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Aspartic acid, glutamic acid and histidine are ionizable residues occupying various protein
environments and perform many different functions in structures. Their roles are tied to
their acid/base equilibria, solvent exposure, and backbone conformations. We propose
that the number of unique environments for ASP, GLU and HIS is quite limited. We
generated maps of these residue’s environments using a hydropathic scoring function to
record the type and magnitude of interactions for each residue in a 2703-protein structural
dataset. These maps are backbone-dependent and suggest the existence of new
structural motifs for each residue type. Additionally, we developed an algorithm for
tuning these maps to any pH, a potentially useful element for protein design and
structure building. Here, we elucidate the complex interplay between secondary
structure, relative solvent accessibility, and residue ionization states: the degree of
protonation for ionizable residues increases with solvent accessibility, which in turn is
notably dependent on backbone structure.
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INTRODUCTION

Proteins are largely composed of unique combinations of 20 possible amino acids, varying from tens
to thousands of residues in length. Specific protein sequences organize themselves into unique and
well-defined secondary structures that comprise much larger and more complex structures that
ultimately determine their functions. This relationship between structure and function is important
to grasp in order to understand how different features of biological targets can be exploited for
treatments of various disease states.

pH, pKa and Protonation States
One important aspect of this relationship is the dependence of protein structure on pH and
protonation states of constituent residues. Histidine (HIS), for example, has a nominal pKa of 6.00
(Hunt, 2021), situated closely enough to physiological pH that its imidazole sidechain can act either
as a cationic dual hydrogen bond donor or a neutral donor and acceptor depending on its local pH
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environment. That is, the resultant influence of a residue’s
neighborhood, comprised of the hydrogen bond donors,
acceptors, charged species, and etc. that influence the solution
pH surrounding it (Di Russo et al., 2012). The importance of
histidine’s protonation state in the so-called “catalytic triad” of
serine, histidine, and aspartate in serine proteases was shown
decades ago for trypsin (Kasserra and Laidler, 1969; Antonino
and Ascenzi, 1981). The pH-dependence of protein function is a
well-established principle and has promoted extensive research
into identifying optimum pH for activity of various other
macromolecules (Talley and Alexov, 2010).

The pKas of aspartic acid (ASP) and glutamic acid (GLU)
when isolated or in model peptides are reported to be 3.65 and
4.25, respectively (Hunt, 2021), making them functionally similar
residues and leaving them both largely deprotonated at
physiological pH. These pKas are not static, and large
deviations from these values are not uncommon. For example,
the active site of bacteriorhodopsin contains an aspartic acid with
an experimental pKa of 7.68 (Otto et al., 1989).

Unfortunately, protein structure elucidation by X-ray
crystallography or cryogenic electron microscopy are seldom
of sufficient resolution to determine locations of hydrogens,
due to their extremely low electron density. X-ray
crystallography detects protons only under difficult-to-achieve
conditions such as resolution ∼1 Å (Woińska et al., 2016). Such
resolution is not yet possible with cryo-EM. While neutron
diffraction experiments can overcome this problem (O’Dell
et al., 2016; Schröder and Meilleur, 2020), as it is detecting
nuclei rather than electrons, experimental constraints, such as
required crystal sizes, availability of neutron sources, and others,
make neutron diffraction-derived structures for proteins quite
rare. Multidimensional nuclear magnetic resonance methods can
be applied to protein structure determination (Barrett et al.,
2013), but only under certain conditions like protein size and
solubility. Because NMR directly probes hydrogens, it can be used
for pKa determination of specific residues (Bartik et al., 1994;
Schmidt et al., 2010), but this is only a probe of the residue under
the NMR experimental conditions, which may differ greatly from
its native physiological or solution conditions. In general, it is
quite difficult to discern structural reasons for residue pKa shifts
experimentally, although this is a quite active area of
computational research as many reports have been published
suggesting what types of environments stabilize shifts (Isom
et al., 2008; Isom et al., 2011; Bandyopadhyay et al., 2020).
Interestingly, experimental methodologies such as NMR
perform well in determining pKas for surface ionizable
residues but are less applicable to buried residues (Fitch et al.,
2002).

Much of the effort to study protonation of ionizable residues
via computational means has focused on predicting their pKas by
understanding the effects of other residues in the local
environment. Li et al. developed a method, known as
PROPKA, to empirically calculate pKa values impacted by
nearby residues (Li et al., 2005). In this model, hydrogen
bonding to aspartates and glutamates stabilizes their
deprotonated forms and lowers their pKas. Spassov and Yan
(2008) utilized CHARMM (Brooks et al., 1983) to develop a

molecular dynamics-based approach to predict pKa values of
titratable groups. Several factors of 3D protein structure
determination—and the resulting structural model—can
compromise such predictions, e.g., uncertainties in sidechain
conformations if the collected data resolution is too low (Miao
and Cao, 2016).

Computational Titration
Our lab has also previously examined this problem using our in-
house force field HINT (Hydropathic INTeractions) (Kellogg
et al., 1991; Kellogg and Abraham, 2000; Sarkar and Kellogg,
2010) that, briefly, exploits experimental libraries of data for
atomistic partial logPo/w values of small molecules and residues to
account for enthalpic, entropic, and solvation contributions to
free energy and score protein-ligand, protein-protein, protein-
nucleotide, etc. interactions. In one study, HINT was used to
predict the degree of protonation of ligand-active site interactions
of neuraminidase-inhibitor complexes using a method that we
termed “computational titration” (Fornabaio et al., 2003). By
scoring all potential models, i.e., where the number of protons
attached to ionizable residues and ligand functional groups were
exhaustively enumerated, lower energy models were identified.
Since proton positions are not unambiguously known from
experiment, we term all such models “isocrystallographic” in
that all would fit the available electron density envelope. In
another report, HINT modeled the protonation state of a
peptide inhibitor–HIV-1 protease complex with pH-dependent
interaction scores that paralleled experimental pH-dependent
binding data (Spyrakis et al., 2004).

Clearly, the presence or absence of protic hydrogens on these
residue types within a protein will impact the interactions that
these residues make, and in turn the protein’s 3D structure. For
example, the interaction between two aspartates is radically
different if one of the pair is protonated and the proton is
oriented to form a hydrogen bond between them. Evaluating
and understanding these phenomena is part of our long-term goal
of building a new paradigm for protein structure elucidation and
prediction.

Three-Dimensional Interaction Homology
Since the dawn of protein structure elucidation, our
understanding of the roles and contributions of interatomic
interactions between protein residues toward biomolecular
structural organization has evolved dramatically. Each of the
20 amino acid residues, regardless of how many unique
protein structures they compose, is likely to situate itself
within a limited set of environments with a unique system of
interactions of varying magnitude, type, and loci. Our model
describes four classes of interactions: favorable polar (e.g.,
hydrogen bond, acid-base), unfavorable polar (acid-acid, base-
base, repulsive Coulombic), favorable hydrophobic
(hydrophobic-hydrophobic, hydrophobic packing, π-π
stacking) and unfavorable hydrophobic (hydrophobic-polar,
desolvation).

Importantly, interactions with the environment of each
constituent residue of a protein contributes in some part
toward its rotameric structure and the protein’s overall
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secondary, tertiary, and quaternary structure. Our hypothesis is
that each residue has a “hydropathic valence” that must somehow
be satiated by nearby interacting groups. Hydrophobic residues
such as phenylalanine and leucine, by interacting with other
hydrophobic groups, pack together to avoid water, while polar
residues, such as the three of this study, favor environments
where they can engage in polar interactions, e.g., hydrogen
bonding, with other residues or water. Thus, obviously, 3D
protein structure is not driven by “primary” structure, but by
the hydropathic interactions that each residue must make based
on its type and sidechain and backbone conformations.

