonal
curvilinear co-ordinate systems (e.g. [32]). It has also been known for many years that, when
Johansen’s square yield criterion is employed, the layouts of yield-lines in slabs also form
Hencky–Prandtl nets [33]. However, prior to the studies of the present authors, the approximate-
discretized solution method developed for truss layout optimization [27] had apparently not been
adapted to treat slab problems. This is despite the fact that the similarity in the form of the LP
problems involved was noted many years ago by Chan [14], a talented researcher at the time
active in both fields at the University of Oxford. Rectifying this situation has been the main goal
of this paper.

The key features of the analogy are summarized in table 1; however, with the formulation
considered thus far it is for example not yet clear how more general boundary conditions (e.g. the
presence of free edges) or more complex slab geometries can be handled. The applicability of
the general discontinuity layout optimization (DLO) formulation described by Smith & Gilbert [25,
34] will therefore now be investigated.

3. Discontinuity layout optimization

(a) General formulation
The general discretized kinematic DLO problem formulation may be stated as follows (after [25]):

min λfT
Ld = −fT

Dd + gTp (3.1a)

subject to: Bd = 0 (3.1b)

Np − d = 0 (3.1c)

fT
Ld = 1 (3.1d)

p ≥ 0. (3.1e)

Or alternatively as an equivalent ‘equilibrium’ formulation (derived using duality principles—
e.g. [35]) as

max λ (3.2a)

subject to: BTt + λfL − q = −fD (3.2b)

NTq ≤ g (3.2c)

where λ is a dimensionless load factor, fD and fL are vectors, respectively, prescribing specified
dead and live load effects, d contains displacements along the discontinuities, B is a suitable
compatibility matrix and N is a suitable flow matrix. Finally, p and g are vectors of plastic
multipliers and their corresponding work equation coefficients and t and q are vectors of
equivalent nodal forces and forces along discontinuities, respectively.
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In the kinematic formulation, the discontinuity displacements in d and the plastic multipliers
in p are the LP variables, whereas in the corresponding equilibrium formulation the equivalent
nodal forces in t, the forces along discontinuities in q and the load factor λ are the LP variables.

Comparing (2.3) with (3.1), the most obvious difference is that in the latter case plastic
multiplier variables have been introduced, thereby effectively decoupling the compatibility and
flow constraints. A consequence of this is that when duality principles are applied to obtain the
dual ‘equilibrium’ formulation, the equilibrium constraint (3.2b) and yield constraint (3.2c) are
properly separated.

Given that (3.1) and (3.2) only express general relations, it is now necessary to identify
appropriate variables for the slab problem now being studied, starting by considering the
kinematic formulation.

(b) Kinematic formulation for slabs
Considering the kinematic problem formulation for slabs, the contributions of a given yield-line i
to the global compatibility constraint equation (3.1b) can be written as

Bidi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αi −βi 0

βi αi 0

0
li
2

1

−αi βi 0

−βi −αi 0

0
li
2

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣θni

θti
δi

⎤
⎥⎦ , (3.3)

where θni, θti and δi are, respectively, the normal rotation along a potential yield-line, the twisting
rotation and the out-of-plane displacement (measured at the yield-line mid-point), and where αi
and βi are x-axis and y-axis direction cosines. Note that, unlike in (2.3), the displacement variables
in di are no longer restricted to be non-negative since additional non-negative plastic multiplier
variables will ensure positive energy dissipation.

Suppose that there exists no coupling between normal and twisting rotations, and between the
shear displacement along a yield-line. In this case, the contributions of a given yield-line i to the
global flow rule constraint (3.1c) can be written as

Nipi − di =

⎡
⎢⎣1 −1 0 0 0 0

0 0 1 −1 0 0
0 0 0 0 1 −1

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
i

p2
i

p3
i

p4
i

p5
i

p6
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎣θni

θti
δi

⎤
⎥⎦ . (3.4)

However, at a typical yield-line, it can generally be assumed that the torsional (twisting) and
out-of-plane displacements, θti and δi, respectively, will be zero, and hence these variables can
be omitted from the formulation, along with their corresponding plastic multiplier variables,
p3

i , p4
i , p5

i and p6
i . This situation does not apply at free boundaries however, where θti and δi should

be free to take on arbitrary values, i.e. such variables should be added to signal the presence of
such a boundary. This is because at a free boundary there is no limitation that the out-of-plane and
torsional displacements must be zero, as would implicitly be the case if these terms were omitted
from the formulation. (This makes the above formulation intrinsically more flexible than that
considered in §2). Similarly, at a line of symmetry, δi should be free to take on an arbitrary value.

