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Abstract

Introduction

Preeclampsia (PE) is a gestational disorder, manifested in the second half of pregnancy by
maternal hypertension, proteinuria and generalized edema. PE is a major cause of maternal
and fetal morbidity and mortality, accounting for nearly 40% of all premature births worldwide.
Bioactive sphingolipids are emerging as key molecules involved in etiopathogenesis of PE,
characterized by maternal angiogenic imbalance and symptoms of metabolic syndrome. The
aim of this study was to compare the cross-gestational profile of circulating bioactive sphingo-
lipids in maternal plasma from preeclamptic (PE) versus normotensive control (CTL) subjects
with the goal of identifying sphingolipids as candidate first trimester biomarkers of PE for
early prediction of the disease.

Methods

A prospective cohort of patients was sampled at the first, second and third trimester of preg-
nancy for each patient (11-14, 22—24, and 32—36 weeks " gestation). A retrospective stratified
study design was used to quantify different classes of sphingolipids in maternal plasma. We
used a reverse-phase high-performance liquid chromatography-tandem mass spectrometry
(HPLC-ESI-MS/MS) approach for determining different sphingolipid molecular species (sphin-
gosine-1-phosphate (S1P), dihydro-sphingosine-1-phosphate (DH-S1P), sphingomyelins
(SM) and ceramides (Cer)) in cross-gestational samples of human plasma from PE (n =7, 21
plasma samples across pregnancy) and CTL (n =7, 21 plasma samples across pregnancy)
patients.

Results

Plasma levels of angiogenic S1P did not change significantly in control and in preeclamptic
patients” group across gestation. DH-S1P was significantly decreased in second trimester
plasma of PE patients in comparison to their first trimester, which could contribute to reduced
endothelial barrier observed in PE. The major ceramide species (Cer 16:0 and Cer 24:0)
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tended to be up-regulated in plasma of control and PE subjects across gestation. The levels
of a less abundant plasma ceramide species (Cer 14:0) were significantly lower in first trimes-
ter plasma of PE patients when compared with their gestational-matched control samples (p
=0.009). Major plasma sphingomyelin species (SM 16:0, SM 18:1 and SM 24:0) tended to
be higher in control pregnancies across gestation. However, in PE patients, SM 16:0, SM
18:0 and SM 18:1 showed significant up-regulation across gestation, pointing to atherogenic
properties of the sphingomyelins and particularly the potential contribution of SM 18:0 to the
disease development. In addition, two major sphingomyelins, SM 16:0 and SM 18:0, were
significantly lower in first trimester plasma of PE patients versus first trimester samples of
respective controls (p = 0.007 and p = 0.002, respectively).

Conclusions

Cross-gestational analysis of maternal plasma of preeclamptic and normotensive women
identifies differences in the biochemical profile of major sphingolipids (DH-S1P, sphingo-
myelins and ceramides) between these two groups. In addition, first trimester maternal
plasma sphingolipids (Cer 14:0, SM 16:0 and SM 18:0) may serve in the future as early bio-
markers of PE occurrence and development.

Introduction

Preeclampsia (PE), a serious pregnancy-associated disorder, is characterized by high maternal
and fetal morbidity and mortality and is a cause of nearly 40% of premature births worldwide
[1, 2]. Clinical manifestations of PE include new onset hypertension, proteinuria and edema
appearing in the second half of pregnancy in the normotensive woman, and in severe cases it
may lead to maternal end-organ dysfunction (HELLP syndrome) [2, 3]. PE very often has future
consequences for mothers and children born from preeclamptic pregnancies that includes
increased cardiovascular complications or metabolic syndrome and related disorders [4-8].
Despite ongoing research into the characterization of molecular mechanisms that trigger PE, its
exact pathogenesis remains incompletely understood. To date there is no clinically available
early (first trimester) predictive diagnostics test, which would identify women at risk of develop-
ing PE before the onset of the disease in the second half of pregnancy [9, 10]. So far, the only fea-
sible management of preeclamptic pregnancies, is the antenatal control of all pregnant women
and earlier interruption of pregnancy when severe PE is diagnosed [9].

To the present time several different biochemical markers to early predict PE have been
proposed; markers of endothelial damage (anti-angiogenic markers), like: soluble fms-like
tyrosine kinase-1 (sFlt-1), soluble endoglin (SEDG); markers of apoptosis and inflammation;
placental protein 13 (PP13), C-reactive protein; markers of placental hypoxia and distress: lep-
tin, hypoxia-inducible factor-1o (HIF-1a), inhibin-A and activin-A, or circulating placental
microvesicles (e.g. exosomes) as potential signature nanoparticles [10]. However, none of
these biomarkers are sufficiently sensitive and specific to predict PE in the first trimester [10],
highlighting the need of more research to find biomarkers related to the pathological processes
occurring in early pregnancy in patients that will develop PE.