In our first report to address this concept, we calculated 3D
hydropathic interaction maps to visualize and probe all possible
environments of tyrosine (TYR) using a dataset of ∼30,000
residues. Our analysis organized all of our TYR residues into
262 unique, backbone-dependent environments, each with a
unique map encoding the specific interactions made by the
residue in that environment (Ahmed et al., 2015). A similar
analysis with over 57,000 alanine (ALA) residues, separately
calculating backbone-environment and sidechain-environment
maps, yielded 136 and 150 backbone- and sidechain-dependent
maps, respectively, despite ALA’s simplicity. We concluded
that ALA’s mapped environments are a new and insightful
form of structural motif (Ahmed et al., 2019). Recently, in our
report on phenylalanine, tryptophan, and tyrosine, we showed
that the subtle effects of π-π and π-cation interactions are
encoded in their 3D hydropathic interaction maps (AL
Mughram et al., 2021). In a report on serine and cysteine we
highlight the major structural features—similarities and
differences—between these two isosteric residues (Catalano
et al., 2021). Importantly, our analyses describe residues by
cataloguing their environments in terms of interactions and
not identity. A water molecule oriented for a residue can play
the same “acidic” role as a TYR–OH or a LYS–NH3

+ to satisfy its
hydropathic valence. Protein structure is driven by the set of these
hydropathic interactions for each residue.

In the current report, we focus our attention on the
hydropathic environments of aspartic acid, glutamic acid and
histidine, three residue types considered to be “ionizable”,
extracted from the same relatively large dataset of X-ray
crystallographic protein structures. Following the same logic
used in our previous work, we believe that, not only are each
of these residues likely to make their own unique sets of
interactions that can be clustered, but their environments also
determine each residue’s unique ionization state. Thus, using our
scoring methods, we have simulated titration of thousands of
each of these ionizable residue types to model their protonation in
available crystal structures by computationally varying pH. We
have generated interactionmaps similar to those in our reports on
tyrosine, alanine, phenylalanine, and tryptophan, but with each
possessing an individually optimized protonation state. The role
of sidechain buriedness was examined using a calculated solvent-
accessible surface area for each of the extracted residues. Further,
we show that each residue’s backbone conformation plays a
significant role in determining these protonation states. With
these, we can directly predict a specific residue’s ionization state,
explore the effects of varying pH, i.e., tuning, on their hydropathic

environments, and collect 3D interaction-similar residue
environments by clustering. Moreover, we highlight the most
common environments that contribute to one state or another,
but more importantly we have developed a basis set of 3D
backbone-dependent residue interaction profiles for these three
residues that are pieces of the protein structure analysis and
prediction puzzle.

MATERIALS AND METHODS

Dataset
From a collection of 2,703 randomly selected proteins from the
RCSB Protein Data Bank, using only structures containing no
ligand or cofactor, we extracted all ASP, GLU, and HIS residues
from each structure, excluding N- and C-terminal residues. For
these structures, we have previously described our selection
criteria (Ahmed et al., 2015). Our intention was to abide by
random population-based sampling of a variety of primary,
secondary, and tertiary structures, thus not excluding proteins
with similar or identical sequences. We believe the size of our
dataset should exhaust all unique residue environments of HIS,
ASP, and GLU. Hydrogen atoms were added to all heavy atoms of
all structures based on their hybridization states. Positions of
these atoms underwent conjugate gradient minimizations.

Alignment Calculations
We overlayed an 8 by 8 “chessboard” on the standard
Ramachandran plot, where each “chess square” has
dimensions of 45° by 45° in ϕ (phi)–ψ (psi) space. The grid of
the board was shifted by −20° and −25° in the ϕ and ψ directions,
respectively, to enclose higher-density regions of the plot within
single squares. The ϕ, ψ, and χ angles were all calculated for every
residue in our dataset, and each residue was binned into their
proper chess square based on its respective ϕ and ψ angles. All
residues in each chess square were further divided by their χ1
angles into three parse groups: group “0.60”, (0° ≤ χ1 < 120°),
group “0.180” (120° ≤ χ1 < 240°), and group “0.300” (240° ≤ χ1 <
360°). In the case of GLU, residues were still further parsed by
their χ2 angles, yielding a total of nine parses for this residue.
Supplementary Table S1 contains all information for each
residue of each type in our dataset, including their chess
squares, parses, PDB IDs, ϕ, ψ and ω torsion angles and atom
numbers for the backbone atoms and CB of each residue.

A single model residue of each type was constructed at the
center of each chess square with characteristic ϕ and ψ angles for
that centroid. The CA of the peptide backbone was placed at the
origin with the CA-CB oriented along the z-axis and the CA-HA
bond oriented into the -y, -z quadrant of the yz-plane. All residues
of each type were aligned to this model, and rotation and
translation matrices were calculated by least-squares fitting of
the residue constituent atoms to the model. This effectively
shifted coordinates of every protein structure to align the
residue of interest with the centroid within a common frame
and ensures that all calculated maps and environments are
attributable to a residue’s interactions and not misalignments
in backbone structure. The average root-mean square distances
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(RMSDs) for superimpositions of backbone atoms in each chess
square are close to 0.15 Å, indicating that errors arising from
aligning residue backbones to the centroid model (based on the
CA-CB bond) are minimal.

HINT Scoring Function
The HINT forcefield (Kellogg et al., 1991; Kellogg and Abraham,
2000; Sarkar and Kellogg, 2010) was used for all scoring of
interactions between protein atoms. HINT relies on atom-
focused parameters, namely the hydrophobic atom constant
(a1) and a value for solvent-accessible surface area (SASA, Si)
for atom i. Generally speaking, ai > 0 for hydrophobic atoms and
ai < 0 for polar atoms.

Si is greater for more solvent-exposed external atoms. The
interaction score between atoms i and j is calculated by:

bij � aiSiajSjTij e
−r + Lij,

where r is the distance in angstroms between atoms i and j. Tij is
equivalent to −1, 0, or 1 to account for acidic, basic, etc. character
of atoms involved and assign the proper sign to the interaction
score. Finally, Lij implements the Lennard-Jones potential
function (Kellogg et al., 1991). bij > 0 for favorable
interactions, such as Lewis acid-base and hydrophobic-
hydrophobic interactions, while bij < 0 for unfavorable
interactions, including hydrophobic-polar or Lewis base-base
interactions.

Computational Titration of Ionizable
Residues
To determine the optimal ionization state of each studied
residue, we adapted an algorithm that we reported previously
for improving protein-ligand models for scoring (Kellogg
et al., 1991; Kellogg et al., 2004; Sarkar and Kellogg, 2010).
Our algorithm scores all possible ionization states of a model
residue with other residues in its environment. Here, we
optimized the ionization states of residues by first
calculating the normal (environment-free) cost for
ionizations of these residues using published data (ASP,
pKa � 3.65; GLU, pKa � 4.25; HIS, pKa1 � 6.00, pKa2 �
14.44) (George et al., 1964) and applying the Henderson-
Hasselbalch equation. For ASP, at pH 7, log [(CO2

–]/(CO2H)]
� 3.35, which is an equilibrium constant that can be converted
to a ΔG of 4.57 kcal mol−1. Using the previously reported
relation that −1 kcal mol−1 ≈ 500 HINT score units, the energy
cost in HINT score units for protonating aspartate at pH 7, in
the absence of local pH effects is 2,295. Table 1 summarizes
these energy costs.

