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Abstract Lung cancer causes more deaths in men and

women than any other cancer related disease. Currently,

few effective strategies exist to predict how patients will

respond to treatment. We evaluated the serum metabolomic

profiles of 25 lung cancer patients undergoing chemother-

apy ± radiation to evaluate the feasibility of metabolites as

temporal biomarkers of clinical outcomes. Serial serum

specimens collected prospectively from lung cancer

patients were analyzed using both nuclear magnetic reso-

nance (1H-NMR) spectroscopy and gas chromatography

mass spectrometry (GC–MS). Multivariate statistical

analysis consisted of unsupervised principal component

analysis or orthogonal partial least squares discriminant

analysis with significance assessed using a cross-validated

ANOVA. The metabolite profiles were reflective of the

temporal distinction between patient samples before during

and after receiving therapy (1H-NMR, p\ 0.001: and GC–

MS p\ 0.01). Disease progression and survival were

strongly correlative with the GC–MS metabolite data

whereas stage and cancer type were associated with 1H-

NMR data. Metabolites such as hydroxylamine, tridecan-1-

ol, octadecan-1-ol, were indicative of survival (GC–MS

p\ 0.05) and metabolites such as tagatose, hydroxy-

lamine, glucopyranose, and threonine that were reflective

of progression (GC–MS p\ 0.05). Metabolite profiles

have the potential to act as prognostic markers of clinical

outcomes for lung cancer patients. Serial 1H-NMR mea-

surements appear to detect metabolites diagnostic of tumor

pathology, while GC–MS provided data better related to

prognostic clinical outcomes, possibility due to physio-

chemical bias related to specific biochemical pathways.

These results warrant further study in a larger cohort and

with various treatment options.
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1 Introduction

Lung cancer is the leading cause of cancer related deaths in

both men and women in the world with 1.8 million patients

in 2012 and an estimated 1.6 million deaths. The majority

of lung cancers are diagnosed at an advanced stage at

which time all treatment is of palliative intent. Currently,

there are no prognostic or predictive biomarkers to help

ascertain which patients are most likely to benefit from

chemotherapy or radiation (Sawyers 2008).

Metabolic profiling has been reported in small series in

several types of cancers including lung (Fan et al. 2009;

Carrola et al. 2011; Yang et al. 2010; Jordan et al. 2010),

breast (Chen et al. 2009), ovarian (Odunsi et al. 2005),

prostate (Sreekumar et al. 2009), pancreatic (Bathe et al.

2011) and colorectal (Farshidfar et al. 2012). In studies of

lung cancer, most have explored the application of meta-

bolomics for diagnosis comparing samples from lung

cancer patients versus healthy volunteers (Fan et al. 2009;

Carrola et al. 2011; Yang et al. 2010) or samples from lung

cancer tissues versus surrounding non-cancerous tissues

(Hori et al. 2011). These studies have demonstrated that

many primary metabolites are found at higher levels in

lung cancer tissues/patients versus controls. Additionally,

others have examined and demonstrated that differences in

the levels of metabolites can distinguish between tumour

subtype (Jordan et al. 2010; Hori et al. 2011) and stage

(Hori et al. 2011). Wedge et al. (2011) evaluated plasma

from patients with small cell lung cancer and observed that

particular metabolites were associated with worse survival

outcomes. When 1H-NMR was used to evaluate metabolic

changes in 3LL lung cancer tumours grown subcutaneously

in mice who were treated with nitrosourea, alterations in

metabolites were observed in the growth inhibition and

growth recovery phase (Morvan and Demidem 2007).

More recently, Deja et al. (2014) using 1H-NMR reported

differences between COPD versus different stages of lung

cancer, also differences between early and late stage

NSCLC. Wen et al. (2013) utilized both GC–MS and LC–

MS to reveal metabolic differences between patients with

early stage adenocarcinoma of the lung and healthy con-

trols. Similarly, Lokhav et al. (2013) looked at discrimi-

nating metabolomic features between patients with any

stage of lung cancer versus healthy controls.

