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Abstract

Background: The current Union International Committee on Cancer or the American Joint Committee on Cancer
TNM stage system has shown valuable but insufficient estimation for subsets of gastric cancer and prediction for
prognosis patients. Thus, there is an urgent need to identify diagnostic, prognostic, and predictive biomarkers to
improve patients’ outcomes. Our aim was to perform an integrative analysis on publicly available datasets to
identify epigenetic changes that may play key role in the initiation and progression of gastric cancer, based on
which we set to develop a DNA methylation signature to improve survival prediction of gastric cancer.

Results: A total of 340 methylation-related differentially expression genes (mrDEGs) were screened in gastric cancer
patients from The Cancer Genome Atlas (TCGA) project. Pathway enrichment analysis revealed that they were
involved in the biological process related to initiation and progression of gastric cancer. Based on the mrDEGs
identified, we developed a DNA methylation signature consisting of ten gene members (SCNN1B, NFE2L3, CLDN2,
RBPMS2, JPH2, GBP6, COL4A5, SMKR1, PPP1R14A, and ARL4D) according to their methylation β value. This
innovative DNA methylation signature was associated with cancer recurrence, while it showed independence of
cancer recurrence and TNM stage for survival prediction. Combination of this DNA methylation signature and TNM
stage improved overall survival prediction in the receiver operating characteristic analysis. We also verified that two
individual genes (PPP1R14A and SCNN1B) of the identified prognostic signature were regulated by promoter region
methylation in a panel of gastric cell lines.

Conclusions: This study presents a powerful DNA methylation signature by performing analyses integrating multi-
source data including transcriptome, methylome, and clinical outcome of gastric cancer patients from TCGA. The
identified DNA methylation signature may be used to refine the current prognostic model and facilitate further
stratification of patients in the future clinical trials. Further experimental studies are warranted to unveil the
regulatory mechanism and functional role of all the individual genes of the DNA methylation signature. Also,
clinical investigations in large GC patient cohorts are greatly needed to validate our findings.
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Background
Gastric cancer (GC) is a deadly malignancy, being the
fifth most common cancer and the fourth leading cause
of cancer death worldwide [1]. The major gastric cancer
risk factors include age, gender, race, tobacco use, alco-
hol consumption, obesity, Helicobacter pylori and

Epstein-Barr virus infection, gastro-esophageal reflux
disease, and family history [2, 3], among which H. pylori
is recognized as a class I carcinogen by the World
Health Organization [4]. During the chronic inflamma-
tion induced by H. pylori infection and the subsequent
carcinogenesis, various factors, including bacterial, host,
and environmental factors, interact to facilitate damage
repair. Altered cell proliferation, apoptosis, and some
epigenetic modifications to the tumor suppressor genes
might occur, which could eventually lead to inflamma-
tion associated oncogenesis [2, 3]. Most patients with
early-stage gastric cancer are asymptomatic and, there-
fore, diagnosis is frequently made when disease is at an
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advanced stage [2]. Patients with advanced GC are, in
general, treated with surgery and/or chemotherapy with
country-specific guidelines, but relapse and metastasis
are common [5, 6]. The current Union International
Committee on Cancer (UICC) or the American Joint
Committee on Cancer (AJCC) TNM stage system has
shown valuable but insufficient estimation for subsets of
GC and prediction for prognosis patients [7–9]. Gener-
ally, late diagnosis and varied presentations of disease, as
well as a general lack of effective therapies to combat
disease heterogeneity, are major contributors to the high
mortality rate of GC [6]. Thus, there is an urgent need
to identify diagnostic, prognostic, and predictive bio-
markers to improve patients’ outcomes.
Epigenetic hallmarks along with genetic aberrations have

been identified in different subgroups of GC. Accumulating
evidence suggests that epigenetic abnormalities in GC are
not mere bystander events, but rather promote carcinogen-
esis through active mechanisms [6]. To date, aberrant DNA
methylation is the most extensively studied deregulated epi-
genetic mechanism in GC [10]. For example, known tumor
suppressors or tumor-related genes (p16, RUNX3, MLH1,
CDH1, etc.) are silenced by promoter methylation in GC
and its precancerous lesions [11]. Generally, aberrant DNA
methylation in cancer is classified into two categories: global
DNA hypomethylation and regional hypermethylation. Glo-
bal DNA hypomethylation occurs at CpG dinucleotides, es-
pecially in repetitive sequences, which are typically
methylated in normal tissues [12, 13]. The latter type of
DNA methylation, regional hypermethylation, is relatively
more studied in carcinogenesis [14, 15]. Regional hyperme-
thylation occurs preferentially at promoter CpG islands and
leads to gene inactivation in the absence of changes to gen-
etic sequence [15].
The Cancer Genome Atlas (TCGA) project demon-

strated both genetic and epigenetic profiling for 33 types of
human cancer [16]. Based on the multiple platforms uti-
lized within TCGA, it is possible to perform analyses inte-
grating data from multiple sources including transcriptome,
methylome, and clinical outcome to explore specific events
that are most likely to contribute to oncogenic processes
and to identify potential biomarkers associated with pa-
tients’ survival. In this study, we performed an integrative
analysis to identify the epigenetic changes that may play
key role in the initiation and progression of GC, based on
which we developed a DNA methylation signature consist-
ing of ten gene members (SCNN1B, NFE2L3, CLDN2,
RBPMS2, JPH2, GBP6, COL4A5, SMKR1, PPP1R14A, and
ARL4D) to improve survival prediction of GC.