The objective function, (3.1a), and unit displacement constraint, (3.1d), can be formulated in a
similar way to before (in §2), although now taking account of the fact that rotation normal to
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Figure 3. Nodal moments and forces at ends of yield-line i (AB), for problem shown in figure 2.

a yield-line is represented by a single unrestricted LP variable (the plastic multiplier variables in
p are instead now restricted to be non-negative, ensuring the plastic dissipation gTp is always
positive; the coefficients in g are as before for an internal yield-line). It should also be noted
that along a free-edge (if present) fT

Li = {mLni, mLti, fLi}, and hence values for mLti and fLi will
additionally need to be calculated (where fLi will equal the sum of all loads lying in the slab strip
‘above’ yield-line i and where mLti will equal fLi multiplied by the distance between the mid-point
of the yield-line and the centre of the line of action of the load in the slab strip, measured parallel
to the yield-line).

(c) Equilibrium formulation for slabs
Considering the equilibrium problem formulation for slabs, the required equilibrium constraint
can be written for a potential yield-line discontinuity i as follows:

BT
i ti + λfLi − qi = −fDi (3.5)

or, in expanded form as

⎡
⎢⎢⎢⎣

αi βi 0 −αi −βi 0

−βi αi
li
2

βi −αi
li
2

0 0 1 0 0 −1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mx
A

my
A

tz
A

mx
B

my
B

tz
B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ λ

⎡
⎢⎣mLni

mLti
fLi

⎤
⎥⎦ −

⎡
⎢⎣Mni

Mti
Si

⎤
⎥⎦ = −

⎡
⎢⎣mDni

mDti
fDi

⎤
⎥⎦ , (3.6)

where mx
j , my

j and tz
j can be interpreted, respectively, as x and y direction equivalent nodal

moments and out-of-plane nodal force, all acting at a given node j, and where Mni, Mti and
Si represent, respectively, the yield-line normal moment, torque and shear force acting on
discontinuity i (figure 3). Finally, mDni, mDti, fDi and mLni, mLti, fLi represent the dead and live load
effects acting at discontinuity i.
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Now considering the contribution of a given yield-line i to the global yield constraint (3.2c),
initially assuming that Ni is as defined in equation (3.4)

NT
i qi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣Mni

Mti
Si

⎤
⎥⎦ ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m+
pi

m−
pi

m+
ti

m−
ti

s+
i

s−
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.7)

Although at a typical yield-line, inequality equation (3.7) reduces simply to m−
pi ≤ Mni ≤ m+

pi,
by inspection it is clear that more complex yield functions could be introduced if required, for
example involving interaction between the normal and torsional moments (though in doing so
the traditional ‘yield-line’ character of the solution is likely to be lost, e.g. a twisting failure would
lead to loss of contact between the two ends of the parts of a slab adjoining a given yield-line).

4. Extensions to the basic discontinuity layout optimization procedure

(a) Treating non-convex problem domains
Although the benchmark plane strain metal-forming and geotechnical problems considered in
Smith & Gilbert [25] all had simple rectangular problem domains, real-world slab-geometries
will often be considerably more complex, e.g. comprising complex non-convex problem domains.
Although such geometries present no particular difficulties for conventional finite-element-
based formulations, various issues arise when the DLO procedure is applied. These will now
be explored.