The second term, calculated for each residue in varying
protonation states, also as a HINT score, measures the effects
of the local environment around the residue. This assessment of
the environment scores the interactions of the residue in question
with those nearby, in each accessible protonation state. These
scores are summed together with the appropriate values in
Table 1 to determine the best scoring, and therefore most
likely, protonation state of the residue. For ASP and GLU, we
examined the ionized (carboxylate, CO2

–) and neutral states with
protonation at each oxygen atom (OD1/OE1 and OD2/OE2). For
the latter, the -C-C-O-H dihedral angles were exhaustively
optimized for ideal hydrogen bonding to surrounding residues.
For HIS, four potential ionization states exist: 1) protonation at
both ND1 and NE2 (HIS+), 2) protonation at only ND1 (HIS-δ),
3) protonation at only NE2 (HIS-ε) and 4) deprotonated (HIS−),
the last of which is reported to be exceedingly rare. Since the
entire imidazole ring of HIS can be flipped, the potential cases for
this residue are doubled to eight (vide infra). If the HINT score
was 50 or more (∼0.1 kcal mol−1) than the starting case, the
residue’s molecular model was replaced with the (protonated or
deprotonated) trial model for that case. All further calculations at
that pH were performed with the resulting optimized residue
structure and coordinates.

pKa Calculations
We identified 94 residues with experimental pKa values in the
PKAD database (Pahari et al., 2019) that were also present in our
dataset and compared our predicted pKa values for those to their
experimental values. Using the technique described above, we
calculated individual pKa values for these residues and compared
them with those in the PKAD database. Calculation of a residue’s
protonation state was performed within a range from 1 to 14 in
increments of a quarter of a pH unit. We treated the two points
representing the protonation transition state as part of a linear
regression and solved for the “equivalence point” between them.

HINT Basis Interaction Maps
Each residue with its CA-CB bond along the z-axis, was placed
within a three-dimensional box large enough to accommodate the
structure of a residue, plus an additional 5Å on each dimension.
These boxes, based on residue type, are as follows: ASP, –8.5 Å ≤ x
≤ 8.5 Å; –8.5 Å ≤ y ≤ 8.5 Å; –7.5 Å ≤ z ≤ 9.5 Å, (42,875 points,
4,913 Å3); GLU, –8.5 Å ≤ x ≤ 8.5 Å; –8.5 Å ≤ y ≤ 8.5 Å; –7.5 Å ≤ z
≤ 10.5 Å, (45,325 points, 5,202 Å3); andHIS, –10.0 Å ≤ x ≤ 10.0 Å;
–10.0 Å ≤ y ≤ 10.0 Å; –7.5 Å ≤ z ≤ 9.5 Å, (58,835 points, 6,800 Å3);
all with a point spacing of 0.5 Å. As described previously (Ahmed
et al., 2015), HINT was used to calculate an interaction grid
representing the 3D interaction space surrounding a residue of

TABLE 1 | Energy costs in HINT scores for computational titration of aspartic acid, glutamic acid and histidine at various pH values.

pKa pH 4 pH 5 pH 6 pH 7 pH 8 pH 9 pH 10

Aspartic Acida 3.65 240 925 1,610 2,295 2,980 3,665 4,350
Glutamic Acida 4.25 −171 514 1,199 1884 2,569 3,254 3,939
Histidine Ka1

b 6.00 −1,370 −685 0 685 1,370 2055 2,740
Histidine Ka2

c 14.44 7,151 6,466 5,781 5,096 4,411 3,726 3,041
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interest. In short, these maps interpret sums of pairwise HINT
scores (Kellogg et al., 1991; Kellogg and Abraham, 2000; Sarkar
and Kellogg, 2010) into 3D map objects indicating position,
intensity, and type of interaction between atoms of the residue
and those close in proximity. Each grid point for a map was
calculated, according to:

ρxyz � ∑ bij exp{ − [(x − xij)2 + (y − yij)2 + (z − zij)2]/σ},

where ρxyz is the map interaction score at coordinates (x, y, z), xij,
yij and zij are coordinates of the midpoint of the vector between
atoms i and j, and σ is the width of the Gaussian map peak, 0.5 for
our purposes (Ahmed et al., 2015). Map data were calculated for
sidechain atoms of all ASP, GLU, and HIS residues with
individual maps for the four interaction classes: favorable/
unfavorable polar and favorable/unfavorable hydrophobic.

Calculation of Map-Map Correlation
Metrics
Comparison of two maps, m and n, are based on:

if |Gt|/F> 1.0, At � (Gt/|Gt|)log10(|Gt|/F); else, At � 0,

where each raw map data point (Gt, for point at index t) is
transformed to log10 space and normalized with a predefined
floor value, F � 1.0. Similarity between mapsm and n, defined as
D (m,n) is calculated based on previous methods (Ahmed et al.,
2015):

D(m,n) � ∑{1 − (|At(m) − At(n)|)2/[(|At(m)| + |At(n)|)
· (|A(m)|max + |At(n)|max)]}.

In this metric, At(m) and At(n) are map values for the same grid
points in maps m and n, respectively, and |A|max is the absolute
max value of the grid points in m and n. Our map boxes are
designed to accommodate all possible residue environments and
usually contain a majority (>60%) of zero-valued points. To
mitigate the issue that all map pairs would appear similar,
only points where |At(m)| ≥ 8 |A(m)stddev| or |At(n)| ≥ 8 |
A(n)stddev| (Astddev is the standard deviation of the average
value of all points in the map) in calculating D (m,n) (Ahmed
et al., 2015) were considered.

D (m,n) should normally range from 0 to 1, where 1 indicates
identical maps; realistically, D (m,n) � 0 cannot exist, as it
would signify completely overlapping maps with opposite signs.
Neither will D (m,n) � 0.5 exist, as it would require completely
non-overlapping maps. Typically, the minimum D thus falls
between 0.6 and 0.7. To calculate the overall similarity (Dall)
between two like residue maps m and n, one composite metric
was calculated from four metrics containing data for the map
quartet described above [hydro (+), hydro (−), polar (+), and
polar (−), which are favorable and unfavorable hydrophobic
(e.g. hydrophobic-polar) contributions, and favorable and
unfavorable polar contributions to each map, respectively].
Here, D (m,n)all � { 4[D (m,n)hydro(+)] + 2[D (m,n)hydro(–)] +
[D (m,n)polar(+)] + [D (m,n)polar(–)] }/8.

The favorable and unfavorable hydrophobic interactions were
scaled by 4 and 2, respectively; these two terms are more subtle,
diverse and potentially information-rich, than those driven by
electrostatic, particularly ionic, interactions.

Also, to reduce the computational burden, we applied a first-
pass similarity filter (Ahmed et al., 2015) to our matrix
calculations to remove certain residues from further
consideration because many maps are highly similar as they
share highly similar environments, and thus can be removed
to avoid redundancy. This significantly scales down our pool of
calculations, which is significant as several steps scale more or less
as n2.

As described previously (Ahmed et al., 2015), all above
calculations were performed with in-house-written programs
that exploit the inherent parallelism of our methods with
GPUs, specifically used to calculate maps and similarity matrices.

Clustering and Validation
We utilized the freely available R programming language and
environment (R Core Team, 2013) to perform our clustering
analysis on the pairwise map similarity matrices calculated above.
We determined (Ahmed et al., 2015) that for our purposes, out of
a number of different clustering methods, the k-means method
was most reliable. Through the experience of our previous reports
(Ahmed et al., 2015; Ahmed et al., 2019) and preliminary studies
here, we opted to set a uniform maximum number of clusters of
12 for each chess square-parse combination. This allows for
significant map diversity and facilitates inter-chess square/
inter-residue comparisons. Most chess squares/parses,
however, had fewer than 12 clusters in their optimal solutions.
Additionally, k-means clustering will not form singleton clusters,
i.e., with a single member. However, while this is fairly rare
(∼5%), these maps could be interesting, so our protocols are
designed to optionally recover them by reconstructing the cluster
solutions with the missing singletons. Any chess square-parse
with four or fewer maps was not clustered, but, instead, averaged
to create what is, effectively, a 1-cluster case.