Methods
Data acquisition and preprocessing
Level 3 DNA methylation data of GC samples evaluated
on the Illumina Infinium HumanMethylation450 platform

(450K array) which assesses 482,421 CpG sites throughout
the genome were downloaded from the TCGA data portal
(https://portal.gdc.cancer.gov/) using the TCGA-
Assembler DownloadMethylationData function [17].
These data consist of pre-processed data via TCGA pipe-
lines in the form of β values, which are a ratio between
methylated probe intensities and total probe intensities.
Probe-level data were condensed to a summary beta value
for each gene using the Methylation450_single_value
function in TCGA-Assembler, which calculates the aver-
age methylation value for all CpG sites associated with a
gene [18]. We obtained 397 samples of DNA methylation,
including 395 gastric adenocarcinoma samples and two
normal samples from the methylation data. Methylation
data were normalized using limma R package. Level 3
RNA-seq data and clinical information were also retrieved
from the TCGA data portal. Among 407 cases of tran-
scriptome profiles, 32 cases were obtained from tumor ad-
jacent tissues, while the remaining 375 cases were GC
tissues. The transcriptome data were normalized and log2
transformed with the functions of DEGList and calcNorm-
Factors in edgeR package [19]. The clinical data were pre-
processed by removal of samples without survival status
and patients with survival time less than 30 days were also
excluded because they might die of non-cancer-related
diseases [20]. Above data were available with no restric-
tions for research, and this study was performed under the
guidelines of TCGA.

Identification of methylation-related differentially
expressed genes in GC
First, to acquire differentially expressed genes (DEGs) in
GC, the transcriptome data were analyzed using the edgeR
package with the exactTest function, and a cutoff with
false discovery rate (FDR) adjusted P < 0.01 and |log2FC|
≥ 2 was considered as statistically significant. Next, we ex-
plored the association between gene expression and DNA
methylation of DEGs in tumor samples. We filtered out
tumor samples and DEGs where either gene expression or
DNA methylation data was unavailable and Pearson coef-
ficient between gene expression and average methylation
level (β value) was calculated. Pearson coefficient < − 0.3
with P < 0.05 was set as the criterion for methylation re-
lated DEGs (mrDEGs) identification. Heatmap was plotted
using pheatmap R package.

Pathway enrichment analysis of mrDEGs
In order to explore the potential role of the mrDEGs in the
initiation and progression of GC, the identified mrDEGs
were divided into upregulated and downregulated groups.
Gene enrichment analysis for each group was carried out
using Metascape, a free online tool for gene annotation
(http://metascape.org) [21]. The correction network of the
enriched terms was presented in Cytoscape [22].
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Survival model construction process
Prognostic data were created on the methylation matrix
of mrDEGS and matched follow-up data. Univariate Cox
regression analysis was performed to identify the
mrDEGs with prognostic value based on their methyla-
tion β value. mrDEGs which were identified significantly
associated with overall survival (OS) in the univariate
Cox regression analysis (P < 0.01) were subjected to the
multivariate Cox regression analysis to construct a best
fitting prognostic model and a risk score formula was
then established by including each of these selected
genes, weighted by their estimated regression coefficients
in the multivariate Cox regression analysis. Patients were
classified into high or low risk groups with the cutoff of
the median risk score. We applied the bi-level selection
using both forward and backward likelihood ratio tests
in the multivariate Cox regression analysis with the
Akaike information criterion (AIC) as a stopping rule
[23]. Bi-level selection is motivated by the fact that some
genes within a gene set may be unrelated to the pheno-
type of interest, although the gene set as a whole is in-
volved in the biological process [24]. Applying this
method to prognostic gene exploration for specific sub-
types or stages of a disease, we may screen out gene sig-
natures whose members have subtle individual effects
but their coordinated effects are significant when taken
together [24]. These steps in the multivariate Cox re-
gression analysis were executed by the survival R pack-
age with the function of coxph. Apart from model
calibration (predicted risk reliability which is indicated
by AIC), the discrimination performance indicating the
prognostic model’s ability to separate outcome categor-
ies was evaluated by Harrell’s concordance index (C-
index) with 95% confidence intervals (CIs): values range
from 0.5 (classification by 1/2 probability) to 1.0 (perfect
prediction) [23]. C-index was calculated using the surv-
comp R package.

Validation experiments in gastric cell lines
Quantitative real-time PCR (qPCR), methylation-specific
PCR (MSP), and bisulfite sequencing (BSSQ) were used to
verify that the expression of certain individual genes in the
identified prognostic signature were indeed regulated by
DNA methylation. A panel of seven GC cell lines
(NUGC3, SNU5, SNU16, NCI-N87, AGS, MGC803, and
BGC823) and one gastric epithelial cell line (GES1) were
included. All gastric cell lines were preserved in our insti-
tute (The First Medical Centre, Chinese PLA General
Hospital, Beijing, China). All cell lines were cultured in
RPMI 1640 supplemented with 10% fetal bovine serum
and 1% penicillin/streptomycin. 5-Aza-2′-deoxycytidine
(5-aza, Sigma, St. Louis, MO) treatment (2 μM for 96 h)
to these gastric cell lines, RNA isolation, and first strain
cDNA synthesis were performed as previously described