(i) Inter-nodal connections in non-convex problem domains

Consider the non-convex slab (ABCDEFGHIJKL) shown in figure 4. If it is assumed that each node
is connected to every other node by potential yield-lines, then it is evident that some potential
yield-lines (e.g. the highlighted yield-line CJ in figure 4a) cross ‘free space’. To address this, it has
been found to be convenient to disallow such potential yield-lines. However, since this means
that a good representation of a previously well represented possible mode of response may then
not be achievable (e.g. figure 4b), a finer nodal discretization can be used along all boundaries to
partially compensate for this, figure 4c; consequently in all example problems considered herein
the nodal spacing along boundaries has been set to be half that used within the interior of a slab.

(ii) Computing load effects in non-convex problem domains

It is also necessary to consider how the load terms in fL and fD should be computed when a non-
convex slab is involved. Thus, referring to figure 4, suppose that the slab has material properties,
support and loading conditions which mean that, at failure, part of the slab (CDEFGHIJKL)
rotates as a rigid element about a single yield-line CL, i.e. as indicated in figure 4d. Assuming
both dead and live loads are involved, it is instructive to consider how the components in fLi
and fDi can be calculated for i = CL. In this case, as only the area shaded (CDEFIJKL) will be
directly influenced by rotation along CL, only loading within this shaded area need be accounted
for in the calculations. The remaining unshaded area lying ‘above’ potential yield-line CL (i.e.
area FGHI) will clearly also move in the mechanism postulated, but the work associated with
this movement will be accounted for through displacement along edge FG (combined translation
and rotation), with the relative displacements at the edge of the slab in effect being absolute
displacements.
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Figure 4. Slab with non-convex ‘C’-shaped geometry: (a) potential yield-lines, with critical yield-line CJ which crosses domain
boundaries highlighted; (b) reduced set of potential yield-lineswith alternatives to CJ highlighted; (c) as (b) butwith finer nodal
spacing along edges and (d) shaded area to be considered when formulating fL and fD terms for potential yield-line CL.

(b) Simplifying complex yield-line patterns
It was pointed out earlier in the paper that the layouts of yield-lines in slabs will, like bars in
optimal trusses, take the form of Hencky–Prandtl nets, which are orthogonal curvilinear co-
ordinate systems. A side-effect of this is that it will frequently be found that the true critical
failure mechanism will include one or more areas comprising an infinite number of infinitely short
yield-lines. Although strictly speaking correct, such mechanisms do not appear to be in the spirit
of the original yield-line analysis method, and the presence of large numbers of yield-lines can
also make visualization of the collapse mechanism and hand checking of solutions difficult; the
latter is potentially very important in engineering practice. (Furthermore, considering application
to reinforced concrete slabs, cracks tend in reality to be discrete and spaced of the order of
centimetres apart in yielding regions, owing to the finite tensile strength of the concrete.)

A practical means of simplifying the yield-line patterns identified is to use a coarse nodal
refinement (e.g. compare the simple layout of figure 1b with that of figure 1c). However, this
means that there is a danger that important detail will be lost. Thus, the efficacy of a method which
involves penalizing short yield-lines in order to simplify failure mechanisms will be investigated.
Such a method appears to have been first proposed by Parkes [36], though in the context of truss
layout optimization.

In essence, this method only requires that gT = {m+
p1l1, m−

p1l1, . . . m−
pmlm} is replaced with

ĝT = {m+
p1(l1 + k), m−

p1(l1 + k), . . . m−
pm(lm + k)} when formulating the optimization problem, where

k is a value designed to give the desired level of simplification. Then, once the optimization
process is complete, a corrected computed load factor can be obtained by back-substituting the
original values from g into the objective function equation (assuming the kinematic formulation is
being used). The efficacy of this approach will be explored for the example problems considered
in §5.

5. Examples
The procedure will now be applied to a range of isotropic slab problems previously studied in the
literature, including some which have known analytical solutions.

(a) Computational issues
To obtain the solutions, a workstation equipped with an Intel Xeon E5-2670 CPU and running 64-
bit CENTOS Linux was employed. The Mosek commercially available interior point LP optimizer,
which uses the homogeneous and self-dual algorithm, was used [37]. The problem was initially
passed to the optimizer in memory and subsequently only changes to the current problem needed
to be passed to the optimizer, rather than the entire revised problem. The pre-solve feature of the
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optimizer was enabled and default tolerances were used. In all cases, nodes were distributed on
a uniform Cartesian grid with the specified number of nodal divisions being the number used
across a specified length of the interior of a given slab. The number of nodal divisions used along
exterior edges was twice that used within the slab interior, as described in §4a.