Recently sphingolipids and sphingolipids-related proteins have been implicated as potential
key factors involved in pathogenesis of PE [11, 12] that may serve as early biological sensors of
PE development. Two major sphingolipids, ceramide (Cer) and sphingosine-1-phosphate
(S1P) and their synthetic/metabolic pathways have been shown to be involved in physiological
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process of trophoblast differentiation and invasion in vitro and uterine angiogenesis, which are
severely impaired in PE [13-15]. The imbalance of the so called sphingolipid “rheostat™ has
been demonstrated recently in preeclampsia, as the reduced levels of circulating angiogenic
S1P and elevated levels of pro-apoptotic ceramides (Cer16:0, Cer18:0, Cer20:0, Cer24:0) were
found in third trimester serum of PE patients as compared to normotensive controls [11]. Fur-
ther, the lipidomic analysis of human term umbilical cord veins (UCV) from PE and control
patients revealed aberrant sphingolipids composition as preeclampsia was found to be associ-
ated with significant decrease in total sphingomyelins (SM) and total ceramides (Cer) and
increase in sphinganine and S1P [16].

Mass spectrometry-based lipidomics of sphingolipids (sphingolipidomics) is emerging as a
very accurate and sensitive platform for discovery of disease biomarkers [17, 18]. Circulating
sphingolipids are present in human blood and therefore the liquid biopsy is non-invasive and
easy source to isolate, extract and measure these molecules [19]. Angiogenic S1P is a blood
borne lipid mediator, and is associated with lipoproteins such as HDL and with albumin [20,
21]. The major source of plasma S1P are red blood cells, vascular endothelial cells (ECs), and
activated platelets [20, 22-23]. Sphingomyelins (SM) and ceramides (Cer) are mainly associ-
ated with low-density lipoproteins (LDL), pointing to atherogenic properties of these sphingo-
lipids [24].

This study was aimed to characterize the metabolic profile of three major sphingolipids
(sphingosine-1-phosphate, sphingomyelins and ceramides) in plasma of preeclamptic and
control normotensive patients during early, mid and late gestation and to determine if pre-
eclampsia is associated with aberrant sphingolipid profile when compared to controls and if
there are any specific sphingolipid molecular species which could be potential candidates as
first trimester signature molecules of PE onset and development.

Materials and methods
Study design

This study was approved by Ethics Committees of Universidad de los Andes and Hospital Par-
roquial de San Bernando (Santiago Chile), and written informed consent was obtained from
all study subjects for collection of blood/plasma samples. Women (n = 500) were recruited
between January 2008 and December 2010 with informed, written consent by research mid-
wives from the Hospital Parroquial de San Bernardo, Santiago, Chile. Serial blood samples
from fasted patients (BD Vacutainer PLUS Tubes, EDTA) were collected at 11-14 (early), 22-
24 (mid), and 32-36 (late) weeks of gestation.

Clinical variables, and pregnancy outcomes were recorded. A retrospectively stratified
study was designed involving normal healthy pregnant women (n = 7) and patients with pre-
eclampsia (PE) (n = 7). Both groups consisted of women with singleton gestation and none of
them took multivitamins and aspirin during pregnancy. Preeclampsia was diagnosed based on
the presence of hypertension (arterial pressure (AP) higher or equal to AP 140/90 mmHg on
two occasions separated by 6h or higher or equal to 160/110 mmHg in one occasion) that
occurred after 20 weeks of gestation, and proteinuria (300mg/24h). Controls, who did not dif-
fer in racial origin from PE patients, were healthy subjects without pregnancy complications
or chronic medical problems.

Isolation of plasma from maternal circulation

Maternal blood from overnight fasted patients was collected in BD Vacutainer glass plasma
tubes (6ml) with EDTA as anticoagulant. Blood was collected at three different points of gesta-
tion for each patient (1, 2" and 3" trimester). With plasma collection, the need to properly
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fill-up the tubes during collection and adequate mixing of the sample into the additive were
important as to provide the optimum blood/anticoagulant ratio. After collection, blood sam-
ples were kept at room temperature for no more than 12 hours and then were centrifuged at
1500xg for 15min. After plasma fractions were separated, they were aliquoted in 0.5 or 1ml ali-
quots and stored in -80C until lipid extraction and analysis.