[25]. qPCR was performed on the StepOnePlus Real-Time
PCR System (Applied Biosystems, Foster City, CA) by
monitoring the fluorescence of SYBR Green (TaKaRa Bio
Inc, Dalian, China) binding to double-stranded DNA. The
settings for the PCR thermal were as follows: initial de-
naturation at 95 °C for 30 s, followed by 40 amplification
cycles of 95 °C for 5 s, 60 °C for 15 s, and 72 °C for 15 s. A
dissociation analysis was performed at the end of each
PCR reaction to ensure its specificity. Each PCR was run
in triplicate and repeated three times. For quantification
of gene expression changes, the 2-ΔΔCt method [26] was
used to calculate relative fold changes normalized against
the GAPDH gene. The results were presented as fold
changes versus the gene expression level of GES1 cell line
without treatment of 5-aza. Primers for qPCR were listed
in Additional file 1: Table S1. Genomic DNA was pre-
pared by the proteinase K method. Bisulfite treatment,
MSP, and BSSQ were carried out as previously described
[27, 28]. CpG island prediction and design of MSP and
BSSQ primers were performed using Methyl Primer Ex-
press software v1.0 (Thermo Fisher Scientific, Waltham,
MA) according to genomic sequence around the tran-
scriptional start site (TSS). BSSQ products were amplified
by primers flanking the targeted regions which includes
MSP products. The primers for MSP and BSSQ were
listed in Additional file 1: Table S1.

Statistical analysis
Survival differences between the high-risk and low-risk
groups were assessed by the Kaplan-Meier estimate, and
compared using the log-rank test. The relativity between
risk score and clinical factors was analyzed using the
chi-square test or Fisher’s exact test. To test whether the
risk score derived from the identified DNA methylation
signature was independent of patients’ cancer recurrence
and TNM stage, multivariate Cox regression and data
stratification analysis were performed. We also per-
formed receiver operating characteristic (ROC) analysis
to compare the sensitivity and specificity of the survival
prediction based on the risk score and TNM stage. Haz-
ard ratios (HR) and 95% CIs were calculated. Kaplan-
Meier curve was executed by GraphPad Prism 6 (Graph-
Pad Software, San Diego, CA), while other statistical
tests were conducted by R 3.6.0 using the corresponding
R package mentioned above.

Results
Determining mrDEGs in GC
First, we set to identify DEGs between 375 tumor sam-
ples and 32 normal samples based on the RNA-seq data
of GC. According to the screening criteria (FDR < 0.01
and |log2FC| ≥ 2), a total of 3506 significant DEGs were
obtained. There were 2210 genes upregulated and 1296
genes downregulated. Next, we explored the association
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between the mRNA expression and DNA methylation to
identify methylation-related DEGs (mrDEGs). We fil-
tered out tumor samples and DEGs where either gene
expression or DNA methylation data was unavailable,
and 338 tumor samples with 2118 DEGs passed the filter
criterion. Then Pearson coefficient between gene expres-
sion and average methylation level (β value) for each of
the 2118 DEGs was calculated. Totally, 340 DEGs were
identified as mrDEGs (Pearson coefficient < − 0.3 and P
< 0.05; listed in Additional file 2: Table S2). The expres-
sion profile of the most significant 30 mrDEGs was
shown in Fig. 1a, and the association between gene ex-
pression and DNA methylation of the top 5 mrDEGs
was shown in Fig. 1b.

Assessment of relevant biological processes and
pathways of mrDEGs
To explore the potential role of mrDEGs in the develop-
ment and progression of GC, the identified mrDEGs were
divided into upregulated group (160 mrDEGs) and down-
regulated group (180 mrDEGs), and Metascape, a free on-
line tool for gene annotation, was used to perform pathway
enrichment analysis for each group, respectively. The results
showed that the upregulated mrDEGs were enriched in sev-
eral cancer-related pathways, such as MET activates PTK2
signaling, PI3K signaling, negative regulation of binding, and
positive regulation of Wnt signaling pathway (Fig. 2a). Inter-
estingly, KCNMA1, a critical tumor suppressor in GC has
been shown to be inactivated by promoter region hyperme-
thylation, and the anti-tumor effect of KCNMA1 is medi-
ated through suppressing the expression of PTK2 [29]. In
contrast, the downregulated mrDEGs were mainly enriched
in pathways associated with digestive system process,
muscle system process, and metabolic process (Fig. 2b).
Metabolic reprogramming is considered as a hallmark of
cancer [30, 31] and epigenetic-metabolomic interplay plays
a critical role in tumorigenesis [32]. For example, epigenome
modulation of xenobiotic detoxification pathways reportedly
controls predisposition to carcinogen 7,12-dimethylben-
z(a)anthracene (DMBA)-induced breast cancer development
and progression [33]. Collectively, above findings suggested
that the mrDEGs screened in our study are involved in the
biological processes of the development and progression of
GC.