Average Map, RMSD, and
Solvent-Accessible Surface Area
Calculations
Careful consideration must be given to calculation of average
maps. First, to avoid what we have described as “brownmapping”
(Ahmed et al., 2015), only maps sharing high similarity should be
combined. Second, the average maps are calculated by Gaussian
weighting (w) the contribution of each map with respect to its
Euclidean distance from the cluster centroid, given by:

w � exp[ − (d2/σ2)],
where d is the map’s distance from the centroid and σ � dmax/8,
which is the average of all maximum distances across all clusters
in the chess square. This weighting ensures that maps closer to the
centroid contribute more significantly to the average map of the
cluster, whereas taking a flat average of all map data would
overweight the importance of maps further from the centroid.
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While a formal definition exists for “exemplar” in affinity
propagation clustering, for our purposes, it represents the
residue datum closest to the centroid of each cluster output by
the k-means algorithm.

RMSDs (root-mean square distances) for each residue type
were calculated by weighted averaging, as above, all atomic
positions from all residues in a cluster to construct one
average residue structure. For each non-hydrogen atom, an
RMSD was calculated from the average structure, and then all
atomic values were averaged to obtain the reported RMSD for the
cluster.

We calculated SASAs for all residue sidechains using the
GETAREA algorithm (Fraczkiewicz and Braun, 1998) and its
default settings. The protein coordinates in PDB files were
submitted as input. Also from GETAREA’s “In/Out”
parameter, we created a new metric “foutside” to represent the
buriedness of the set of residues in a cluster, parse, chess square,
etc. by recasting “In” as 0.0, “Out” as 1.0 and “indeterminant” as
0.5, and averaging the set.

RESULTS AND DISCUSSION

Dataset: Binning and Parsing Residues
From the dataset of 2,703 protein structures described in
Methods, we extracted 42,713 ASPs, 49,306 GLUs, and 15,276
HISs, all of which were non-terminal residues. An 8 by 8
chessboard was overlaid on a standard Ramachandran plot
(Ramachandran et al., 1963), such that each grid square has
dimensions of 45° by 45° in ϕ–ψ space and the extents of the board

are shifted slightly to contain regions of high residue population
density in single squares (Figure 1), named as a1 through h8. We
binned residues into each square by their backbone ϕ and ψ
angles and further parsed them by their χ1 angles into three
groups corresponding to those normally observed in rotamer
libraries (Shapovalov and Dunbrack, 2011): a group averaging
∼60°, a group averaging ∼180°, and a group averaging ∼300° from
here on referred to as the “0.60”, “0.180”, and “0.300” parses. In
the case of GLU, residues were still further parsed by their χ2
angles, yielding a total of nine parses for this residue: “0.60.60”,
“0.60.180”, “0.60.300”, “0.180.60”, “0.180.180”, “0.180.300”,
“0.300.60”, “0.300.180” and “0.300.300” (Figure 2). We
showed previously (Ahmed et al., 2015) that map-based
clustering was able to easily identify this (χ1, χ2) low level of
detail, except for surface-exposed residues that show few
interactions with anything apart from solvent. However, even
a few such failures were problematical in calculating average
maps and residue coordinates. Furthermore, parsing of the chess
square members into χ bins increased computational efficiency.
(Many calculations scale as n2: 3 × (n/3)2 < n2). The additional χ2
parse for GLU further reduced the computations and made the
ASP and GLU data more comparable, i.e., the (unparsed)
remainder of their sidechains is the same –C–COOH fragment.

Throughout this work, chess square names will be given in
bold italics, e.g., a1, b4, etc. The χ1 parses for ASP and HIS will be
denoted by the suffixes 0.60, 0.180 and 0.300 and the χ1/χ2 parses
for GLU will be denoted by the suffixes 0.60.60, 0.60.180,
0.60.300, etc.

The occupancies of the chess square/parses range from 0 to
6,215 (d4.300) for aspartate, to 4,563 (d4.300.180) for glutamate,
and to 1,504 (d4.180) for histidine. For aspartate, 44 (of 64) chess
squares contain 10 or more residues, and 159 chess squares/

FIGURE 1 | Ramachandran chessboard displaying the chess square/
parse population for aspartic acid. The Ramachandran ϕ vs. ψ plot is rendered
into 64 45° by 45° (π/4 by π/4) chess squares. The (χ1) parse populations for
ASP are represented in log10 scale with the colored bars. Their colors
reflect the average weighted fraction outside or solvent exposed, i.e., “foutside”,
a measure of solvent accessibility (see text for definition). The ϕ vs. ψ regions
associated with β-pleat, α-helix, and left-hand α-helix secondary structure
motifs are shaded in light purple, light orange and light green chess squares,
respectively.

FIGURE 2 | The χ1 and χ2 rotamer parses. CB (black) has three χ1
rotamers (dark gray, CG): 0.60, 0.180 and 0.300. Each of those, for GLU, has
three χ2 rotamers (light gray, CD), as shown.
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parses (of 192) are occupied at all. These metrics are 40/64 and
356/576 for glutamate and 32/64 and 120/192 for histidine.
Supplementary Table S1 provides occupancies in the
Ramachandran chessboards for these three residues. To
simplify nomenclature in this article, we are using a numerical
scheme wherein the sequential number of that residue in its chess
square/parse is its name. Thus, histidine 100 in chess square a1.60
is the 100th histidine contained within that chess square/parse
combination, as tabulated in Supplementary Table S2, wherein
the specific actual PDB ID, chain, residue name, etc. for each
datum in this study can be found. Clusters (vide infra) will be
named for the residue closest to its centroid or exemplar and will
be given in bold numerals.

The Ramachandran plot generally contains four regions
associated with specific secondary structure motifs. According
to our schema (Figure 1), fifteen chess squares (a1, a6, a7, a8, b1,
b2, b7, b8, c1, c2, c6, c7, c8, d1 and d8) correspond to the β-pleat
motif, seven chess squares (b4, b5, b6, c4, c5, d4 and d5)
correspond to the right-hand α-helix motif and five chess
squares (f5, f6, f7, g5 and g6) correspond to the left-hand
α-helix motif. The remaining chess squares, some of which
may contain mixtures of secondary structural motifs, account
for the remaining residues.

Calculations in this study were performed for all
Ramachandran chess squares, but, for brevity’s sake, we focus
our discussion on a particular four, designed to sample the three
major regions of the standard Ramachandran plot: b1, c5, d5 and
f6. The c5, d5 pair allows us to compare independently-calculated
map and environment data between chess squares within the
same right-hand α-helix structural motif region.

Ionization State Optimization
While our primary goal for this study is to evaluate the
hydropathic environments of the ASP, GLU and HIS residue
types, a key requirement was to use molecular models that are in
appropriate ionization states. We were also interested in
examining the effects of these ionization states on the residue
environments. Also, such structures (and 3D maps) should have
rational and tunable pH dependencies to enable prediction of
structure, properties, and function.

As the local environment heavily influences protonation states
of ionizable residues, we updated the computational titration
algorithm that we reported earlier (Kellogg and Abraham, 2000;
Fornabaio et al., 2003) to optimize the ionization state (and
concomitantly the–C–O–H dihedral angle) of all residues in
this study. Briefly (Methods), we calculated the HINT score
between each residue and its local environment in each of its
possible ionization/rotameric states (3 for ASP and GLU, 8 for
HIS, Figure 3). These scores were modified by pKa- and pH
dependent factors derived from the Henderson-Hasselbalch
equation. It is important to emphasize that all these
calculations were performed without changing the atomic
positions of the non-hydrogen atoms—except for the π
rotation about χ2 shown on the right side of Figure 3B. In
other words, all models generated and scored are
isocrystallographic. The highest-scoring model of the set
generated for each residue was selected for moving forward in

the study. We note an advantage here: since the positions of the
heavy atoms are fixed based on their X-ray structures,
calculations will likely identify the protonation model most
favorable for that conformation.