Lipid extraction and sphingolipid analysis using tandem mass
spectrometry

Total lipid extracts from 50 ul of maternal plasma were obtained using acidified organic sol-
vents as described previously [25] with the addition of S1P (sphingosine-1-phosphate), Cer
(ceramide) and SM (sphingomyelin) internal standards containing a C17:0 fatty acid (Avanti
Polar Lipids, Albaster, AL, USA). The lipid containing lower organic phase was evaporated to
dryness under N2 gas using a Zymark Turbovap and reconstituted in methanol (0.1ml).
Molecular species of S1P, SM and Cer were detected by monitoring species-specific precursor
product ion pairs by HPLC-ESI (electrospray ionization) tandem MS using 4000 Q-Trap
hybrid linear ion trap triple-quadrupole mass spectrometer as described previously [26] with
minor modifications. The methods employed an AB Sciex-4000 triple quadrupole mass spec-
trometer (AB Sciex, Framingham, MA, http://www.sciex.com) operated in multiple reaction
monitoring (MRM) mode coupled with a Shimadzu UFLC (Shimadzu Corp., Kyoto, Japan,
http://www.shimadzu.com) system. The mass spectrometer was operated in positive electro-
spray ionization mode with optimized declustering potentials, collision energies and exit
potentials. The flow rate was 0.5 ml/minute with a column temperature of 30°C. The sample
injection volume was 10 pl. Ceramides and sphingomyelins were separated using a Waters X
Terra C8 column (3.5 um, 3.0 x 100 mm). The mobile phase consisted of 61/39/0.5 Methanol/
5mM Ammonium formate/Formic acid as solvent A and 90/10/0.5/0.5 Acetonitrile/ Chloro-
form/5mM Ammonium formate/Formic acid as solvent B. Analysis was done by maintaining
0% B for 3 minutes, increasing to 100% B in the next 5 minutes, maintaining at 100% B for 2
minutes, followed by column equilibration to initial conditions in the next 3 minutes. For
analysis of S1P and DH-S1P, separation was done using an Agilent Zorbax Eclipse XDB C8
column (4.6 x 150 mm, 5 uM). The mobile phase consisted of 75/25 of Methanol/Water with
Formic acid (0.5%) and 5mM Ammonium formate (0.1%) as solvent A and 99/1 of Methanol/
Water with Formic acid (0.5%) and 5mM Ammonium formate (0.1%) as solvent B. Separation
was achieved using a gradient of 0% B for 1 minute increasing to 100% B over the next 1 min-
ute and maintaining at 100% B for the next 10 minutes. This was followed by equilibrating the
column to the initial conditions in 3 minutes. S1P and DH-S1P were quantified by comparison
to calibration curves produced using S1P standards (Avanti Polar Lipids) (independently mea-
sured by phosphorus analysis after perchloric acid digestion)), after correcting for recovery
with reference to the internal standard. Likewise, sphingomyelins containing palmitic (C16:0),
stearic (C18:0), oleic (C18:1) and lignoceric (C24:0) acids and ceramides with myristic (C14:0),
palmitic (C16:0), stearic (C18:0), arachidic (C20:0), behenic (C22:0), lignoceric (C24:0) and
nervonic (C24:1) acids were measured.

The lipidomic measurements were performed at Small Molecule Mass Spectrometry Core
Laboratory at University of Kentucky.

Statistical analysis

All data are represented as mean (+) SD from plasma cross-gestational samples of 7 normoten-
sive (CTL) controls (total 21 plasma samples) and 7 preeclamptic (PE) patients (total 21 plasma
samples). Statistical significance between the groups (normotensive versus preeclamptic patients,
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e.g. 1* trimester of CTL group versus 1* trimester of PE group) was determined by nonparamet-
ric Mann-Whitney U-test. For statistical analyses inside the control (CTL) or PE group (e.g. 1*
vs 2™ trimester of CTL group or 1 vs 2" trimester of PE group, etc) was used paired Wilcoxon
test. All graphs and statistical analyses were performed using GraphPad Prism software (San
Diego, CA). Data were considered statistically significant at two-tailed *p value < 0.05 and