(i) Adaptive nodal connection scheme

To significantly increase the size of problem which could be solved, the adaptive nodal connection
procedure, described by Gilbert & Tyas [29] for layout optimization of trusses, and in the context
of DLO by Smith & Gilbert [25], was used when solving all problems. Using this procedure, it is
only necessary to connect adjacent nodes with potential discontinuities initially, with additional
potential discontinuities then added as required (a simple check for yield violation is carried out
following an LP iteration to decide whether further potential discontinuity connections need to
be added, and hence whether a further LP iteration is required). In the examples considered here,
it was specified that not more than 5% of the number of connections present in the initial, adjacent
connectivity, problem could be added at each iteration. Even though changes to the LP problem
at each iteration might be relatively modest, with the interior point optimizer used it was not
possible to use the solution from a previous iteration as a starting point for the next optimization
(i.e. a ‘warm start’ was not used). Additionally, although the adaptive procedure is amenable to
parallelization, and a parallel version of the Mosek optimizer is available, a single processor was
used for all computations. The CPU times quoted include only the time to solve the LP problem(s);
in practice, some additional time is required to identify candidate connections for admission at
the next iteration in the adaptive solution procedure used.

(ii) Treating overlapping discontinuities

The greatest common divisor algorithm referred to in Smith & Gilbert [25] was used to remove
overlapping potential discontinuities, except when the simplification algorithm outlined in §4b
was used (since this requires overlapping potential discontinuities to be present in order to work
effectively).

(b) Square slabs with known exact solutions
Initially consider a square slab of side length L which is subjected to uniform pressure loading q
and which has a plastic moment of resistance per unit length of mp. If the support type around the
perimeter is unchanging, then symmetry conditions mean that only one-eighth of the slab needs
to be modelled. DLO solutions and corresponding CPU times for slabs with fixed and simple
supports are shown in table 2, for various nodal discretizations. Figure 5 shows the solution for
the fixed support case when using the finest nodal discretization, involving 320 nodal divisions.

When simple supports are present the exact solution (λ = 24.0(mp/qL2)) can be obtained when
only three nodes are present (i.e. at the corners of the portion of slab being modelled). Increasing
the total number of nodes therefore does not change the solution in this case.

For the fixed support problem, it is evident from table 2 that the DLO procedure can obtain
a solution which is within 0.5% of the exact analytical solution in only 2 s. This is in contrast
to previously proposed automated yield-line analysis methods, which have struggled to obtain
accurate solutions for this particular problem without recourse to specially tailored meshes. The
best solution obtained for the fixed support problem (42.857(mp/qL2) is just 0.015% higher than the
exact solution (42.851(mp/qL2)), though in this case the CPU time required was long (912 559 s).
The solutions obtained using nodal divisions of between 20 and 320 were used to calculate an
extrapolated solution (refer to appendix A for details of the extrapolation method used). The
extrapolated solution was found to be 42.851(mp/qL2), which matches the exact solution quoted
by Fox [6] to all five significant figures, indicating that the DLO procedure can, if required, be
used to obtain extremely accurate numerical solutions.
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Table 2. Square slabs with known exact solutions: numerical versus analytical solutions.

analytical numerical
support type λ(mp/qL2) nodal divisionsa λ(mp/qL2) error% CPU (s)

simple 24.0 1 24.000 0.000 <1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fixed 42.851 1 48.000 12.016 <1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[6] 20 43.055 0.476 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40 42.934 0.194 66
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60 42.908 0.133 278
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

80 42.887 0.085 1105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 42.879 0.064 1704
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