The majority of previous work concerns elucidation of

diagnostic metabolite patterns or markers, however there

have been only a few studies exploring the use of

metabolomics technologies as prognostic markers. Here we

examine metabolite profiles of lung cancer patients serially

during the course of treatment utilizing comprehensive

profiling by 1H-NMR and GC–MS. In this pilot study we

establish the feasibility of characterizing the serum meta-

bolic profiles of patients prior to, during, and in follow-up

after receiving standard chemotherapy and/or radiation. We

hypothesize that system-level analysis of serum metabo-

lites may provide a potentially non-invasive approach to

distinguish differences in physiologic state that may cor-

relate with clinical outcomes.

2 Materials and methods

2.1 Subjects and sample collection

Any patient with a histologic or cytologically confirmed

diagnosis of non-metastatic lung cancer undergoing stan-

dard chemotherapy ± radiation was eligible. Patients with

synchronous malignancies or prior chemotherapy or radi-

ation for any reason were excluded. Serum specimens were

collected at pre-specified time-points: prior to treatment,

during treatment, and at 6 months post-treatment. Blood

was collected by venipuncture, centrifuged at 15009g for

10 min at 4 �C and separated within 24 h of collection then

stored at -80 �C until 1H-NMR and GC–MS analysis.

Patients were not fasting at the time of blood sampling. In

total, analyzed 134 serum samples were analyzed.

2.2 1H-NMR and GC–MS measurements

2.2.1 NMR sample preparation and data acquisition

1H-NMR spectroscopy was performed using a protocol

previously described (Weljie et al. 2007). For NMR anal-

ysis, serum samples were thawed in ice. 350 ll of serum
sample were filtered through a prewashed Nanasep 3K

Omega Filter Eppendorf to remove high molecular weight

([3 kDa) compounds (e.g. large proteins, lipid complexes

etc.). The filtrate was then centrifuged and buffered to a pH

of 7.0 for analysis. Regular one-dimensional proton NMR

spectra were obtained using a 600-MHz Bruker Ultrashield

NMR spectrometer (Bruker Biospin, Milton, Canada). The

spectra were acquired using a standard pulse sequence that

had good water suppression characteristics and is com-

monly used for metabolite profiling of serum samples.

Relaxation delay of 1 s was used; t1 was set to 4 ls and tm

had a value of 100 ms. Initial samples for each batch were

shimmed to ensure half-height line width of\1.1 Hz for

the dimethyly-silapentane-sulphonate peak, calibrated to

0.0 ppm. Spectra were acquired with 1024 scans, then zero
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filled and Fourier transformed to 128 k data points using

the Chenomx NMRSuite processor (Weljie et al. 2006).

Additional 2-dimensional NMR experiments were per-

formed for the purpose of confirming chemical shift

assignments, including homonuclear total correlation

spectroscopy (2D 1H-1H TOCSY) and heteronuclear single

quantum coherence spectroscopy (2D 1H-13C HSQC),

using standard Bruker pulse programs.

2.2.2 GC–MS sample preparation and data acquisition

Sample preparation for the GC–MS consists of three basic

steps of deproteinization, methoxiamination and finally

derivatization. Deproteinization is able to remove the inter-

ference from proteins such as albumin, which are present in a

large concentration in blood. For GC–MS metabolite

extraction, samples are thawed on ice and 50 ll of sample

used for extraction using chloroform: methanol procedure.

Aqueous metabolites will be dried under vacuum, and then

derivatized usingmethoxyamine andMSTFA.Mass spectral

data was acquired using aWater GCT premier GC-TOF–MS

with anAgilent GC using a 30 mDB-5 column as previously

described (Farshidfar et al. 2012).

2.2.3 1H-NMR and GC–MS data processing and statistical

analysis

Raw data from 1H-NMR was processed and profiled using

Chenomx NMR Suite 7.1 to a library of 55 compounds. 1H-

NMR spectral data was evaluated using the strategy of

‘targeted profiling’ (Weljie et al. 2006). This allows

quantification of metabolite concentrations in the samples.

Raw data from GC–MS was imported to Metabolite

Detector for peak detection (Hiller et al. 2009).

The pre-processed data was exported to multi-variate sta-

tistical analytical software SIMCA-P 13? and analyzed with

principal component analysis (PCA) and orthogonal partial

least squares discriminant analysis (OPLS-DA). Univariate

scaling is applied to overcome the dominating effect of higher

intensity metabolite features. Thus scaling gives equal impor-

tance to all the components. Logarithmic transformation was

also done before analysis to reduce the effect of data skewness.