Aspartic Acid
We calculated the optimal structure for each studied aspartic acid
at a range of pHs. For this residue, where the pKa is 3.65, we
determined the fraction of the nearly 43,000 residues protonated
at pHs from 0 through 8. The result, which is reminscent of a
titration curve, is shown in Figure 4. Our calculations yielded the
total fraction of aspartic acids expected to be protonated at pHs 0
through 8 in increments of 1 with an overall titration curve
centered close to the nominal ASP pKa and differing, overall, by
∼0.31 pH units. Our calculations suggest that residue backbone
structure has an impact on levels of protonation. Our data (vide
infra) also suggest that differences in secondary structure have an
effect on solvent accessibility: these two phenomena are
intimately linked, and in fact difficult to separate. pKa shifts
associated with differences in solvent-accessible surface area are
known, as less solvent exposure may increase the pKas of acidic
residues (Harms et al., 2009). Highly solvent-exposed residues
are, in practice, in vacuo in many protein structure models so that
there are no inter-residue interactions to account for. The pH in
our calculations at which the aspartic acids are 50% ionized
(which we are calling pH50) is 3.345. While this is an arbitrary

FIGURE 3 | Various possibilities for ASP, GLU and HIS ionization/
rotameric states. (A) ASP, GLU, and (B) HIS sidechain functional groups. Red
� Lewis acid, blue � Lewis base, green � hydrophobic. Note that “ring flips” of
HIS present distinct patterns for interaction.
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value, we will use pH50s as set points for map calculations (see
below).

Glutamic Acid
The titration curves for the over 49,000 GLU residues in our study
are shown in Figure 5. These look very similar to those of ASP
and, in the same way, center very closely to its native
experimental pKa. In fact, the average calculated GLU pKa

deviated from the experimentally-determined pKa for the GLU
model peptide by only ∼0.03 pH units. There is also seemingly
less secondary structure dependence for these results, which is
likely due to differences in solvent accessibility between ASP and
GLU sidechains. pH50 for our glutamic acid data is 4.224.

Histidine
This residue type potentially has three different protonation
states, resulting in four unique protonation patterns
(Figure 3), compared to ASP’s and GLU’s two, and thus tells
a more complicated story (Figure 6). In addition to the expected
HIS to HIS+ protonation, HIS can be deprotonated to HIS−

(Ascone et al., 1997) in exceedingly rare cases, such as Cu, Zn
superoxide dismutase. We simulated the titration of more than
15,000 HIS residues in our dataset together and separately by
their secondary structure. According to our calculations, in the
neutral state, a greater fraction of HIS residues were protonated at
the ε-nitrogen in all secondary structures. However, factors
contributing to protonation of HIS are much more
complicated, including solvent accessibility and conformational
changes, discussed later. The deviation of our calculated pH50 of
5.174 from the nominal HIS pKa1 of 6.00 is greater for HIS than
those of ASP and GLU, here ∼0.83 pH units. Also interesting is
that apparently only around 80% of HIS residues can even be
protonated to HIS+, likely due to steric contraints disallowing that
configuration, but for HIS in left-hand α-helix conformations,

90% can be protonated, presumably due to less structural
constraint imposed by that backbone motif.

Summary of pH Optimization Results
Although this was a secondary goal, our predictions for residue
pKas are reasonable enough (Supplementary Table S3) that the
molecular models upon which our 3D maps are constructed are
likely to be correct, as least as snapshots of them in the dynamic
biological solution. Our algorithm tends to simulate ionization
for highly solvent-exposed residues in protonated forms (charge
neutral for ASP and GLU and cationic for HIS). As noted above,
there are no interacting residues and (usually) few or no explicit
water molecules in the protein models for such residues to aid in
the estimation, and the few interactions that are found prefer
uncharged species. Our simulation of “bulk” solvent is only
through the pressure applied by the external pH term in the
Henderson-Hasselbalch relation. For high-level pKa estimations,
clearly more rigorous consideration of solvent molecules and, as
Friedman (2011) showed, ions, may provide more accurate
predictions of ionization states. However, on the ∼105 case
scale of this study, we used our more practical and accessible
approach.

Interestingly, the easier to experimentally determine pKas of
surface residues (Fitch et al., 2002) contrasts with the easier to
calculate pKas of more buried residues, and there is not really a lot
of experimental data available. The ionization state-optimized
molecular models, which are more important for our purposes,
are likely to be quite reasonable except in edge cases. The
computationally more problematical highly solvent-exposed
residues are fully immersed in water and are thus less
participatory in protein structure. We will show below that the
edge cases, themselves, are also not a significant issue because it is
interactions that are assayed by the maps, and an ASP, GLU or
HIS can be a donor and/or an acceptor.

FIGURE 4 | Titration curves of ASP residues by secondary structure.
The native pKa for aspartic acid is indicated.

FIGURE 5 | Titration curves of GLU residues by secondary structure.
The native pKa for glutamic acid is indicated.
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Calculation of Hydropathic Environment
Maps
Based on methods in our previous reports (Ahmed et al., 2015;
Ahmed et al., 2019; AL Mughram et al., 2021) we evaluated
interatomic interactions using the HINT force field and score
model (Kellogg et al., 1991; Kellogg et al., 1991; Sarkar and
Kellogg, 2010), which uses two atom-centered parameters ai
and Si, the partial log Po/w (for 1-octanol and water solute
transfer) and a term related to solvent accessible surface area,
respectively, for atom i to score atom-atom interactions (see
Materials and Methods). We have reported previously onHINT’s
ability to estimate changes in free energy for ligand-protein,
protein-protein and other complexes in various systems,
(Burnett et al., 2000; Burnett et al., 2001; Cozzini et al., 2004;
Da et al., 2013), such that ∼500 HINT score units correlate well
with a ΔΔG � −1 kcal mol−1.

As stated above, one of our primary hypotheses is that there is
a limited set of unique 3D hydropathic interaction environments
that satisfy the “valence” of a residue. These valences are based on
interaction types, strengths and geometry. For example, as we
showed in previous work (Ahmed et al., 2015) the phenol
hydroxyl of tyrosine can make favorable polar interactions
with an appropriately positioned hydrogen bond donor and/or
acceptor, and it can take the form of a backbone amide, another
polar sidechain, or a water molecule. In contrast, our alanine
maps showed fewer unique interactions, with its methyl sidechain
and no rotamers, but about four to six specific patterns appeared
to be conserved (Ahmed et al., 2019). Consistent in both of these
studies is that we only need to be focused on the interactions that
a residue makes with its environment by class, not by the specific

donor-acceptor pair or residue type identities. In other words, the
type of interaction, its strength and location are more significant
than its participants.

Maps were constructed within rectangular boxes tailored to be
large enough to contain each of our three studied residue types
with its interacting atoms (Materials and Methods). These maps
are calculated to quantify the strength of the variety of
interactions each residue in our dataset makes with the other
atoms in its environment. Our maps categorize interactions in
“quartets” of four separate types: favorable polar, unfavorable
polar, favorable hydrophobic and unfavorable hydrophobic. Our
previous work on tyrosine (Ahmed et al., 2015) and alanine
(Ahmed et al., 2019) examined the hydropathic environments as
stand-ins for structure. Here, we exploit these maps that encode
extensive information concerning the structural roles of the
carboxylates and sidechains of aspartate and glutamate and the
dual proton acceptor-donor nature of histidine’s imidazole. Our
map data further use this information to account for the
environments that potentially stabilize any of these residue’s
ionization states, particularly in response to changes in pH.

Evaluating the Fundamental Patterns in the
Maps
To extract the information encoded in the 3D hydropathic
interaction maps, we first developed a map-map similarity
metric (Ahmed et al., 2015) to score two maps m and n
(section Materials and Methods). In brief, the overall similarity
(Dall) between two like residue maps m and n, is comprised of a
single scalar metric derived by the linear combination of four
terms, one for each member of the map quartet contributions to

FIGURE 6 | Titration curves of HIS residues by secondary structure. The native pKa1 for histidine is indicated. Full deprotonation of HIS to HIS− is shown with data
colored in gray and right-hand y-axis.
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each map, respectively. These scalars were loaded in square
matrices, for each chess square and parse, for statistical
analysis. Next, we clustered these matrices with k-means
clustering within the R programming environment. As
described in Materials and Methods, we set a maximum
number of 12 clusters per chess square-parse combination;
this was sufficient for capturing the diversity of residue
environments while balancing computational efficiency.
Supplementary Table S4 sets out the number of clusters
found on a chess square-parse basis for the three residue types
in this study.