Identification of prognostic mrDEGs
After preprocessing of the methylation and clinical data,
there were 363 GC patients with both methylation and ad-
equate follow up (survival time no less than 30 days) data,
based on which we set to develop a prognostic model for
OS prediction. The clinicopathological features of these 363
GC patients for survival model construction were summa-
rized in Additional file 3: Table S3. First, univariate Cox re-
gression analysis was performed on these 363 patients to

identify certain prognosis-related mrDEGs according to
their methylation β value. We identified a set of 38
mrDEGs whose P values were less than 0.01. Those 38
mrDEGs were further subjected to multivariable Cox re-
gression analysis to construct a best fitting prognostic
model using the AIC as the indicator for model fitness. Fi-
nally, a DNA methylation signature consisting of ten
mrDEGs was developed as a prognostic model for GC pa-
tients. The identified DNA methylation signature included
five gene members (SMKR1, NFE2L3, SCNN1B, ARL4D,
and PPP1R14A) with statistically non-significant P value
(Table 1), but the overall effect was significant and it repre-
sented the best fitting prognostic signature with the lowest
AIC indicating the most excellent model fitness (global P
value [log rank] = 6.316e-9, AIC = 1226.66). The C-index
of the identified DNA methylation signature was 0.713
(95% CI = 0.668–0.758, P = 1.996e-20) suggesting favorable
discrimination ability. Among these ten mrDEGs, positive
coefficients indicated that the higher methylation levels of
four genes (SCNN1B, NFE2L3 and CLDN2, RBPMS2) were
associated with shorter survival (risky genes based on
methylation level). The negative coefficients for the
remaining six genes (JPH2, GBP6, COL4A5, SMKR1,
PPP1R14A, and ARL4D) indicated that their higher levels
of methylation were associated with longer survival (pro-
tective genes based on methylation level). The detailed in-
formation of the ten prognostic mrDEGs was shown in
Table 1.

The DNA methylation signature for OS prediction of GC
patients
A risk-score formula was created based on the methyla-
tion β values of these ten mrDEGs for OS prediction, as
follows: risk score = (4.513* methylation β value of
CLDN2) + (− 2.918* methylation β value of SMKR1) +
(4.152* methylation β value of NFE2L3) + (2.542*
methylation β value of SCNN1B) + (4.765* methylation
β value of RBPMS2) + (− 8.525* methylation β value of
JPH2) + (− 4.225* methylation β value of COL4A5) + (−
2.367* methylation β value of ARL4D) + (− 7.193*
methylation β value of GBP6) + (− 2.845* methylation β
value of PPP1R14A). We then calculated the
methylation-related risk score for each GC patient, and
ranked them according to their risk scores. As such, pa-
tients were divided into a high-risk group (n = 181) or a
low-risk group (n = 182) using the median risk score as
the cutoff point. Patients in the high-risk group had sig-
nificantly shorter median OS than those in the low-risk
group (log-rank test P < 0.0001) (Fig. 3a). Moreover, the
association of the risk score with OS was also significant
when it was evaluated as a continuous variable in the
multivariate Cox regression analysis (Fig. 4c). The distri-
bution of risk score, survival status, and methylation β
value in GC patients were also profiled (Fig. 3b–d).
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Patients in the high-risk group tended to display high
methylation levels of risky mrDEGs (SCNN1B, NFE2L3
and CLDN2, RBPMS2), whereas patients in the low-risk
group tended to display high methylation levels of pro-
tective mrDEGs (JPH2, GBP6, COL4A5, SMKR1,
PPP1R14A, and ARL4D).

The DNA methylation signature is associated with cancer
recurrence
Next, we analyzed the relativity between clinicopatholog-
ical features and the risk score derived from the identi-
fied DNA methylation signature. The results showed

that GC patients in high-risk group were more likely to
have cancer recurrence (Table 2 and Fig. 4a; χ2 = 6.071,
P = 0.013). We also evaluated the risk score as a con-
tinuous variable and compared it between patients with
recurrence and without recurrence. Patients with recur-
rence tended to have higher risk score than patients
without recurrence (Fig. 4b, P = 0.0054). Interestingly,
the risk score was also significantly associated with pa-
tients’ gender (Table 2, P < 0.001). Aberrant methylation
of genes on X chromosomes has been proven to be in-
volved in carcinogenesis and it is associated with gender
differences in cancer risk [41–43]. Two individual genes

Fig. 1 Determining methylation related differentially expressed genes (mrDEGs) in gastric cancer (GC). a The expression profile of the most
significant 30 mrDEGs between normal (N = 32) and GC samples (N = 375). b The association between gene expression and DNA methylation of
the top 5 mrDEGs in GC samples (N = 338) whose expression and DNA methylation data were both available
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(CLDN2 and COL4A5) of the DNA methylation signa-
ture are located on the X chromosome; therefore, we
plausibly hypothesized that the abnormal methylation of
the prognostic signature could show gender disparity.
Since cancer recurrence could strongly affect patients’

OS, we tested whether the prognostic value of the identified

DNA methylation signature was independent of cancer re-
currence. For this, we conducted multivariable Cox regres-
sion and stratification analysis. The multivariable Cox
regression analysis was performed on 345 patients that con-
tained age, gender, tumor grade, cancer recurrence, TNM
stage, and risk score as covariates. Eighteen cases of GC