PCA was performed to check the unsupervised segre-

gation of the metabolome. OPLS-DA allowed us to dis-

criminate between the different variables concerning the

cancers in context. Model significance was assessed using a

cross-validated ANOVA with p B 0.05 considered signif-

icant. Variables were selected according to the VIP (vari-

able influence on projection) as previously described

(Weljie et al. 2007), which are reflective of the correlation

of the metabolites towards different response. VIP[ 1 was

considered significant.

To elucidate the relative changes of significant metabo-

lites before, during and after therapy, significance of analysis

of microarrays (SAM) with time course analysis was per-

formed (Zhang 2007). This analysis was applied indepen-

dently to both GC–MS and 1H-NMR metabolite datasets

(Denery et al. 2011).Metaboliteswere considered significant

with a corrected p value\0.05 and false discovery rate of

10 % to account for multiple testing.

We further investigated if specific clinical and outcome

factors, included variables such as cancer type (NSCLC

and SCLC), cancer staging (stages 1–4), time-point(s) of

sample collection, survival and progression could be pre-

dicted by the GC–MS and 1H-NMR datasets.

3 Results

3.1 Patient characteristics

Patient clinical and demographic characteristics of the

patients are listed in Table 1. 18 (72 %) had non-small cell

lung cancer, while 7 (18 %) had small cell lung cancer. The

majority of patients had stage III disease and underwent

treatment with concurrent chemoradiotherapy. The 2-year

overall survival for the group was 53 %.

3.2 Metabolomics analysis

3.2.1 Temporal metabolomic analysis distinguish sera

across treatment

Serum samples from each patient collected pre-treatment,

during therapy, and post-treatment were subject to both

NMR and GC–MS analysis. A total of 56 features were

Table 1 Patient demographics and clinical outcomes of patients with

small cell and non-small lung cancer

Patient characteristics

Age, median (range) 64 years (42–77)

Gender 60 % male

Smoking status 29 % current smokers

Tumour type

SCLC 7 (28 %)

NSCLC 18 (72 %)

Stage

I 3

II 4

III 18

Median DFS (range) 17 months (8–25)

2 year overall survival 53 %
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quantitatively assessed by NMR, and 106 features identi-

fied by GC–MS. Figure 1a is a box and whisker plot of the

multivariate scores of OPLS-DA analysis of GC–MS

metabolomic data from the three time-points. In this

analysis, the discriminant analysis was naı̈ve to the tem-

poral nature of the data, however a defined temporal

decrease in the scores from the first predicative component

is apparent. Analysis of the OPLS-DA loadings reveals that

the differences in timepoints was based on the differential

abundance of glucopyranose, citric acid, butanoic acid,

erythritol and ribitol between the three groups (N = 61,

CV-ANOVA p = 0.0046, R2 = 0.186, Q2 = 0.128)

(Table 2a.VIP[ 1). Figure 1b presents a similar analysis

of 1H-NMR metabolomic data. The differences were based

on the changing level of metabolites 2-aminobutyrate,

2-oxoglutarate, threonine, methionine, creatinine and

citrate between the three groups (N = 64 CV-ANOVA

p\ 0.001, R2 = 0.223, Q2 = 0.143) (Table 2b.VIP[ 1).

Interestingly metabolites such as threonine and citrate were

part of up the 1H-NMR metabolite data; were not picked by

the GCMS.

In order to further probe the temporal nature of the data,

we employed an analysis specific for time course data

(SAM), which utilized the repeated measurements within

individual patient samples. From the GCMS data, SAM

analysis identified 8 differentially abundant metabolites

across all treatment points (Fig. 1c). Of these named

metabolites included 2-hydroxybutanoic acid, glucopyra-

nose, citric acid, erythritol and ribitol. 1H-NMR metabolite

data was able to identify three significant metabolites

across the designated time points of sample collection.

These included taurine, threonine and creatinine (Fig. 1c).