**p < 0.01.

Results
Maternal characteristics

A total of fourteen women with either no pregnancy complications (n = 7, 21 plasma samples
across pregnancy) or those who developed preeclampsia (n = 7, 21 plasma samples across
pregnancy) were included in the study. The clinical characteristics of preeclamptic (PE) and
control normotensive (CTL) subjects are presented in Table 1. Women who developed PE
showed a significantly higher systolic and diastolic arterial pressure (p = 0.0006) as compared
to control subjects. There were no significant differences in maternal and gestational age at
delivery between control and preeclamptic patients. Additionally there was no significant dif-
ference in fetus weight between normotensive and PE group, however in few cases of pre-
eclamptic pregnancies the newborns weight was below 3000g when compared with control
pregnancies. Although there was no statistical difference in body mass index (BMI) between
both groups; despite of few individuals with normal BMI in each group, the majority of the
patients qualified as overweight (BMI: 25-30) or obese (BMI more than 30).

S1P and DH-S1P profile in maternal plasma of preeclamptic (PE) and
control normotensive (CTL) patients

The blood samples of each fasted individual were obtained at three points of gestation, early
(1% trimester), mid (2" trimester) and late (3" trimester). Lipids from maternal plasma were
isolated as described in Materials & Methods. Reverse-phase HPLC-ESI-tandem mass spec-
trometry analysis was used to determine the levels of different sphingolipids in plasma cross-
gestational samples of PE patients versus normotensive controls. Analyzed sphingolipids
included: sphingosine-1-phosphate (S1P), dihydro-sphingosine-1-phosphate (DH-S1P),
molecular species of ceramide and sphingomyelin with specific fatty-acid content. The major
fatty acids found in plasma sphingolipids were palmitic (C16:0), stearic (C18:0), oleic (C18:1),
lignoceric (C24:0) and nervonic (C24:1) acid.

Table 1. Clinical characteristics of patient and delivery.

Variable Normotensive control group CTL (n=7) Preeclamptic group PE (n =7) Pvalue
Maternal age (yr) 23.3+3.5 28.7+7.2 p=0.133
Gestational age of delivery (wk) 38.2+1.9 37.9+1.2 p=0.828
Maternal body mass index BMI 29.2+6.2 31.2+5.8 p=0.71
Systolic pressure (mmHg) 1129+ 111 145.7+7.3 p=0.0006%*
Diastolic pressure (mmHg) 68.6 +6.9 96.4+7.5 p=0.0006**
Newborn weight (g) 3592 +235.9 3285 + 558.2 p=0.383
Fetal sex (male/female) (6/1) (5/2)
Mode of delivery (CS/VD) (3/4) (4/3)

Values are given as a mean +SD. Statistical significance was assessed by Mann-Whitney test.

** p< 0.01

https://doi.org/10.1371/journal.pone.0175118.t001
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Plasma levels of angiogenic S1P did not changed significantly through gestation in both
groups (PE: 0.267-0.3 nmol/ml plasma vs CTL: 0.239-0.287 nmol/ml plasma) (Fig 1A). Our
results differ from previous observations of Melland-Smith et al [11], as they detected signifi-
cant reduction of late-gestation (3™ trimester) serum S1P in PE versus control subjects. We
measured also the levels of dihydro-S1P (DH-S1P) (Fig 1B), which has been recently linked to
enhancement of endothelial barrier [27]. DH-S1P did not changed in control group across ges-
tation (0.021-0.018 nmol/ml plasma). In preeclamptic group there was significant decrease
(p =0.03) of DH-SIP in the 2™ trimester (0.016 nmol/ml plasma) when compared to their 1%
trimester (0.021 nmol/ml plasma), pointing eventually to endothelial damage (reduced endo-
thelial barrier) occurring in PE (Fig 1B).

Plasma levels of SIP and DH-S1P measured in our clinical samples were comparable with
plasma levels of these two sphingolipids reported previously in a study of basic metabolic pro-
file in a group of males and non-pregnant females (0.31 uM (S1P) and 0.04 uM (DH-S1P),
respectively) [19].