Fig. 2 Pathway enrichment analysis of the upregulated and downregulated methylation related differentially expressed genes (mrDEGs) in gastric
cancer. a The pathway enrichment results of the upregulated mrDEGs. b The pathway enrichment results of the downregulated mrDEGs. Each
node represents one enriched term. Node size is proportional to the total number of genes within each gene set. Proportion of shared genes
between gene sets is represented as the thickness of the line between nodes
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patients were not included because of incomplete record of
tumor grade and TNM stage. The results showed that the
risk score (HR = 2.988, 95% CI = 2.202–4.054, P < 0.0001)
and cancer recurrence (HR = 2.753, 95% CI = 1.842–4.113,
P < 0.0001) were both independent prognostic factors (Fig.
4c). Data stratification analysis was then performed where
these patients were stratified into cancer recurrence sub-
group and non-recurrence subgroup. The stratification ana-
lysis showed that the DNA methylation signature could
identify patients with different prognoses regardless of the
disease relapse status (Fig. 4d). For instance, among the pa-
tients without cancer recurrence, the risk score could fur-
ther subdivide them into those likely to have longer versus
shorter survival (log-rank test P < 0.0001, Fig. 4e). Similarly,
among those with recurrence, the risk score could also sub-
divide patients into two subgroups with significantly dispar-
ate survival (log-rank test P = 0.0003, Fig. 4f).

Prognostic value of the DNA methylation signature is
independent of TNM stage
The UICC/AJCC TNM system is currently the most
prevalent criterion for tumor staging, providing a useful
bench mark for selection of treatment modalities and sur-
vival prediction [44, 45]. Thus, we further tested whether
the prognostic value of the identified DNA methylation
signature was independent of TNM stage. The multivari-
able Cox regression analysis showed that both risk score
and TNM stage were independent prognostic factors (Fig.
4c). The stratification analysis suggested that the DNA
methylation signature could identify patients with differ-
ent prognoses in each TNM stage subgroup (Fig. 5a–d)
despite that the P value was not significant in stage I (log-
rank test P = 0.0852). This might be attributed to the
small sample size to draw any reliable conclusions. Then
we combined low TNM stage (I and II) and high TNM
stage (III and IV), respectively; the risk score could still

identify patients with different prognoses in each sub-
group and the P value was significant (Fig. 5e–g).
Furthermore, we performed ROC analysis to compare

the sensitivity and specificity of OS prediction among
the identified DNA methylation risk score model, TNM
stage, and combination of these two factors. The areas
under receiver operating characteristic (AUROCs) were
assessed and compared. As shown in Fig. 5h, the
AUCROC of the identified DNA methylation signature
was significantly greater than TNM stage (0.728 versus
0.619, P = 0.0011). Additionally, the AUCROC of risk
score combined with TNM stage was significantly super-
ior than TNM stage (0.768 versus 0.619, P < 0.0001) or
the risk score (0.768 versus 0.728, P = 0.0018) alone.
These results indicated that the combination of the iden-
tified DNA methylation signature and TNM stage may
help improve OS prediction in patients with GC.

The expression of PPP1R14A and SCNN1B, two individual
genes of the identified prognostic signature, are
regulated by promoter region methylation
The prognostic methylation signature consists of ten
gene members, some of which have been reported to be
dysregulated in cancer. For example, PPP1R14A was
previously described to act as an oncoprotein in the
merlin pathway [46], while SCNN1B is classified as a
member channel with tumor-suppressive effect [35].
However, the expression of these two genes and the
underlying regulatory mechanisms in GC have not been
fully uncovered and thus deserve further investigation.
First, we examined the level of PPP1R14A mRNA ex-
pression using qPCR in the eight gastric cell lines.
PPP1R14A was highly expressed in GES1 and NUGC3
cells, whereas loss of PPP1R14A expression was found in
SNU5, SNU16, NCI-N87, AGS, MGC803, and BGC823
cells (Fig. 6a, left panel). CpG islands situated in the
PPP1R14A gene promoter region and the designed MSP

Table 1 Ten individual genes of the DNA methylation signature associated with overall survival of gastric cancer patients

Gene symbol Gene name Chr Coefficient P value Associated with DNA methylation

CLDN2 Claudin 2 Xq22.3 4.513 0.044 NR

SMKR1 Small lysine rich protein 1 7q32.1 − 2.918 0.079 NR

NFE2L3 Nuclear factor, erythroid 2 like 3 7p15.2 4.152 0.102 BC [34]

SCNN1B Sodium channel epithelial 1 beta subunit 16p12.2 2.542 0.102 GC [35] and CCRCC [36, 37]

RBPMS2 RNA binding protein, mRNA processing factor 2 15q22.31 4.765 0.044 NR

JPH2 Junctophilin 2 20q13.12 − 8.525 0.006 NR

COL4A5 Collagen type IV alpha 5 chain Xq22.3 − 4.225 0.001 CRC [38]

ARL4D ADP ribosylation factor like GTPase 4D 17q21.31 − 2.367 0.110 NR

GBP6 Guanylate binding protein family member 6 1p22.2 − 7.193 0.000 NR

PPP1R14A Protein phosphatase 1 regulatory inhibitor subunit 14A 19q13.2 − 2.845 0.066 CRC [39] and ESSC [40]