Hydropathic Interaction Maps
The objective of examining maps is to view 3D representations of
the positions and magnitudes of the constellation of interactions
made by residues. We expected that secondary structural
differences affect the interactions a residue makes with its
environment, which we enforced with the chessboard schema.
Additionally, the parse inside each chess square may impact these
interactions. For these reasons, we focused the analysis presented
here on four particular chess squares, b1, c5, d5 and f6, to survey
the environments from each of the three secondary structural
regions of the Ramachandran plot, as in previous reports (Ahmed
et al., 2019; AL Mughram et al., 2021). We performed complete
studies for all three residues at pHs 3, 5, 7, and 9 and at the pH for
each residue at which half of all of that type of residue were
protonated, which we named pH50 above. However, we only
constructed visual map contours displays at each residue’s pH50,
as we believed this pH would be best representative of the
diversity of maps in protonated and deprotonated cases.

Aspartic Acid
Aspartic acid, by nature, is an extremely polar residue, owing to
its carboxy acid sidechain. For this reason, we expected to see two
things: 1) a plethora of maps indicating strong favorable and
unfavorable polar interactions localized around the carboxylate
end of the sidechain and 2) many clusters of maps with high
solvent-accessible surface areas, due to the high presence of ASP
residues on protein exteriors. Indeed, many clusters of ASP
within our studied chess squares show intense positive and
negative polar interactions surrounding the carboxylate,
particularly in clusters with low SASA. Those maps that
appear largely void of interactions are in clusters with high
solvent-accessible surface area, where, as we noted above, there
are no residue-protein interactions.

For brevity, we are discussing in more detail ASP residues in
the b1 chess square, but further detail on the c5, d5 and f6 chess
square results are in Supporting Information. Aspartic acid
residues in the b1 chess square appear to be, comparatively,
the least solvent-exposed of the four squares, yielding more
robust sidechain interactions; this point is the subject of
further discussion in a later section. Figures 7–9 display the
contoured maps for ASP in the 60°, 180° and 300° parses of b1,
respectively. The percentile contribution of each cluster to the
chess square/parse is listed, along with the average GETAREA
(Fraczkiewicz and Braun, 1998) SASA (S) and the fraction of the
members of that cluster that are protonated (fprot).

One significant point is that the displayed contours, as they
represent a map, are showing interactions. Thus, cases where the
ASP is ionized (acting as an H-bond acceptor) interacting with a
donor could be indistinguishable from cases where the ASP is
protonated (acting as a donor) interacting with an acceptor. Thus,
it is entirely reasonable for some clusters to have a mixture of
ionized and protonated ASPs, although most have fprot ≤ 0.2 or
fprot ≥ 0.8. Most interactions shown are of the positive polar type,
which is appropriate, given the role we expect ASP to serve. These
are the prominent, mostly blue contours near the carboxy acid/
carboxylate oxygens that signify hydrogen bonds between one or
both of these atoms and their environment. Additionally, many
clusters in buried environments with low SASA (<20 Å2) were
calculated to be largely deprotonated, i.e., ASP in this
environment is acting as a hydrogen bond acceptor. However,
some clusters showed high degrees of protonation at pH50 �
3.345, such as clusters 12, 118 and 540 in b1.60 (Figure 7) and 84
in b1.300 (Figure 9). Cluster 84, in particular, showed
protonation of 77% of its members with a SASA of 13 ± 12 Å2

at this pH.
Contour maps for the c5, d5 and f6 chess squares show largely

similar map profiles, and are presented in Supplementary
Figures S1, S2 for c5 parses 0.60, 0.180 and 0.300,
respectively; in Supplementary Figures S4–S6 for d5 parses
0.60, 0.180 and 0.300, respectively; and in Supplementary
Figures S7–S9 for f6 parses 0.60, 0.180 and 0.300, respectively.
Further numerical data supporting these results and
encompassing all chess squares is provided in Supplementary
Figure S5. In summary, each map appears to be a backbone-
specific representation of a unique collection of interactions made
by an aspartate/aspartic acid residue. To demonstrate this, we
calculated inter-cluster similarities using the previously described
algorithms. The average cluster-cluster similarities within chess
squares are: 0.799 in b1, 0.795 in c5, 0.791 in d5, and 0.802 in f6
chess squares. However, a few pairs of cluster maps in the
adjacent chess squares c5 and d5 have similarities of >0.900:
637 (c5.60) and 146 (d5.60), 57 (c5.180) and 70 (d5.180), and
217 (c5.300) and 58 (d5.300), indicating that backbone
secondary structural elements may encode inherent similarities
in the kinds of environments likely to surround a given residue.

Glutamic Acid
Glutamic acid tells a very similar story to that of aspartic acid, so
many of the points made for that residue stand here, as well. First,
the bulk of interactions made with the GLU sidechain are of the
positive polar type, followed by negative polar. Again, many
clusters were also calculated to have high SASA. Also, we
calculated GLU maps with three times as many parses as ASP
(vide supra), due to the 1-carbon extension to its sidechain,
making the number of clusters about three times as many. We
believed it is redundant to showcase maps for every average
cluster in every subparse. Instead, we have chosen to focus on the
b1 chess square and show maps of its highest occupied clusters in
each parse (Figure 10). This collection is representative of the
67 b1 clusters, and suggests the diversity of sidechain orientations
available in the full map set. One aspect of the GLU maps that we
expected to see was an amplified presence of hydrophobic
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interactions compared to the ASP maps. However slightly, the
maps of these specific clusters do show some indication of
additional hydrophobic interactions localized around the
hydrophobic chain, although these interactions appear more
likely in the lower population parses. Their lack of visibility in
Figure 10 may be more due to the limitations of contouring at
consistent values than anything else, but perhaps the expected
hydrophobic interactions with this sidechain are actually rare or
have backbone conformation dependence. A confounding factor
certainly is that GLU is even more solvent exposed than ASP, and

this will be explored below. Numerical data for all GLU chess
squares is provided in Supplementary Table S6.

Histidine
Histidine naturally tells very much a different story fromASP and
GLU. Its imidazole sidechain can play numerous roles in protein
structure. Not only does it have more protonation states than the
acidic residues we have discussed, but its two nitrogens can act as
either (or both) hydrogen bond donors and acceptors in any
combination. Its ring is partially hydrophobic and aromatic,

FIGURE 7 | Hydropathic interaction maps displaying the Gaussian-weighted average sidechain environments of aspartic acid in the χ1 � 60° parse of the b1 chess
square at pH � 3.345. Two map viewpoints are given for each cluster, whose ID is given in bold. The left map in each pair is oriented such that the CA-CB z-axis bond
points upward, while the right is oriented to point it out of the page. The x-axis is oriented horizontally in both. The percentage indicates the fraction of the parse
represented by that cluster. S represents the solvent accessible surface area in Å2, and fprot indicates the fraction of the cluster protonated at pH50. Blue contours
indicate positive polar interactions made with the sidechain, and red indicates negative polar interactions, while green and purple indicate positive and negative
hydrophobic interactions, respectively.
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meaning it can make any variety of polar, nonpolar, and π-π
stacking interactions with other residues. These π-π stacking
interactions with aromatic residues, for example, may be
indicated in maps where the ring is bordered by large, flat,
green contours. This brand of versatility is very clearly indicated
in our generated maps for HIS. Figure 11 displays the contour
maps for the HIS b1.60 chess square parse. Supplementary
Figures S20–S30 for histidine maps in the b1.180, b1.300
parses and all parses of the c5, d5 and f6 chess squares. The
patterns in these maps are complex, but interpretable in terms
of the interaction types. A detailed description for all 12

clustered maps in the 0.60 parse of the b1 chess square
would be too much for here, but first, it is clear that all
maps displayed here (and in Supplementary Figures
S20–S30) represent unique sets of interaction features, or
routes to complete the residue’s hydropathic valences.
Consider cluster 31 in the b1.60 map set (Figure 11): 93.3%
of the histidines in this cluster are protonated, it has mid-range
solvent exposure, the CB methylene is making hydrophobic
interactions (green) with its environment, and the protonated
NE is engaged in a hydrogen bonding interaction (blue) largely
perpendicular to the ring. Cluster 235 here is singly protonated

FIGURE 8 |Hydropathic interaction maps displaying the Gaussian-weighted average sidechain environments of aspartic acid in the χ1 � 180° parse of the b1 chess
square at pH � 3.345. See caption for Figure 7.
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at NE, which enagages with an on-axis hydrogen bond, and
has very low solvent exposure, and its environment is
dominated by hydrophobic interactions, both favorable
(green) and unfavorable (purple), with the former above the
ring and the latter below the ring. Comprehensive numerical
data for all chess squares of histidine is provided in
Supplementary Table S7.