Sphingomyelin profile in maternal plasma of PE and CTL patients

We next determined the concentrations of various sphingomyelin species in the same samples
(Fig 2). In line with the previous observations [19], sphingomyelin was the dominant circulat-
ing sphingolipid. The most prominent sphingomyelin was SM 16:0, showing up-regulation in
both groups across gestation, but with statistical significance only in PE group (1° vs 2" tri-
mester of PE and 1% vs 3" trimester of PE, p = 0.046). The concentration of SM 16:0 in PE
group ranged from 222.7 + 64.17 up to 348.7 + 149.1 nmol/ml plasma and in controls (CTL)
was from 368 + 119.7-432.3 + 106.6 nmol/ml plasma (Fig 2A). When comparing PE and con-
trol patients, SM 16:0 was significantly reduced (p = 0.007) in 1*' trimester plasma of PE sub-
jects versus controls (222.7 + 64.17 vs. 368 + 119.7 nmol/ml) (Fig 2B). The other SM species
analyzed included: SM 18:0, SM 18:1 and SM 24:0, which constituted the next most abundant
sphingomyelin subpopulations (Fig 2C-2F). First trimester plasma levels of SM 18:0 were also
significantly decreased (p = 0.002) in PE group (20.7 + 6.04 nmol/ml) when compared with
controls (31.41 + 6.04 nmol/ml) (Fig 2D). However, SM 18:0 in PE patients was significantly
elevated through gestation (from 20.7 + 6.04 up to 38.32 + 14.64 nmol/ml plasma, p = 0.015)
(Fig 2C), pointing to atherogenic properties of this particular sphingomyelin [24]. In control
group, SM 18:0 remained unchanged in early, mid and late gestation (ca. 31.6 nmol/ml
plasma). In regards to SM 18:1 there were no statistical differences between PE and CTL
group, however there was significant up-regulation of SM 18:1 in PE group between the 1*
and 2™ trimester of pregnancy (p = 0.03). Levels of SM 24:0 did not change significantly in
any of the group or between the groups across gestation (Fig 2E and 2F).

Levels of plasma sphingomyelins measured in our clinical samples were comparable to those
as previously published [19]; however, the levels of SM 16:0 in plasma of our fasted PE and CTL
patients (222.7-427.5 nmol/ml) were higher as of those previously reported in fasted subjects
(males and non-pregnant females - 100uM). This difference could have its origin as influence of
the pregnancy on basic SM 16:0 profile or could stem from differences in patients” ethnicity.

Ceramide profile in maternal plasma of PE and CTL patients

We also analyzed the molecular species of ceramide (Cer) in PE and CTL plasma samples. As pre-
viously reported [19], the most dominant ceramide species were Cer 24:0 and Cer 24:1, followed
by Cer 16:0 and Cer 18:0 (Fig 3). The less abundant Cer 14:0 was significantly decreased in 1*
and 3" trimester plasma of PE patients when compared with control subjects during the same
gestational periods (1* trimester-PE: 0.009 + 0.013 nmol/ml vs CTL: 0.036 + 0.016 nmol/ml,
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Fig 1. S1P and DH-S1P profile in maternal plasma of PE and CTL patients. Each target analyte:
sphingosine-1-phosphate (S1P) (A) and dihydro-sphingosine-1-phosphate (DH-S1P) (B) were analyzed by
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reversed-phase HPLC-MS/MS and identified by its specific parent-daughter ion mass transition and retention
time. Plasma S1P and DH-S1P levels were measured in 7 normotensive control (CTL) and 7 preeclamptic
(PE) patients across gestation: first-, second- and third trimester. Data expressed as means + SD. Statistical
differences detected between groups are indicated with an asterisk (n = 7 for each group, p<0.05).

https://doi.org/10.1371/journal.pone.0175118.9001

p = 0.009 and 3" trimester—PE: 0.019 + 0.018 nmol/ml vs CTL: 0.046 + 0.011 nmol/ml, p = 0.007,
respectively) (Fig 3A and 3B). The second most abundant Cer 16:0 was increased significantly in
control plasma samples across gestation (Fig 3C). Plasma levels of Cer 16:0 in controls ranged
from 0.864 + 0.395 nmol/ml up to 1.266 + 0.322 nmol/ml (1% vs 3" trimester of CTL, p = 0.015)
(Fig 3C). Cer 16:0 also increased in cross-gestational PE plasma samples, with statistical signifi-
cance between the 1% and 2™ trimester of pregnancy (p = 0.03) (Fig 3C). Mean plasma levels

of Cer 18:0 showed tendency to be up-regulated in both groups across gestation, with significant
differences between the 1% and 3" trimester in control group (CTL: from 0.213 + 0.086 up to
0.342 £ 0.15 nmol/ml and PE: from 0.263 + 0.104 up to 0.413 + 0.248 nmol/ml) (Fig 3D). The
most abundant Cer 24:0 was increased significantly in control plasma samples across gestation,
from 2.353 + 1.39 up to 4.477 £ 1.98 nmol/ml (p = 0.015) (Fig 3E). Cer 24:0 in PE group did not
changed significantly through gestation, however there was significant down-regulation of Cer
24:0 in 3" trimester PE plasma samples (2.588 + 0.574 nmol/ml) when compared to their
matched-gestational controls (4.477 + 1.986 nmol/ml, p = 0.017) (Fig 3E).