120 42.874 0.054 4835
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

140 42.870 0.045 15 655
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

160 42.868 0.040 54 949
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

180 42.865 0.033 71 420
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

200 42.863 0.028 276 301
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

220 42.862 0.025 594 702
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

240 42.861 0.023 855 442
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

260 42.860 0.021 1 299 532
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

280 42.859 0.018 985 247
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

300 42.858 0.016 1 695 220
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

320 42.857 0.015 912 559
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∞b 42.851 0.000 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aNumber of divisions along each leg of the right-angled triangle domain analysed.
b Extrapolated value (see appendix A for extrapolation procedure).
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Figure 6. Square slab with fixed supports: numerical solution versus iteration when using adaptive nodal connection scheme
(20 nodal divisions). (Online version in colour.)
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Figure 7. Regan and Yu’s irregular slabs: (a) with alcoves and (b) indented, showing geometries and DLO solutions (120 nodal
divisions). Simple and fixed supports are denoted, respectively, by single and cross hatches. (Online version in colour.)

Finally, figure 6 shows how the computed collapse load and associated mechanism changes
as the adaptive nodal connection procedure employed proceeds, here using a coarse nodal
discretization involving 20 nodal divisions for sake of clarity.

(c) Regan and Yu’s irregular slabs
The next two slab problems were originally included in the book by Regan & Yu [38] and are
somewhat more complex, with varying support conditions and non-convex geometries. Both the
‘slab with alcoves’ and ‘indented slab’ problems involve a pressure load of unit intensity and
unit plastic moment of resistance per unit length. The geometries of the slabs and sample DLO
solutions are presented in figure 7.
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Table 3. Regan and Yu’s irregular slabs: literature solutions versus DLO solutions.

reference bound nodal divisionsa slab with alcovesλ indented slabλ

Regan & Yu [38] upper — 41.6c 33.3c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Johnson [39] upper — 37.0 32.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thavalingham et al. [18] upper — 35.8 29.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jackson [21] upper — 35.8 29.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lower — 35.1 28.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DLO upper 20 35.589 29.174

upper 40 35.411 29.062

upper 60 35.330 29.034

upper 80 35.305 29.014

upper 100 35.293 29.010

upper 120 35.279 29.002

upper 140 35.267 28.998

upper 160 35.262 28.995

upper 180 35.257 28.995

upper 200 35.254 28.992

upper 220 35.251 28.991

upper 240 35.250 28.990

upper 260 35.247 28.990

upper 280 35.245 28.989

upper 300 35.244 28.988

upper 320 35.243 28.988

upper 340 35.243 —

upper 360 35.242 —

upper 380 35.241 —

— ∞b 35.230 28.980
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aNumber of divisions per unit length (i.e. the total length of each of the slabs, neglecting symmetry).
bExtrapolated values, obtained using the 16 most refined solutions (see appendix A for extrapolation procedure).
cComputed using the yield-line patterns shown in Regan & Yu [38]; these values are slightly lower than the simplified finite-element mesh
derived solutions quoted by Johnson [39].

In table 3, solutions obtained by previous workers are presented alongside new DLO results.
It is clear that even the coarsest DLO solutions presented (involving 20 nodal divisions) improve
upon (i.e. are lower than) previously obtained upper-bound solutions. This is despite the fact that
some of the previously obtained numerical solutions benefitted from the use of problem-specific
element meshes, tailored to yield the best possible solutions. The DLO solutions are also bracketed
by the upper and lower bound solutions computed by Jackson [21].

(d) Slab with hole
The final example considered comprises the irregular polygonal slab containing a hole previously
analysed by Olsen [40], Krabbenhøft et al. [10] and others. Here, the slab is assumed to be
isotropic with unit plastic moment of resistance per unit length and is subjected to a pressure
load of unit intensity. The slab geometry and DLO solution are shown in figure 8. The computed
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Figure 8. Slab with hole: geometry (dimensions in metre) and DLO solution (120 nodal divisions). (Online version in colour.)

Table 4. Slab with hole: literature versus DLO solutions.

reference bound nodal divisionsa solutionλ

Jackson [21] upper — 0.137
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lower — 0.132
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Krabbenhøft et al. [10] lower (approx.) — 0.135b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DLO upper 120 0.13554

aNumber of divisions per 10 m slab length.
bCalculated by dividing the quoted pressure load (6.75) by the quoted plastic moment of resistance (50).