NR not reported, BC breast cancer, GC gastric cancer, CCRCC clear cell renal cell carcinoma, CRC colorectal cancer, ESSC esophageal squamous cell carcinoma
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and BSSQ primers were shown in Fig. 6b (upper panel).
MSP was applied to evaluate its methylation status.
Unmethylation and partial methylation of PPP1R14A
were found in GES1 and NUGC3 cells with PPP1R14A
expression, respectively (Fig. 6c, upper panel). By con-
trast, complete methylation was detected in the remaining
six gastric cell lines with dim expression of PPP1R14A
(Fig. 6c, upper panel). The results of qPCR and MSP re-
vealed a negative correlation between PPP1R14A methyla-
tion and mRNA expression. To test whether promoter

methylation directly contributes to transcriptional silen-
cing of PPP1R14A, the gastric cell lines were treated with
5-aza, a demethylation agent. Restoration of PPP1R14A
expression was found in the six methylated cell lines and
increased expression of PPP1R14A was detected in partial
methylated NUGC3 cells, whereas no significant expres-
sion change was observed in unmethylated GES1 cells
(Fig. 6a, left panel). We also used BSSQ technique to val-
idate the efficiency of MSP primers and to assess the
methylation density of a prolonged genomic sequence in

Fig. 3 The DNA methylation signature for overall survival (OS) prediction of gastric cancer (GC) patients. a Kaplan-Meier estimate of the OS using
the identified DNA methylation signature. GC patients were divided into low-risk (N = 181) or high-risk (N = 182) subgroup based on the median
of risk score. The difference between the two curves was determined by the two-side log-rank test. b The distribution of risk score derived from
the DNA methylation signature. c The distribution of GC patients’ survival status. The difference between the low-risk and high-risk subgroup was
determined by chi-square test. d The methylation β value profile of the identified DNA methylation signature in the high-risk and
low-risk subgroups
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the PPP1R14A promoter region. Consistent with MSP re-
sults, the BSSQ analysis revealed methylation and
unmethylation of PPP1R14A in AGS and GES1 cells, re-
spectively (Fig. 6d, left panel). Collectively, these results

suggested that the expression of PPP1R14A is regulated
by promoter region methylation in gastric cell lines. Simi-
larly, the expression of SCNN1B was also proved to be
regulated by promoter region methylation (Fig. 6a–d).

Fig. 4 The DNA methylation signature is associated with cancer recurrence. a The distribution of cancer recurrence status in the high-risk and
low-risk subgroup. The difference between the two subgroups was determined by chi-square test. b Box plot of risk score of patients with or
without cancer recurrence. T test was used to determine the significance of the comparison. c The multivariate Cox regression analysis performed
on 345 gastric cancer (GC) patients that contained age, gender, tumor grade, cancer recurrence, TNM stage, and risk score as covariates. Risk
score and age were evaluated as continuous variables, and gender, tumor grade, cancer recurrence, and TNM stage were evaluated as category
variables. Orange solid dots represent the hazard ratio (HR) of death and open-ended horizontal lines represent the 95% confidence intervals
(CIs). All P values were calculated using Cox proportional hazards analysis. d Kaplan-Meier estimate of the overall survival of the entire set GC
patients (N = 345) using the DNA methylation signature. GC patients were stratified by cancer recurrence status and the high-risk or low-risk
subgroup of patients was determined on the basis of the median risk score. e Kaplan-Meier curves for GC patients without cancer recurrence (N
= 226). f Kaplan-Meier curves for patients with cancer recurrence (N = 119). The differences between the survival curves were determined by the
two-sided log-rank test
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Discussion
Recent researches have well documented the impact of
genetic events on the initiation, development, and pro-
gression of cancer. However, emerging evidence shows
that apart from genetic lesions, alteration to the epige-
nome is also a fundamental characteristic of nearly all

human cancers [47]. Epigenetic changes can be exam-
ined at the level of histone modifications, chromatin
conformation, or DNA methylation [47, 48]. DNA
methylation has been the main focus due to the quanti-
tative nature of DNA methylation assays, and the relative
ease of obtaining sufficient genomic DNA compared to
chromatin [47]. Pioneering studies identified decreased
5-methylcytosine content in tumors compared to normal
tissue [49, 50], further loss of 5-methylcytosine during
tumor progression [51], and increased methylation in
normally unmethylated CpG islands and promoter re-
gions of a wide variety of genes including tumor sup-
pressors [52, 53], metastasis genes [54, 55], and DNA
repair genes [56, 57]. The changes were hypothesized to
affect gene expression and chromosomal stability. More
recently, aberrant DNA methylation has been associated
with biology of GC and can mark the spectrum of dis-
ease progression, thus serving as biomarkers for GC
diagnosis and prognosis [58]. Additionally, a multitude
of cutting-edge tools, for instance, the next-generation
sequencing and bioinformatics tools, pave the way for
integrated analysis of genetic and epigenetic changes in
human cancers [59, 60]. The TCGA project provides
valuable data source generated on multiple platforms in-
cluding transcriptome, methylome, and clinical outcome
for us to identify specific events that are most likely to
contribute to oncogenic processes and discover potential
biomarkers associated with patients’ outcome.
In this study, through mining the multi-source data