As reduced levels of circulating Cer 24:0 were previously linked to liver cirrhosis [28], the
observed by us reduced levels of Cer 24:0 in PE patients could point to signs of liver damage in
preeclampsia. Finally the levels of other abundant circulating ceramide, Cer 24:1 did not
changed significantly in both PE and CTL plasma samples throughout gestation (Fig 3F).

Discussion

Recent studies demonstrate the feasibility of mass spectrometry-based lipidomics as a tool to
identify and quantitate circulating bioactive lipids in biofluids of healthy and diseased patients
[29]. Because bioactive lipids are emerging as signature molecules of development and pro-
gression of many diseases [17, 18, 29], in the near future lipidomics could become a standard
clinical diagnostic tool in molecular medicine.

This study was conducted to determine the basic sphingolipid profile in plasma samples of
control normotensive and preeclamptic patients across gestation with the goal of identifying
first trimester sphingolipids as candidates as potential biomarkers for early prediction of PE.

In our cross-gestational study, we found that circulating angiogenic S1P did not change
significantly across gestation in neither the control nor the preeclamptic group. Dihydro-S1P
followed the similar pattern, only with the exception that it was decreased in plasma of PE
patients in the 2" trimester when compared with the 1% trimester. In contrast, major ceramide
species (Cer 16:0, Cer 18:0 and Cer 24:0) were significantly elevated through gestation in
plasma of control patients, while in PE pregnancies only Cer 16:0 was significantly up-regu-
lated between the 1% and 2™ trimester of pregnancy. The levels of less abundant ceramide
(Cer 14:0) were significantly lower in 1** trimester plasma of PE patients when compared with
1* trimester control samples (p = 0.009). Plasma concentrations of major sphingomyelin spe-
cies (SM 16:0, SM 18:0, SM 18:1 and SM 24:0) tended to be higher in the control group across
gestation than in the case group. However, in PE patients, sphingomyelins—-SM 16:0, SM 18:0,
and SM 18:1 were significantly up-regulated across gestation. Additionally, levels of two major
sphingomyelins, SM 16:0 and SM 18:0, were significantly lower in 1** trimester plasma of PE
patients as compared to 1* trimester samples of respective controls (p = 0.007 and p = 0.002,
respectively).
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Fig 2. Sphingomyelin profile in maternal plasma of PE and CTL patients. Each target analyte: (sphingomyelin (SM) species)
was analyzed by reversed-phase HPLC-MS/MS and identified by its specific parent-daughter ion mass transition and retention time.

PLOS ONE | https://doi.org/10.1371/journal.pone.0175118  April 6, 2017

9/16


https://doi.org/10.1371/journal.pone.0175118

o @
@ : PLOS | ONE Cross-gestational plasma sphingolipidomics and preeclampsia biomarkers

Different sphingomyelin species: SM 16:0 (A), SM 16:0 in 1% trimester plasma of PE and CTL patients (B), SM 18:0 (C), SM 18:01in
1! trimester plasma of PE and CTL patients (D), SM 18:1 (E) and SM 24:0 (F) were measured in plasma of 7 normotensive control
(CTL) and 7 preeclamptic (PE) patients across gestation: first-, second- and third trimester. Data expressed as means + SD.
Statistical differences detected between groups are indicated with an asterisk (n = 7 for each group, p<0.05).