3.3 Relationship of metabolite data to clinical

outcomes

3.3.1 GCMS metabolomic profiles facilitating prognostic

evaluation of survival and progression from pre-

treatment samples

From our preliminary O2-PLS models including all clinical

covariates, we established that progression and survival were
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Fig. 1 Metabolite bioprofiling facilitates discrimination between

three groups of patient sample collected at pre-treatment, mid-therapy

and post-treatment time points. Box and whisker plot reflective of

three distinct time points based on scores of OPLS-DA model of

a GC–MS and b NMR analysis of serum samples respectively;

Heatmap showing clustering of metabolites based on time for both

c NMR and GC–MS data respectively
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the two variables reflected by the GC–MS data (Fig. S1A).

We then constructed individual OPLS-DA models for these

covariates (Survival, Fig. S2B; Progression, Fig. S2C) based

on the metabolic samples of pre-treatment samples only, i.e.

naı̈ve to any chemotherapy or radiotherapy. The survival

model distinguishes the metabolite profile of patients who

had died during the course of treatment from those who had

survived treatment (N = 25, CV-ANOVA p = 0.0335,

R2 = 0.388, Q2 = 0.285). This distinction was based on

relative differences in metabolites such as tridecan-1-ol,

octadecan-1-ol and hydroxylamine in that were abundant in

patients who did not survive. Figure 2a is a box and whisker

plots that show the distribution of scores as a function of

deceased vs. survived therapy. A heatmap was constructed

using hierarchical clustering (Fig. 2b). This data illustrates

of metabolites such as glutamine, proline, valine, threonine

and tyramine being differentially abundant in the population

of patients who survived therapy where metabolites such as

hydroxylamine and octadecan-1-ol being at a higher con-

centration in patients who did not survive therapy.

Similarly, a significant OPLS-DA model was built

demonstrating a relationship between the GCMS metabolic

profile and disease progression (Fig. 2c; Fig. S2C; N = 25,

CV-ANOVA p\ 0.05, R2 = 0.397, Q2 = 0.333). This

difference was based on metabolites such as tagatose,

hydroxylamine, glucopyranose, and threonine. A heat map

illustrating the features involved in disease progression using

SAM analysis to distinguish groups (Fig. 2d) demonstrates

metabolites such as hydroxylamine are at relatively higher

concentration in the group of patients who were noted to

progress with the disease despite therapy, however glu-

copyranose and threonic acid were the metabolites was

found to be at a relatively higher level in patients inwhom the

disease did not show signs of progression.

Clinically, progression and survival are related events,

and thus in order to further understand the relationship

between metabolite reflective of survival and disease

progression a shared and unique structure (SUS) plot was

constructed (Fig. 2e). The metabolites that line up along

the diagonal running from the lower left corner to the

upper right corner are common to both the patient pro-

gression and survival model. These included metabolites

such as hydroxylamine (down-regulated), glucopyranose,

tagatose, glutamine, tyramine, and proline (up-regulated).

Metabolites such as phosphoric acid, glycine and

octadecanoic acid were unique to the disease survival

model. Our results thus indicate that a unique biomarker

profile is possible which distinguishes progression from

survival.

3.3.2 NMR metabolic profiles facilitates evaluation

of cancer staging and cancer type from pre-

treatment samples

Preliminary modeling of clinical covariates with quantita-

tive NMR-derived metabolic profiles indicated that cancer

stage and type were well reflected in the serum profiles. We

were able to facilitate discrimination in cancer staging

between cancer stages 1 and 2, versus stage 3 using 1H-

NMR metabolomic data (Supplemental Fig. 3A) (N = 24,

CV-ANOVA p\ 0.05, R2 = 0.474, Q2 = 0.314). This

was based on 8 metabolites such as 2-hydroxybutyrate,

2-oxoisocaproate, acetate, carnitine, 3-hydroxyisovalerate,

2-hydroxyisovalerate, glycerol and glycine. Summary of

the scores from this analysis (Fig. 3a) in which the distri-

bution is plotted according to the class i.e. stages 1 and 2,

versus stage 3; patients who were staged lower had a lower

score in comparison to patients with higher staging.