from TCGA, we performed an integrative analysis to
identify the epigenetic changes that may play key role in
the development and progression of GC, based on which
we developed a DNA methylation signature for progno-
sis prediction of GC (Fig. 7). We finally identified a set
of ten methylation-related genes (SCNN1B, NFE2L3,
CLDN2, RBPMS2, JPH2, GBP6, COL4A5, SMKR1,
PPP1R14A, and ARL4D) that showed differential expres-
sion among the GC patients from TCGA. Such differen-
tiation signified their potential roles in GC. Although
some of these genes have been reported to be dysregu-
lated in cancer or other disorders, methylation of these
genes or their biological role in GC has not been thor-
oughly investigated. For example, COL4A5 has been re-
ported to play active role in cell growth and
angiogenesis [61]. Loss of COL4A5 expression in colo-
rectal cancer is associated with hypermethylation of its
promoter region [38]. In our study, expression of
COL4A5 was negatively correlated with DNA methyla-
tion in GC and hypermethylation of COL4A5 was asso-
ciated with prolonged survival. Thus, we infer that
COL4A5 may act as an oncogene in GC tumorigenesis
and further investigations are greatly needed. Rauscher
et al. found that in breast cancer NFE2L3 displays hyper-
methylation for estrogen receptor (ER)-positive tumors

Table 2 Correlations between clinical characteristics and risk
score derived from the DNA methylation signature

Variable N High risk Low risk P value

Age (years) 363 0.051

≥ 60 185 93 92

< 60 96 52 44

Gender 363 0.000*

Male 241 136 105

Female 122 45 77

Race 330 0.106

White 235 108 127

Non-white 95 53 42

Family history 315 1.000

Yes 17 9 8

No 298 150 148

H. pylori infection 177 1.000

Positive 20 9 11

Negative 157 70 87

Tumor location 362 0.183

Cardia region (Cardia + GEJ) 91 51 40

Non-cardia region 271 130 141

Grade 354 0.380

G3 221 112 109

G1 + G2 133 61 72

T stage 363 0.562

T3+T4 274 139 135

T1+T2 89 42 47

N stage 355 0.463

N1 + N2 + N3 243 123 120

N0 112 52 60

M stage 350 0.176

M1 21 14 7

M0 329 161 168

TNM stage 349 0.954

III + IV 186 93 93

I + II 163 82 81

Recurrence 363 0.014*

Yes 126 74 52

No 237 107 130

P values were acquired by chi-square test or Fisher’s test. *P value < 0.05 was
considered statistically significant. GEJ gastro-esophageal junction
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and hypomethylation for ER-negative tumors, and
methylation level of its promoter region exhibits an in-
verse correlation with expression among the cancer sam-
ples [34]. In the present study, expression of NFE2L3
was negatively correlated with DNA methylation in GC

and hypermethylation of NFE2L3 was associated with
shorter OS. Another candidate, SCNN1B, a part of a
multiprotein complex consisting of three subunits that
control fluid and electrolyte transport across epithelia in
diverse organs [62], has been shown to be silenced by

Fig. 5 Prognostic value of the DNA methylation signature is independent of TNM stage. a Kaplan-Meier curves for patients with TNM stage I (N =
42). Gastric cancer (GC) patients were stratified by TNM stage (I, II, III, and IV) and the high-risk or low-risk subgroup of patients was determined
on the basis of the median risk score. b Kaplan-Meier curves for patients with TNM stage II (N = 117). c Kaplan-Meier curves for patients with
TNM stage III (N = 158). d Kaplan-Meier curves for patients with TNM stage IV (N = 28). e Kaplan-Meier estimate of the overall survival (OS) of the
entire set GC patients (N = 345) using the DNA methylation signature. GC patients were stratified by TNM stage (I + II and III + IV). f Kaplan-Meier
curves for patients with low TNM stage (stage I + II, N = 159). g Kaplan-Meier curves for patients with high TNM stage (stage III + IV, N = 186).
The differences between the survival curves were determined by the two-sided log-rank test. h Receiver operating characteristic (ROC) analysis of
the sensitivity and specificity of OS prediction by the DNA methylation signature risk score, TNM stage, and combination of the two factors. P
values were obtained from the comparisons of the area under the ROC (AUROC) of DNA methylation signature risk score versus those of TNM
stage and DNA methylation risk score combined with TNM stage
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promoter methylation in GC [35] and clear cell renal cell
cancer [36, 37]. Yun Qian et al. revealed that SCNN1B
mRNA expression is silenced by promoter hypermethy-
lation in GC cell lines and primary tumor tissues and

high SCNN1B expression is an independent prognostic
factor that predicts better survival in a cohort of 245 GC
patients [35]. The tumor-suppressive effect of SCNN1B
is mediated via degradation of GRP78, a chaperone with

Fig. 6 (See legend on next page.)
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oncogenic properties [35]. In line with above findings,
hypermethylation of SCNN1B was identified as a risky
factor with a positive coefficient in the prognostic DNA
methylation signature in the present study. In addition,
by conducting qPCR, MSP, and BSSQ analysis in our
panel of gastric cell lines, we also found that SCNN1B

was unexpressed in most of the GC cell lines examined,
whereas normally expressed in the immortalized human
gastric mucosa cell line GES1, and its expression was
regulated by promoter region methylation. PPP1R14A
was reportedly downregulated in the CRC tissue samples
while upregulated in CRC cell lines following 5-aza