https://doi.org/10.1371/journal.pone.0175118.9002

Recent published reports about sphingolipids and pregnancy, confirm the important role of
sphingosine kinase-1 (SPHK1)/sphingosine-1-phosphate (S1P) pathway in the reproductive
system and physiopathology of preeclampsia [11, 12]. During mouse pregnancy, the levels of
angiogenic SPHK1, an enzyme synthesizing S1P from the precursor sphingolipid—sphingo-
sine [30, 31], and as well angiogenic S1P receptors (S1PR1, -2, -3) are significantly up-regu-
lated during early gestation, a period of time in which extensive angiogenesis is observed in
the uterus [32]. Reagarding preeclampsia, recent results from our laboratory have shown the
significant decrease of placental angiogenic SPHK1 and S1P receptors (SIPR1 and -3) in term
placentae of PE patients when compared to controls [12]. In contrast, the lipidomic data pre-
sented in this paper do not provide evidence for regulation of plasma S1P levels across gesta-
tion in normal and as well as PE pregnancies. The exception to these observations was a
tendency of increased S1P levels in 3™ trimester plasma in both groups as compared to their
earlier gestational periods (CTL: from 0.239 (1*) up to 0.287 nmol/ml (3"Y) and PE: from 0.267
(1) up to 0.3 nmol/ml (3", respectively). As in mouse pregnancy SPHK/S1P pathway has
been shown to be crucial in early uterine decidualization and uterine angiogenesis [15], in nor-
mal human pregnancies one would expect to observe increased levels of circulating S1P during
the early and mid-gestation as a marker of early endometrial/placental vascularization. More-
over, in contrast to lipidomic results published by Melland-Smith et al describing reduced S1P
levels in 3' trimester serum of PE patients versus their controls [11], we observed lack of
decrease of plasma S1P in PE patients at any of the gestational points. The decrease of circulat-
ing angiogenic S1P in PE patients compared to their matched controls, as reported by these
authors [11] might point to impaired angiogenesis in PE. The reasons for the observed discrep-
ancy between our and Melland-Smith et al. studies could be the larger number of subjects used
by the other group [11], or as reported before, the difference in S1P levels between serum and
plasma [19]. Moreover, it is also important to take into consideration the differences in
patients’ clinical characteristics. In the study of Melland-Smith et al, a strong difference regard-
ing average newborns’ weights between preeclamptic and normotensive pregnancies could be
noted (PE: 1249 + 423 g versus CTL: 3712 + 231g). This would suggest that these preeclamptic
placentae were strongly ischemic and hypoxic as the consequence of impaired angiogenesis
occurring early in gestation, thus potentially resulting in observed reduced maternal circulat-
ing levels of S1P in PE subjects [11]. Regarding our patients, there was no significant difference
in fetus weight between preeclamptic and control group (see Table 1).

In addition to S1P, our data revealed reduced plasma content of DH-S1P in the 2™ trimes-
ter of PE patients as compared to their 1* trimester, which points eventually to enhanced
endothelial damage in PE; as DH-SIP similarly to S1P, has been reported to enhance endothe-
lial barrier [27, 33]. Also previously it has been demonstrated that human DH-S1P serum lev-
els inversely correlate with occurrence of ischemic heart disease (IHD); this may link the
reduced plasma DH-S1P in PE patients with the cardiovascular complications appearing later
with the progress of the disease [27].

The recent lipidomic studies of Melland-Smith et al, point to a possible imbalance of the
sphingolipid rheostat in PE based on the elevated levels of ceramides (Cer 16:0, Cer 18:0, Cer
20:0, Cer 24:0) and the reduced levels of S1P that were found in term serum of PE patients as
compared with their matched controls [11]. In our cross-gestational plasma samples of PE and
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Fig 3. Ceramide profile in maternal plasma of PE and CTL patients. Each target analyte: (ceramide (Cer) species) was
analyzed by reversed-phase HPLC-MS/MS and identified by its specific parent-daughter ion mass transition and retention time.
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normotensive patients, we found that major ceramide species (Cer 16:0, Cer 18:0, Cer 24:0)
were elevated consistently across gestation in both groups, except significant reduction of Cer
24:0 in 3" trimester plasma of PE subjects versus 3" trimester plasma of controls (p = 0.017).
The observed increased ceramide levels in normal pregnancy through gestation could be a
consequence of trophoblastic apoptotic shedding as a result of normal syncytial fusion of vil-
lous trophoblasts increasing with the gestational age [34, 35]. In contrast, in relation to pre-
eclampsia, as reported previously there is more aponecrotic than apoptotic
syncytiotrophoblast shedding [36, 37], which might account for the lack of significant up-regu-
lation of ceramides in PE versus control plasma samples observed in our cohort. In fact, several
ceramide-synthesizing enzymes (e.g. acid sphingomyelinase and ceramide kinase) have been
linked to trophoblast syncytialization process in vitro [13]; however, in regards to preeclampsia
it was reported previously that trophoblast cultures from PE pregnancies have rather moderate
increase in syncytialization when compared with normal pregnancies [38].