Hydropathic Character of Maps With
Changes in pH
We were interested to see how changing the environmental pH
would affect the maps. In other words, can we rationally “tune”
the residue interactions by this means, and can that be
exploited in protein design, e.g., to stabilize or destabilize
binding sites, folds or interfaces? As an illustration, consider
ASP141A in PDB structure 1WNS—family B DNA polymerase
from hyperthermophilic archaeon pyrococcus kodakaraensis
KOD1 (Hashimoto et al., 2001), which is situated in a highly
anionic region with three other acidic residue side chains. This

residue is in our cluster 202 of parse b1.180 with fprot � 0.520 and
has a significant free energy difference between protonated and
deprotonated states. Our model suggests ASP141A has an
elevated pKa and, when protonated, forms a hydrogen bond
with ASP215A. There are significant visible differences
between the calculated maps for this particular residue
(Figure 12): at high pH (9), the interactions surrounding
ASP141A (top) are largely unfavorable polar, but protonation,
as shown in the low pH (5) case, protonates one of the carboxylate
oxygens and yields a strong favorable hydrogen bond between it
and ASP215A. As described earlier, the map contours displayed
in this work were calculated at what we are calling pH50, which
shows the highest diversity of protonated and deprotonated cases.
Such maps can be calculated, clustered, etc. at any pH, and indeed
making use of different maps at different protonation states will
expand the scope for protein structure prediction of real
situations where ionization states can vary due to local
environments.

For further insight, we examined the interaction character of
ASPs in one parse, b1.300, to determine if the relative fractions of

FIGURE 9 |Hydropathic interaction maps displaying the Gaussian-weighted average sidechain environments of aspartic acid in the χ1 � 300° parse of the b1 chess
square at pH � 3.345. See caption for Figure 7.
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our four-type quartet of interactions were altered with changes in
pH (Figure 13). We expected to see small, but noticeable, changes
in clustering of residues as adjustment of pH altered the
memberships of the clusters as protonation became either more
favorable or unfavorable. To facilitate comparisons between the
cluster sets at different pH values, the bars are arranged by
increasing average solvent-accessible surface area for the cluster
(low to high). At pHs of 1, 3.345 (i.e., pH50) and 7, some character
changes were in fact observed, but, interestingly, most of these
occurred in low population clusters. We theorize that, as residues
clustered differently, residues being added/subtracted to/from new
groups simply had a greater impact on the overall character of
smaller clusters. One point of note, however, is that, although most
clusters with high SASA had the highest protonation levels
(discussed later), only cluster 84 retained any level of
protonation at pH 7, in spite of having the lowest SASA. This
suggests that this cluster, in particular, describes scenarios where
aspartate protonation is energetically required.

We also examined the interaction character of the GLU
b1.300.180 parse (Supplementary Figures S31), which is

probably the parse most like the b1.300 parse of ASP. The
clusters within this GLU parse generally involved more
hydrophobic interactions, both favorable and unfavorable, than
those of the ASP b1.300 parse. However, these observations are
subtle and not easily visualized in the map contours. Nevertheless,
overall, the average fractions of favorable and unfavorable
hydrophobic interaction contributions, fhydro(+) and fhydro(–), are
0.038 and 0.218, respectively for GLU, and 0.021 and 0.153 for ASP
at their respective pH50s. Importantly, the higher propensity for
hydrophobic interactions by GLU, due to the additional methylene
in the sidechain, are encoded in the interaction maps on a cluster
by cluster basis.

Our ability to generate tunable maps for HIS is slightly more
limited. The constrained conformational flexibility of the HIS
sidechain and surrounding protein allowed by our approach
could clearly be remedied by molecular dynamics or even
energy minimization, but the cost–beyond CPU, etc. –would
be the loss of positional certainty afforded by experimental
data. That said, our map data for HIS, like ASP and GLU,
exhaustively captures the many possible HIS interaction

FIGURE 10 |Hydropathic interaction maps displaying the Gaussian-weighted average sidechain environments of glutamic acid in the highest populated clusters of
the nine parses of the b1 chess square at pH � 4.224. Residues are oriented such that the CA-CB z-axis points upward and the x-axis runs to the right. The parses of the
χ1 and χ2 angles are indicated along the side of each map. The cluster ID and number of clusters in the parse are given above the map in black and red, respectively.
Below eachmap, in blue, is indicated the fraction of the entire chess square represented by eachmap, followed in black by the parse’s representative fraction of the
chess square. Blue contours indicate position andmagnitude of positive polar interactions near the sidechain, while red represents negative polar interactions. Green and
purple contours indicate positive and negative hydrophobic interactions, respectively.
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environments found in crystallographic structures exploitable for
protein structure analyses and predictions.

Solvent-Accessible Surface Areas for the
Ionizable Residues
The historical Ramachandran plots showed the relationship
between backbone angles and frequency of observation. Our
chessboard schema (Figure 1 for ASP, Figure 14 for GLU and
HIS) was intended to organize our dataset by backbone
structure, and thus facilitate comparisons between like
residues. We also see a further population dependence on χ1
(and χ2 for GLU). In fact, further exploration revealed that
solvent accessibility for each of our three residues is also
seemingly dependent on the residue’s backbone and χ angles,
which suggests a trend between this level of solvent exposure
and underlying protein structure. For example, the average
SASAs for ASP residues were calculated to be 37, 59, 64, and
64 Å2 for the b1, c5, d5, and f6 chess squares, respectively. With
a similar trend, the average SASAs for GLU residues were

calculated to be 57, 75, 80, and 81 Å2 for the b1, c5, d5, and
f6 chess squares, respectively. However, in spite of it being
significantly more hydrophobic than ASP and GLU, and thus
more likely to be buried, GETAREA calculations for HIS yielded
the surprisingly large average SASAs of 41, 59, 62, and 79 Å2 for
the b1, c5, d5, f6 chess squares, respectively.

To evaluate our data in a more nuanced way, we calculated the
“fraction outside” (foutside) metric based on GETAREA
(Fraczkiewicz and Braun, 1998), as described in Methods. The
foutside values for each chess square/parse are also illustrated in
Figures 1, 14, with the colors of the bars (that represent parse
populations by their lengths) for ASP and HIS or squares (that
represent parse populations by their areas) for GLU. Chess
square/parses within the β-pleat region of the Ramachandran
plot for aspartate (Figure 1), as expected, show lower foutside
(more buried) relative to the right- and left-hand α-helix,
i.e., most parses show averaged foutside in the 0.4–0.6 (green)
range, whereas in the α-helix region most are in the foutside range
0.6–0.8, and the left-hand α-helix is still more exposed, in the
foutside range 0.8–1. 0. The same trends hold for glutamates

FIGURE 11 | Hydropathic interaction maps displaying the Gaussian-weighted average sidechain environments of histidine in the χ1 � 60° parse of the b1 chess
square at pH � 5.174. See caption for Figure 7.
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(Figure 14A), although the data suggests somewhat larger foutside
values. This is likely a result of GLU’s inherent additional surface
area concomitant with its 1-carbon chain extension. The foutside
trends for HIS (Figure 14B) suggest more buriedness: in the
β-pleat region of the Ramachandran plot, the parses are evenly
split between the 0.2–0.4 and 0.4–0.6 ranges (yellow and green),
histidines in the α-helix region are in the foutside range 0.4–0.6,
while those in the left-hand α-helix are more exposed, in the
range 0.6–0.8.