(See figure on previous page.)
Fig. 6 The expression of PPP1R14A and SCNN1B, two individual genes of the identified prognostic signature, are regulated by promoter region
methylation. a Expression levels of PPP1R14A and SCNN1B without (−) or with (+) 5-aza treatment were analyzed by qPCR in eight gastric cell
lines (GES1, NUGC3, SNU5, SNU16, NCI-N87, AGS, MGC803, and BGC823). b Schematic diagrams of CpG islands in the promoter region of
PPP1R14A and SCNN1B. MF methylation forward primer, MR methylation reverse primer, UF unmethylation forward primer, UR unmethylation
reverse primer, BSSQ-F bisulfite sequencing forward primer, BSSQ-R bisulfite sequencing reverse primer. c Methylation status of PPP1R14A and
SCNN1B was detected by methylation specific PCR (MSP) in gastric cell lines. IVD in vitro methylated DNA, NL normal lymphocyte DNA, M
methylated alleles, U unmethylated alleles. d Bisulfide sequencing (BSSQ) of PPP1R14A was performed in GES1 and AGS cell lines. For SCNN1B,
GES1 and SNU16 cell lines were analyzed. Red solid dots represent methylated CpG sites, and green solid dots denote unmethylated CpG sites.
The horizontal black bar demarcates the primers of MSP, which are included in the region of BSSQ

Fig. 7 Flowchart showing steps involved in identification of the prognostic DNA methylation signature in gastric cancer
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treatment [39]. In our study, we verified that the expres-
sion of PPP1R14A was regulated by promoter region
methylation in GC using MSP and BSSQ analysis. As for
the rest of genes, regulation by DNA methylation has
not been reported previously. Our findings suggest that
they deserve further investigations to clarify their poten-
tial as DNA methylation biomarkers in GC.
By applying the risk score model of DNA methylation

signature to GC patients, a clear separation was observed
in survival curve between patients in high-risk and low-
risk subgroups. There were significant associations be-
tween OS and the identified DNA methylation signature,
which was evaluated as a category variable (divided by me-
dian cutoff) or continuous variable. We also uncovered
that the identified DNA methylation signature was associ-
ated with cancer recurrence. Furthermore, we performed
multivariate Cox regression and stratification analysis, and
the results suggested that the prognostic value of the
DNA methylation signature was independent of cancer re-
currence and TNM stage which are two main prognostic
factors in GC. Finally, it was fascinating to find that the
identified DNA methylation signature had a stronger pre-
dictive power than TNM stage in the ROC analysis. More-
over, when combined with TNM stage, the DNA
methylation signature showed even better predictive abil-
ity. These results indicate that the combination of the
identified DNA methylation signature and TNM stage
may help improve OS prediction in patients with GC.
Circulating tumor DNA (ctDNA) consists of extracellu-

lar nucleic acid fragments shed into plasma via tumor cell
necrosis, apoptosis, and active release of DNA [63].
ctDNA exhibits genetic and epigenetic alterations from its
cell of origin and therefore is emerging as a major tool
allowing for real-time and dynamic monitoring of molecu-
lar changes of tumor in precision medicine. ctDNA-
bearing cancer-specific methylation patterns have been
investigated as feasible biomarkers in cancers [64]; how-
ever, currently there are only a few validated methylation
markers available, such as SEPT9 in colorectal cancer
[65]. In the present study, considering the differential
methylation level of the identified prognostic gene panel
between high-risk and low-risk GC patients and its associ-
ation with cancer recurrence, it has great potential to be-
come a useful candidate methylation marker of ctDNA in
precise stratifying GC patients and temporal monitoring
cancer recurrence in the future clinical trials.
Although the predictive performance of the identified

DNA methylation was quite favorable, the limitations
should be acknowledged for our study. First, since insuf-
ficient normal samples (two cases) were evaluated for
DNA methylation in GC patients from TCGA, we could
not identify genes differentially methylated between nor-
mal and tumor samples, which would otherwise uncover
genes that are more likely to contribute to oncogenic

processes of GC by integrating with differential expres-
sion analysis. Thus, this methylation signature is useful
for determining prognosis of GC only, while it cannot be
taken as a diagnostic biomarker. Second, there is no
additional dataset for external validation. We searched
the Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/) for methylation datasets with available sur-
vival information, but our attempt was futile because of
either insufficient sample size or different platforms for
methylation detection. Despite of this drawback, how-
ever, considering the large amount of GC patients (363
cases) included for the development of the prognostic
model, it is more likely to be a significant determinant of
survival in GC rather than an accidental feature of
methylome noise. Finally, we have limited experimental
data and lack information on the regulatory mechanisms
and functional roles of the individual genes of the DNA
methylation signature. Further experimental studies on
these genes are greatly warranted to clarify their poten-
tials as DNA methylation biomarkers for GC.

Conclusions
This study presents a powerful DNA methylation signa-
ture by performing analyses integrating multi-source
data including transcriptome, methylome, and clinical
outcome of GC patients from TCGA. This innovative
DNA methylation signature was associated with cancer
recurrence, while it showed independence of cancer re-
currence and TNM stage, two main prognostic factors
in GC, for survival prediction. Combination of this DNA
methylation signature and TNM stage improved OS pre-
diction for GC patients. We verified that two individual
genes (PPP1R14A and SCNN1B) of the identified prog-
nostic signature were regulated by promoter region
methylation. Further experimental studies are warranted
to unveil the regulatory mechanisms and functional roles
of all the individual genes of the DNA methylation sig-
nature. Also clinical investigations in large GC patient
cohorts are greatly needed to validate our findings.
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