DLO load factor was found to be 0.13554, which is bracketed by the upper and lower bound
solutions reported by Jackson [21], as indicated in table 4. Also, the solution is 0.4% higher
than the approximate lower bound solution reported by Krabbenhøft et al. [10]. This example
demonstrates that the DLO procedure can be applied to problems with realistic geometries,
something that is essential for industrial application.

(e) Simplified solutions
It is evident from the preceding examples that many of the DLO solutions identified are rather
complex, and distinctly different to the ‘textbook’ yield-line solutions most practicing engineers
are familiar with (for reasons which will be briefly discussed in the next section). However, by
using the procedure described in §4b, simpler, more familiar looking, yield-line patterns can be
generated. Sample simplified solutions for each of the examples considered are shown in figure 9;
values for the simplification factor k were chosen on a case-by-case basis to provide the desired
level of simplification. Figure 10 shows how the value of k influences the yield-line pattern for
Regan and Yu’s indented slab example.

It is evident that simplified yield-line patterns can successfully be generated, and, although the
corresponding load factors are somewhat less accurate than calculated using the standard DLO
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(a) (b)

(c) (d)

Figure9. Simplified failuremechanisms: (a) fixed square slab (40nodal divisions, k = 0.005,λ = 43.080 (diff: 0.53%)); Regan
& Yu’s (b) slab with alcoves (40 nodal divisions, k = 0.02, λ = 35.852 (diff: 1.77%)) and (c) indented slab (40 nodal divisions,
k = 0.05, λ = 29.293 (diff: 1.08%)); (d) slab with hole (50 nodal divisions, k = 0.5, λ = 0.13640 (diff: 0.63%)). (Differences
relative to (a) analytical solution given in table 2, (b), (c) extrapolated DLO solutions given in table 3, and (d) numerical DLO
solution given in table 4.) (Online version in colour.)

(a) (b) (c)

(d ) (e) ( f )

Figure 10. Regan and Yu’s indented slab: influence of simplification factor k on DLO solution, using 40 nodal divisions.
(a) k = 0, λ = 29.062 (diff: 0.28%), (b) k = 0.001, λ = 29.067 (diff: 0.30%), (c) k = 0.002, λ = 29.104 (diff: 0.43%),
(d) k = 0.005, λ = 29.205 (diff: 0.78%), (e) k = 0.05, λ = 29.293 (diff: 1.08%) and (f ) k = 0.1, λ = 29.965 (diff: 3.40%).
(Differences relative to extrapolated DLO solution given in table 3.) (Online version in colour.)

procedure, they are mostly very similar, demonstrating that the load factor is often relatively
insensitive to the precise form of the collapse mechanism. Also, the efficacy of the simplification
technique is likely to depend on the type of problem being considered.
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Figure 11. Use of Mohr’s circles in normal moment (Mn)–torque (Mt) space to illustrate characteristic features of critical yield-
line patterns in isotropic slabs: (a) orthogonal intersection of yield-lines of opposite sign, here at a fixed edge; (b) intersection of
yield-lines of the same sign at arbitrary angles; (c) intersection of yield-lines of opposite sign at simple support (whereφ = 45◦

ifmp = m+
p = m−

p ) and (d) yield line intersecting a free edge (at 45
◦ ≤ φ ≤ 135◦ ifmp = m+

p = m−
p ).