As we discussed above, decreased levels of Cer 24:0 found in 3™ trimester plasma of PE
patients versus controls may point to liver damage and cardiovascular complications in pre-
eclampsia. Hence, the reduced levels of circulating Cer 24:0 were found before to be associated
with liver cirrhosis [28] and ischemic heart disease (IHD) [27]. We found also that concentra-
tion of less abundant ceramide (Cer 14:0) was significantly lower (p = 0.009) in 1* trimester
plasma of PE patients (0.0098 + 0.013 nmol/ml) as compared with controls (0.036 + 0.016
nmol/ml), pointing eventually to the potential role of Cer 14:0 as an early (1** trimester) bio-
marker of preeclampsia. As ceramide and their synthesizing enzymes (e.g. ceramide synthases)
have been shown previously to be significantly up-regulated in the mice uterus during early
gestation [15, 39], in the future the role of Cer 14:0 in the normal human pregnancy and etio-
pathogenesis of preeclampsia needs to be further explored.

Altered levels of tissue sphingomyelins (SM) have been observed in preeclamptic patients,
because higher levels of SM were found in umbilical cord arteries of preeclamptic versus nor-
motensive women [40] and as well as in syncytiotrophoblast microvesicles (STMV) derived
from the supernatants of term placental villous explants of PE cases [41]. In contrast to the pre-
vious reports, in umbilical cord veins of fetuses from PE subjects, reduced levels of sphingo-
myelins were detected when compared with controls [16]. Our lipidomic analysis show that all
plasma sphingomyelin species we have measured (SM 16:0, SM 18:0, SM 18:1 and SM 24:0),
had tendency to be up-regulated across gestation in both groups, preeclamptic and control.
Although plasma cross-gestational average values for two sphingomyelins (SM 16:0 and SM
18:1) were higher in control than in PE group, both SM 16:0, SM 18:1 and additionally SM
18:0 were significantly up-regulated in PE group across gestation. SM 18:0 reached average
38.32 nmol/ml in 3™ trimester plasma of PE patients as compared to 31.65 nmol/ml in 3" tri-
mester of control group. We observed increased levels of plasma SM 18:0 during late gestation
in preeclamptic patients which is in line with previous reports describing elevated levels of SM
18:0 in term plasma of early-onset preeclamptic patients [42] and as well as in human PE pla-
centae when compared with control subjects [43]. Recent studies have demonstrated that
serum elevation of this particular class of sphingomyelin positively correlates with parameters
of insulin resistance and liver function in obese adults [44] and correlates with markers of NF-
kB activation and thus markers of intracellular inflammation [44]. It is well-documented in
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the literature that increased high plasma sphingomyelin levels are associated with subclinical
atherosclerosis and coronary artery disease [24]. This may point that sphingomyelins, in par-
ticular SM 18:0 might serve not only as atherogenic marker of PE development and progres-
sion, but also the marker of cardiovascular complications developed later in the lives of the
women who had before preeclamptic pregnancies.

In relation to sphingomyelins, our study identifies two potential early markers of pre-
eclampsia (SM 16:0 and SM 18:0) to be down-regulated in 1* trimester plasma of PE patients
as compared with controls (p = 0.007 and p = 0.023, respectively).

In conclusion, to our knowledge, this is the first study to describe longitudinal changes in
concentrations of the major sphingolipids in maternal plasma of preeclamptic and normoten-
sive women. Moreover, this study reveals three potential sphingolipid candidates (SM 16:0,
SM 18:0 and Cer 14:0) which may serve in the future as early biomarkers of PE, which we
found to be significantly down-regulated in 1% trimester plasma of PE patients versus controls.
To assure the sensitivity and specificity of these potential markers, the larger patient cohort
needs to be screened. In the future, early 1* trimester and highly-sensitive markers of PE
would allow to earlier identify women at risk of developing PE. This would enable the earlier
antenatal control and treatment of the patients (administration of low-dose aspirin, antenatal
corticosteroids for fetal lung maturation) [45] and thus would greatly reduce maternal and
fetal morbidity or/and mortality associated with this disease.

Conclusions

Preeclampsia, a major obstetric complication during pregnancy and a leading cause of mater-
nal and fetal morbidity and mortality, is hard to predict clinically because of lack of the early
highly-specific and highly-sensitive biochemical markers that would predict PE onset and
development.

This study examines differential cross-gestational sphingolipid patterns in maternal plasma
from preeclamptic and normal pregnant women and identifies three plasma sphingolipids
(ceramide 14:0, sphingomyelin 16:0, sphingomyelin 18:0) as potential first trimester biomarker
candidates of this disease. In the future, sphingolipids may prove to become early biomarkers
of preeclampsia, and together with mass-spectrometry-based lipidomics may become a part of
routine prenatal diagnostic test early in pregnancy. This would allow identify the patients at
risk of developing PE thus allowing their timely prenatal management and treatment, and in
consequence would reduce the severity of maternal/fetal complications associated with PE.
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