In a further subgroup analysis, we investigated the

metabolomic profiles of non-small cell lung (NSCLC)

cancer patients. Using 1H-NMR data we were able to dis-

tinguish sera based on cancer pathophysiology. Patients

with NSCLC could be discriminated into subtypes of

squamous and adenocarcinoma. OPLS-DA modeling was

able to discriminate between the two cancer sub-types

based on 19 differentially abundant spectral features

(Supplemental Fig. 3B) (N = 18, CV-ANOVA p\ 0.01,

R2 = 0.677, Q2 = 0.536). Figure 3b shows the box and

whisker plot plotted using metabolite scores based between

two classes of non small cell cancer i.e. squamous cell and

adenocarcinoma cell carcinoma respectively. Metabolites

such as 2-oxoisocaproate, 4-hydroxybutyrate, lysine,

Table 2 Metabolites from the GCMS and 1H-NMR data involved in

discrimination between the three time points of pre-therapy, therapy

and post-therapy

(a)

GCMS HMDB ID

Glucopyranose HMDB01514

Citric acid HMDB00094

Butanoic acid, 2-hydroxy HMDB00008

Erythritol HMDB02994

Ribitol HMDB00508

(b)
1H-NMR

2-Aminobutyrate HMDB00452

Isopropanol HMDB00863

2-Oxoglutarate HMDB00208

Threonine HMDB00167

4-Hydroxybutyrate HMDB00710

Methionine HMDB00696

Creatinine HMDB00562

Dimethylamine HMDB00087

Citrate HMDB00094
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arginine, dimethylamine, isobutyrate, 3-hydroxybutyrate,

acetate, asparagine, phenylalanine were relatively higher in

patients with adenocarcinoma. However, metabolites such

as pyruvate, lactate, valine, proline, isoleucine, histidine,

2-aminobutyrate, leucine and alloisoleucine were relatively

lower in the patients with adenocarcinoma.

4 Discussion

This pilot project aimed to examine the feasibility of

characterizing metabolomic profiles of lung cancer patients

serially over the course of treatment. We analyzed serum

specimens collected pre-treatment, at approximately the

mid-point of treatment and at 6-months follow-up. While

somewhat limited by the sample size of our study, we

observed that the metabolite profiles were clearly reflective

of both temporal and pathophysiological parameters.

Baseline samples naı̈ve to treatment are potentially pre-

dictive of crucial clinical parameters such as survival and

progression, and reflected tumor pathophysiology (squa-

mous cell vs. adenocarcinoma) and stage (1H-NMR,

p\ 0.05). These observations are consistent with those

made by others (Jordan et al. 2010; Hori et al. 2011). In

contrast to other studies, we collected serial samples and

observed that the 1H-NMR and GC–MS metabolomics data
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Fig. 2 GC-MS metabolite bioprofiling facilitates prognostic evalua-

tion of clinical outcomes based on survival and disease progression.

a Box and whisker plot based on scores from OPLS-DA model of

patient survival at pretreatment as a function of the eventual survival

status: b Heat map showing clustering of metabolites with respect to

patient survival (c, d) Progression: c as in a, with samples stratified by

evidence of progression; d Heatmap showing progression-related

metabolites; e Shared and unique structure (SUS) Plot, highlighting

the strong relation between the two variables of disease progression

and survival. The metabolites that line up along the diagonal running

from the lower left corner to the upper right corner are common to

both the patient progression and survival model
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was reflective of the difference between the various time

points at which the samples were collected through the

treatment process. Such differences suggest that there may

be specific temporal shifts in metabolites during and after

which merit further examination.

We also observed that the metabolite profiles appear to

correlate with disease progression and survival (GC–MS

p\ 0.05). While Wedge et al. (2011), observed that par-

ticular metabolites were associated with worse survival

outcomes among SCLC patients, we examined the overall

metabolomic signature rather than identifying and quanti-

fying individual metabolites. Since lung cancer is an entity

involving differential metabolic changes in various path-

ways, the combinational approach of biomarker discovery

in the form of a profile could reflect the pathological

dynamics of the disease in a more comprehensive fashion.