6. Discussion
Developing a procedure to automatically identify upper bound limit analysis solutions has
been of interest to researchers for many decades. In the case of slabs, a number of researchers
have proposed procedures designed to improve upon the solution obtained using an initial
rigid finite-element analysis (e.g. obtained using the method described by Munro & Da Fonseca
[15]), by refining this in a subsequent iterative nonlinear optimization phase (e.g. [17,18]). In
fact, when the adaptive nodal connection scheme described in §5a is employed, the initial
solution obtained using the DLO procedure will be precisely the same as that obtained
using rigid finite elements (assuming nodes are identically positioned in both cases, and
assuming nearest neighbour connectivity in the case of DLO). What is new here is that
when DLO is used the form of the yield-line pattern is permitted to change completely
at subsequent iterations (e.g. to a fan mechanism). Additionally, the convex nature of the
underlying mathematical optimization problem is preserved, and, even when the adaptive nodal
connection procedure is used, the solution obtained will be globally optimal for the prescribed
nodal discretization. This demonstrates that the widely held belief that recourse to nonlinear,
non-convex, mathematical optimization procedures is necessary in order to directly identify
critical yield-line patterns is misplaced. The DLO procedure also appears to retain much of the
elegant simplicity of the original yield-line analysis method. Compared with more conventional
finite-element limit analysis methods (e.g. [10]), the underlying formulation is simpler and
involves only linear constraints when Johansen’s square yield criterion is involved. Furthermore,
visual interpretation of the output is straightforward as discrete yield-lines can clearly
be identified.
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High-resolution DLO solutions also allow a number of characteristic features of critical yield-
line patterns in isotropic slabs to be observed, which can readily be confirmed via the use of
Mohr’s Circles. For example:

— yield-lines of opposite signs should intersect at 90◦, whether in the interior of a slab or at
a fixed support, as indicated in figure 11a;

— yield-lines of the same sign can intersect at any angle, as indicated in figure 11b;
— yield-lines of opposite signs should intersect simple supports at 45◦ and 135◦ (when

mp = m+
p = m−

p ), as indicated in figure 11c; and
— yield-lines should intersect free edges at between 45◦ and 135◦ (when mp = m+

p = m−
p ),

figure 11d. (Note that, as pointed out by Nielsen & Hoang [41], Kirchhoff boundary
conditions permit a torsional moment to exist along a free edge. Thus, it is not necessary
for critical yield-lines to intersect free edges at 90◦, as suggested by Quintas [42]).

These characteristic features are generally not enforced when postulating simple yield-line
patterns, either by hand or when using low numbers of nodes with DLO, and strictly would
only be fully enforced when using an infinite number of infinitesimally spaced nodes. Since
solutions generated using high numbers of nodes will often lead to highly complex patterns,
a simplification procedure has also been presented, which provides a pragmatic means of
identifying less complex layouts. A potential practical advantage of such layouts is that they can
be used to generate traditional engineering calculations, which can readily be checked by hand
by a practitioner.

7. Conclusion
(i) In this paper, it has been demonstrated that the problem of identifying critical yield-

line patterns can be formulated as a simple, albeit relatively large-scale, LP problem.
This overturns the widely held belief that recourse to complex nonlinear, non-convex,
mathematical optimization procedures is necessary in order to directly identify critical
yield-line patterns.

(ii) The analogy between approximate-discretized formulations for truss layout optimization
and yield-line layout optimization has been established. The DLO procedure used retains
much of the inherent simplicity of the traditional hand-based yield-line analysis method.
Excellent agreement with known exact solutions has been obtained and improved
solutions to a number of problems described in the literature have been obtained.

(iii) Unlike previously proposed upper bound computational limit analysis methods, the
DLO procedure presented can identify ‘fan-type’ yield-line mechanisms, as well as
mechanisms of any other geometry. The procedure therefore appears to be the first truly
systematic analysis tool capable of directly identifying yield-line patterns to have been
developed to date.

(iv) The yield-line patterns identified by the DLO procedure are often observed to be complex,
containing numerous closely spaced yield-lines. However, it is shown that such complex
failure mechanisms can be simplified if required (e.g. to facilitate hand-checking), albeit
at the expense of some accuracy.
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Figure 12. Square slab with fixed supports: computed load factor versus nodal refinement. (Online version in colour.)

Appendix A. Computing extrapolated load factors
In common with truss layout optimization problems (e.g. [43]), the solutions obtained using the
proposed layout optimization procedure appear to follow a relation of the form:

λn = λ∞ + kn−α , (A 1)

where λn is the numerically computed load factor for n equally spaced nodal divisions, λ∞ is the
load factor when n → ∞, and k and α are positive constants. Using (A 1), a weighted nonlinear
least-squares approach can be used to find best-fit values for λ∞, k and α, with the weighting
coefficient taken as n. For example, the resulting trend line and value for λ∞ for the fixed edge
square slab are shown in figure 12.
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