It should be noted that the sidechain solvent-accessible surface
areas for these three residues in Gly-X-Gly “random coil”
tripeptides show that histidine has a larger surface area
(154.6 Å2) than either aspartate (113.0 Å2) or glutamate
(141.2 Å2) (Fraczkiewicz and Braun, 1998), which is
incorporated into the foutside calculations. Thus, while HIS may

have, overall, higher solvent exposure in surface area, the actual
fraction of solvent-exposed residues is smaller. All three residues
show the same trend: larger solvent exposure in the α-helix
regions that is more extreme in the left-hand region, and
greater burial in the β-pleat region. These conclusions are in
qualitative agreement with those of Lins et al. (2003) in their
report on differences in solvent-accessible surface area between
residues in different secondary structures. However, foutside,
exactly as SASA does, varies from cluster-to-cluster within
each chess square and parse. For example, foutside for ASP
b1.300 ranges widely–between 0.077 (cluster 84) to 1.000
(cluster 162), despite its overall foutside of <0.4 suggesting
mostly burial for this group of residues.

The SASA and foutside values for all three residues in this study,
on a cluster-by-cluster basis are included in the Supplementary

FIGURE 12 | Variations in mapped environments around ASP141A in PDB structure 1WNS. (A) structure model mapped environment around deprotonated
ASP141A with strong unfavorable polar interaction between it and nearby residue ASP215A (pH 9). (B) structure model and mapped environment around protonated
ASP141A with new strong, favorable polar interaction with ASP215A (pH 5).

FIGURE 13 |Character interaction charts for ASP residues in the b1.300 parse at pH 1, 3.345, and 7. The fraction of each interaction type is given on the x-axis, for
each cluster ID on the y-axis. The bars are arranged such that, descending, clusters have smaller SASAs. The thickness of the bars indicates residue population
contained within that cluster. The black bars indicate fprot, the fraction of the residues in the cluster protonated.
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Tables S5–S7. To summarize, each 3D map cluster represents a
unique set of interactions that also encodes solvent exposure and
buriedness. We should emphasize that map profiles appearing to
be similar could manifest with different buriedness and/or
protonation, and thus remain unique.

Summary and Conclusion
We analyzed the interaction environments of more than 105,000
ionizable amino acid residues (aspartic acid, glutamic acid,
histidine) in a diverse collection of protein structures. From
above and our previous reports (Ahmed et al., 2015; Ahmed
et al., 2019), it is clear that the hydropathic environment
surrounding an amino acid residue in a protein can be
mapped in terms of its interactions. Significantly, the patterns
of interactions within the maps, representing the constellation of
contacts and their interaction strengths and characters, cluster

into a fairly limited set of unique, backbone-dependent motifs.
Each of these motifs can be rendered into an average map quartet
and an average prototype residue structure. Thus, we have
produced a backbone-dependent library of not only sidechain
rotamers, but also 3D residue interaction preferences. The
presence of a feature, such as a favorable polar interaction in
one of these maps, e.g., an ASP in the b1.300 (β-pleat) cluster 100
(Figure 9), where the carboxylate/carboxylic acid functional
group is involved in hydrogen bonding through both oxygens,
should have complementary donors/acceptors on neighboring
residue(s). Accordingly, those residue’s maps should contain
similar features, and the alignment of these features–and all
others from a collection of such maps–would describe a well-
organized hydropathic interaction network.

It is not just the favorable hydrophobic and polar interactions
that constitute this network. The maps illustrated by contours
here, and previously (Ahmed et al., 2015; Ahmed et al., 2019; AL
Mughram et al., 2021), nearly ubiquitously display unfavorable
polar and hydrophobic interactions. These interactions are
integral parts of protein structure; for example, even polar
residues like the ASP, GLU, and HIS of this report have
hydrophobic atoms covalently bonded to the polar functional
groups. Thus, a background of unfavorable hydrophobic
interactions is usually seen with strong favorable polar
interactions. However, other hydrophobic interactions are
functional components of structure that Nature uses, e.g., for
adding flexibility or isolating water. Developing an understanding
of them will help illuminate protein design and drug discovery.
Unfavorable polar interactions, on the other hand, provide a
route to understanding and predicting residue ionization states.
The presence of this type of interaction signals an opportunity for
water intervention, an adjustment in local pH or can be used as
drug design cues.

While our predictions of pKas for ASP and GLU are adequate
(and seemingly less so for HIS over a much smaller training
set), our primary goal was not that, but instead to evaluate the
hydropathic environments surrounding these residue types. As
expected, those environments change drastically with pH. We
illustrated environments with 3D maps for an artificial half-
way point–pH50–that showed a range of environments, but we
have also calculated maps for other pH cases, and the nature of
interactions displayed therein are, although unsurprising,
quite informative. Importantly, this means that we can tune
residue hydropathic environment maps as a function of pH,
and that they encode this critical element of structure,
interaction and energetics in a rational way. Thus, if we use
these maps as part of a scheme for protein structure building
and prediction, we have the additional scope to explore
ionization states in understanding and defining optimal
protein structures.

In our 2019 report (Ahmed et al.), we stated that full
understanding of the individual environment maps for alanine
would first require completing the analysis for all residue types.
This current report is a status update on that task–for ASP, GLU
and HIS. The remaining residues are in various stages of
completion and analysis, and we anticipate additional
communications in the near future.

FIGURE 14 | Ramachandran chessboard displaying the chess square/
parse population for (A) glutamic acid and (B) histidine. The (χ1/χ2) parse
populations for GLU are represented by colored squares with sizes as
indicated on the legend. The (χ1) parse populations for HIS are
represented in log10 scale with colored bars. See also caption for Figure 1.
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As with alanine, our evaluation of interactions of the
ionizable residues with 3D maps backs our interaction
homology paradigm–for understanding and potentially
predicting protein structure. The hydropathic valence for
ASP and GLU is largely satisfied by a functional group that
complements the carboxy acid, and some involvement with the
CB, CG (and for GLU, the CD) methylenes by a hydrophobic
interaction partner, except if the sidechain is fully solvent
exposed. HIS is, however, much more complex, involving
additional terms such as hydrophobic interactions with
aromatic carbons that may be of π-π character and polar
interactions that include hydrogen bonding with its ND1
and/or NE2, as either acceptors or donors. As these effects
are recorded within the maps, we see that it is the hydropathic
“field” of the atoms surrounding a residue, not specific residue
types or atoms, that directs its conformation or other properties,
including rotameric and secondary structure. Finally, biological
structure is a puzzle consisting of a delicate balance of effects,
mostly favorable but others seemingly counterproductive.
Assembing structure by homology modeling (Eisenmenger
et al., 1993; Laughton, 1994; Krivov et al., 2009) or even de
novo structure prediction (Alley et al., 2019; Senior et al., 2020;
Yang et al., 2020) involves many puzzle pieces and interactions,
but some key information involving, e.g., hydrophobic
interactions or residue ionizations is not utilized in the usual
Newtonian physics-based approaches.

Our ability to map interactions in 3D space, including a
rational means to explore the local pH of individual residues
in more or less real time should be advantageous in later
studies. Since the maps highlight interactions, building
structural models that optimize the map-map overlaps of
interactions arising from adjacent or through-space residue
map pairs (or larger sets) could yield a very useful and unique
target function for protein structure prediction, likely quite
amenable for machine learning optimization.
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