One possible explanation for the segregation of

metabolite pools between those prognostic for survival and

those indicative of progression may lie in compartmental-

ization of biochemical processing and possible mitochon-

drial dysfunction. Metabolites from our study related to

survival, such as tridecan-1-ol and octadecan-1-ol are long

chain fatty alcohols which may result from oxidative pro-

cessing in peroxisomes or from dietary sources. These are

ketogenic substrates which are lower in deuterium content

(105–130 ppm) than cytosolic water (*155 ppm) (Duan

et al. 2002; Schmidt et al. 2003). In turn, mitochondrial

processing of ketogenic substrates leads to generation of

so-called ‘metabolic’ or ‘matrix’ water (i.e. water gener-

ated in the mitochondria) via beta-oxidation (Boros and

Somlyai 2015). This metabolic water is consequently rel-

atively depleted in deuterium, and this pool is ultimately

used for mitochondrial NADPH dependent macromolecu-

lar synthesis, including DNA. By this theory, hydrogen

bonding in DNA will be differentially impacted in patients

who use ketogenic substrates with lower deuterium content

due to isotope effects (Boros et al. 2014; Sobczyk et al.

2013). Conversely, pentose-cycle derived NADPH will

have a relatively elevated deuterium content and thus ele-

vation in markers from these non-ketogenic substrates

correlated with decreased survival. Elevated circulating

fatty alcohols as observed here in patients improved sur-

vival characteristics may serve as a marker of increased

deuterium depletion from ketogenic substrates, possibly

due to differing mitochondrial function. In fact, deuterium

depleted water has been shown to inhibit lung tumor

growth in vivo as well as reduce proliferation of A549 cell

lines with a concomitant increase in apoptosis (Cong

2010). In contrast, tagatose, hydroxylamine, glucopyranose

and threonine are glycogenic substrates were found to be

indicative of disease progression and do not impact deu-

terium loading for DNA stabilization to slow tumor

growth. The analytical platform dependence of our results

may be a result of an indirect bias in detection of ketogenic

metabolites by GC–MS.

Differences between our study and other metabolomic

studies in lung cancer could relate to variations in sample

collection. In the present study, we used serum instead of

plasma for our analyses. Previous studies (Yu et al. 2011;

Liu et al. 2010; Denery et al. 2011) have indicated that in

contrast to plasma, serum demonstrates a higher concen-

tration of metabolites and reduced background noise

making it suitable for biomarker discovery. We were not

able to control for external environmental factors that may

be confounding such as for diurnal variation, diet and

smoking status (Carrola et al. 2011; Psihogios et al. 2007).

However, comparison of changes in individual patients’

metabolomic profile over time should minimize the influ-

ence of intrinsic factors (gender, age, co-morbid medical

conditions).

Our study was also unique in that we utilized both

complementary technique of 1H-NMR and GC–MS; a

similar approach has been utilized by Zhang et al. (2012)

and Gu et al. (2011). The sample size studied limits our
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Fig. 3 NMR metabolite bioprofiling facilitates evaluation of patho-
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were stratified into stages 1 and 2, versus 3; b Box and whisker plot

based on cancer cell type with sample stratified as non small cell lung
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ability to draw any conclusion about whether 1H-NMR or

GC–MS might be the better tool as a whole, although our

finding point to each technology having stronger assess-

ments of different clinical parameters. Other groups have

used various analytic platforms including 1H-NMR (Car-

rola et al. 2011; Rocha et al. 2011), GC–MS (Hori et al.

2011; Wedge et al. 2011) and LC–MS (Wen et al. 2013).

Each technique affords different advantages and disad-

vantages. Whereas NMR requires less sample and sample

preparation, it is less sensitive and requires more expensive

instrumentation. Ultimately, no single analytical technique

can likely identify entire range of metabolites present in

biological samples and the combination of data from

multiple analytical platforms may be complementary.

In conclusion, it is feasible to characterize metabolomic

profiles from serum samples of lung cancer patients over

the course of their treatment. The relative heterogeneity of

the patients, treatments and sample collection in our small

pilot study limits our ability to draw any definitive con-

clusions. Therefore our findings should be interpreted as

preliminary and hypothesis generating. Nevertheless,

despite the small sample size, our preliminary findings

suggest there is variability in the metabolomic profile of

lung cancer patients that is associated with staging, prog-

nosis, and survival. Future studies are planned examining a

larger, more homogenous group of lung cancer patients

whose serial serum samples were prospectively collected

as part of a controlled clinical trial. With a larger sample

size we hope to more clearly characterize baseline meta-

bolomic profiles as well as any temporal changes in

metabolic patterns that occur over the course of treatment.
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